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GENERALIZED TERNARY SIMULATION
OF SEQUENTIAL CIRCUITS (*)

by C.-J. SEGER (*) and J. A. BRZOZOWSKI (2)

Abstract — Asynchronous gâte circuits have been traditionally analyzed using binary models,
which are conceptually simple and natural, but are exponential in the number of state variables A
commonly used binary method is the General Multiple-Winner (GMW) model, which can be applied
to any circuit started in any state In contrast to this, the ternary analysis method called ternary
simulation is polynomial in the number of state variables, but apphes only to a circuit started in
a stable state This method has been in use since 1965 The équivalence of ternary simulation to
the GMW analysis was proved in 1987, for the case of a stable starting state In this paper we
present a generahzed ternary simulation algonthm applicable to any state, and we prove that the
new algonthm is equivalent to GMW analysis The new algonthm is used to prove that certain
behaviors are not reahzable

1. INTRODUCTION

Asynchronous circuit theory has been developed in the 1950's [11, 12].
The interested reader is referred to [21] for details concerning the early
developments in asynchronous circuit theory, and to [5, 6, 7] for additional
motivation and background relevant to the present paper.

Digital circuits have been modeled by Boolean algebra since 1938 [20];
consequently, binary methods were naturally the first to be applied to
asynchronous circuits. When several gâtes are unstable in a circuit, they
are "racing" to their new states. It is normally assumed that any subset
of these gates can change to their new values, Le., there can be "multiple
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winners" in a race. One of the central problems in asynchronous circuit
theory is to détermine the final "outcome" of races. The early informai
binary "race analysis" model [11, 12] was formalized in 1979 [9] as the
"General Multiple-Winner" (GMW) model. Hère "gênerai" refers to the fact
that no assumptions are made about the gate delays, except that they are
finite. A GMW analysis of a race can be exponential in the number of gates.

In 1965, Eichelberger introduced a ternary method for the analysis of
races and hazards [10], building on some earlier work [23]. His algorithm,
called ternary simulation, assumes a stable initial state, and is polynomial in
the number of gates. Eichelberger established a connection between ternary
simulation and the binary methods, but this was done informally. In 1979
Brzozowski and Yoeli [9] formulated a conjecture that ternary simulation
is, in a certain sense, equivalent to GMW analysis, provided that all gate
and wire delays are taken into account in the GMW model. This conjecture
was settled positively by Brzozowski and Seger in 1987 [4], for the case
of a stable initial state.

In this paper we present a generalized ternary simulation applicable to any
state, and we prove that the new algorithm is equivalent to GMW analysis.

The paper is structured as follows. Section 2 defines the basic network
model, and Section 3 describes the GMW analysis method. An introduction
to ternary models is the topic of Section 4. The définition and properties
of the new Algorithm A - the first of the two ternary algorithms - are
then given in Section 5. The second ternary algorithm, Algorithm B, is
then briefly described in Section 6; this algorithm is unchanged. Section 7
discusses some applications of the main theorem. Appendix A gives the
proofs of the key results.

2. NETWORK MODELS

In this section we define a mathematical model of a gate circuit. For
additional information concerning gate circuits the reader should refer to a
basic text on logic design, for example [8, 13, 14, 16].

A gate is a physical device intended to implement a Boolean fucntion.
It has k ^ 1 inputs and one output. If we apply binary signais at the gate
inputs, the output value is determined by the gate type defined by a Boolean
function. The two binary values (0 and 1) are realized by two voltage levels
(low and high). In reality, a gate signal may also have an intermediate value
between high and low; we then assign to this signal a third value $.

Informatique théorique et Applications/Theoretical Informaties and Applications



GENERALIZED TERNARY SIMULATION OF SEQUENTIAL CIRCUITS 1 6 1

We now describe the structural properties of a circuit by a directed graph.

A circuit graph is a 5-tuple G = {X, J , G, W, £)9 where

• X is a set of input vertices, labeled Xi, X2 , . . . , X n ,

• I is a set of mpwf öfe/ay vertices, labeled x\, X2,. . . , xn ,

• £? is a set of gate vertices, labeled j/i, yi^..., ?/r,

• W i s a set of wz>e vertices, labeled z\, 22, . . . , zp, and

• S C (Af U IU ö U W) x ( J U (? U W) is a set of é?4ges.

The input vertices are all of indegree 0, and all the wire vertices
have indegree and outdegree equal to 1. The directed graph defined by
((X U Ï U ö U W), E) must be a bipartite graph with the vertex set separated
into two disjoint subsets lUQ and X U W. Note that loops (edges of the
form (f, v)) are also excluded.

Given a gate circuit, we obtain its circuit graph as follows. First, there is
a vertex (called an input vertex) for every external input X{, and a (gate)
vertex for every gate. For every input vertex X% there is an input delay
vertex x% and edge from X{ to Xi. For every input i of every gate g in
the circuit there is a wire vertex z, and an edge from vertex z to the gate
vertex corresponding to g. If i is connected to an external input Xj, there
is an edge from the input delay vertex XJ to wire vertex z. Otherwise, if i
is connected to the output of gate g\ there is an edge from the gate vertex
corresponding to gf to the wire vertex z.

We now turn our attention to the behavior of a circuit. The domain V of
a circuit spécifies a set of values for the circuit variables. In this paper we
use either the binary domain {0, 1}, or the ternary domain {0, $, 1}.

In order to describe the behavior of a vertex we associated with it a
fonction, called the vertex function. For a gate vertex yu the vertex function
Y{ maps a wire-vertex state to V, Le., Y{ : V^\ —> £>. This function is
related to the Boolean function associated with the physical gate at that
vertex. For a wire vertex zi, the vertex function Z{, Z% : pPW^I _> x>,
provides the value of the input delay or gate vertex connected to the incoming
edge of the wire vertex. For an input vertex XÛ the vertex function, also
called Xi, maps a state of the environnement to V. In contrast to the value
Xi supplied by the environment, the input delay variable X{ holds the input
value "seen" by the circuit.

The vertex functions defined above introducé a distinction between the
present value of a vertex variable and the present value of the "excitation"
of that vertex variable, Le., the value computed by the vertex function. This
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162 C.-J. SEGER, J. A. BRZOZOWSKÏ

permits us to associate a delay with every input, every gate, and every wire
in the circuit.

In order to represent the state of the entire circuit, we need to select a
set of state variables (or state vertices). We could select all of the vertex
variables as state variables, Le., use the input-, gate-, and wire-state model.
For some purposes, the set of state variables can be smaller; for example,
a gate-state model is frequently used. For a more detailed discussion of the
problem of choosing state variables see [5, 6, 7],

Assuming that the state variables are somehow selected, we now proceed
to analyze the circuit using these state variables. We associate with each
state vertex two distinct items: the vertex variable and its excitation function
defined as follows. We start with the vertex function. We then repeatedly
remove all dependencies on vertices which have not been chosen as state
vertices, by using functional composition of the veitex functions.

We use a graph to show the functional dependencies among the state
variables. This graph, called the network, has two sets of vertices: input
excitation vertices and state vertices. There is an input excitation vertex for
every external input, and a state vertex for every state variable. There is an
edge from vertex i to vertex j if the excitation function of vertex j dépends 1

on the variable associated with vertex i.

In summary, our formai network model has the form:

where V is the domain, X is the set of input excitation vertices labeled
X i , . . . , Xn, S is the set of state vertices with two sets of labels: state
variable labels ( s i , . . . , sm), and the corresponding excitation function labels
( S i , . . . , Sm), and £ is the set of edges.

3. GENERAL MULTIPLE WINNER MODEL

A total state c = a • b of a network is an (n + m) -tuple of values from
{0, 1}, the first n values being the input excitations, and the remaining
m the variables s i , . . . , sm. We refer to latter as (internai) state variables.

1 We use the standard notion of functional dependence: A function ƒ of n variables X\,..., xn

dépends on x% if there exist two input n-tuples a — ( a i , . . . , a , _ i , a%, a i + i , . . . , a „ ) and
a' = ( a i , . . . , a » - ! , a£, a 1 + i , . . . , a n ) such that ƒ (a) # ƒ (a')-
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GENERALIZED TERNARY SIMULATION OF SEQUENTIAL CIRCUITS 163

Figure 1. - NOR latch

To simplify notation, in examples we write tuples without parentheses and
commas; the • is used as a separator to improve readability.

In any total state c = a - 6, the set of unstable state variables is

We next define a binary relation Ra on the set {0, l } m of internai states
of TV for a G {0, l } n :

For any b G {0, l } m ,

bRab, if U (a • b) — 0, Le., the total state a • b is stable,

bRab^,ifU(a-b) ^ 0, and /C is any nonempty subset of U(a• &),

where by bK we mean 6 with all the variables in /C complemented. No
other pairs of states are related by Ra. The relation Ra is called the gênerai
multiple-winner (GMW) relation [9].

We depict Ra by a directed graph, drawing an edge from b to b! if bRaÜ.
Such an edge indicates that b1 is a possible immédiate successor of b. A
loop from b to b indicates that the total state a • b is stable. The graph is a
description of the possible network behaviors under the assumption that the
input excitation remains constant at the value a.

To illustrate these ideas, consider the NOR latch circuit of Figure 1. If we
use the gate-state network, the excitation functions are:

s2) and S2 = (X2 + s1).

The graphs of the Ra relations are shown in Figure 2.

In many applications, we are only interested in the "final outcome" of a
transition, and not in the intermediate states that the network may go through
before the final outcome is reached. Since every graph of Ra (b) is finite,
every path from b must eventually reach a cycle. A cycle in the relation

vol. 28, n° 3-4, 1994
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Figure 2. - fla relations for the NOR latch: (a) J?oo, (b) * n , (c) #oi, (d) ^ïo-

diagram of i?a (b) is transient, if there exists a state variable st- which has
the same value in all the states of the cycle and which is unstable in each
state of the cycle. If the delay of each gate is less than or equal to Z), a
network can stay in a transient cycle for at most D units of times. Let the
set of cyclic states reachable from b in the relation diagram of Ra (b) be:

cycl (Ra (b)) = {se {0, l}m |6 i£* and si2+s},

where i?+ is the transitive closure of R, and /?* is the reflexive-and-transitive
closure of R. Also define the set of transient cyclic states:

cycl-trans (Ra (b)) — {s\s appears only in transient cycles}.

Next, define the set of non-transient cyclic states to be:

cycl^non-trans (Ra (b)) — {515 appears in a non-transient cycle}.

Informatique théorique et AppUcations/Theoretical Informaties and Applications



GENERALEED TERNARY SIMULATION OF SEQUENTIAL CIRCUITS

Now the final outcome of the transition from b is:

165

out (Ra (b)) = and cR*as, wherec E cycl-non-trans (Ra

Each state in out appears in at least one non-transient cycle, or is reachable
from a state in a non-transient cycle. Informally, a state is in the outcome
if the network could be found in that state at any time arbitrarily long after
the start of the transition.

4. TERNARY MODELS

In analyzing the behavior of asynchronous circuits, it is often convenient
to work in a ternary, rather than Boolean, algebra [8, 9, 10]. We will use
the two Boolean values 0 and 1, and a third value $, which represents an
"uncertain value", that is neither 0 nor 1. In order to improve readability,
ternary variables will be set in boldface type.

We define the "uncertainty" partial order E on {0, <&, 1} as follows:

0 E 0, 1 Ç and

and no other pairs are related by E. Thus, for s, t E {0, $, 1}, the statement
s E t is interpreted as s "has no more uncertainty" than t. When s Ç t, we
will say that s is covered by t or that t covers s. The partial order is also
extended to {0, $, l } m , for any m > 1, in the natural way:

s E t iff Si E for all i, 1 < % < m,

OR
0
$
1

0
0
$
1

$

1

1
1
1
1

AND
0
$
1

0
0
0
0

$
0
$

1
0
$
1

0

Figure 3. - Ternary OR, AND, and INV

where s = s i , . . . , sm and t = t i , . . . , t m , are any two éléments of
{0, $, l } m . We write s E t if s Ç t and s / t. Thus, for example,
0$10 E 0$ l$ , but 0$l and 1$1 are not related by E-

In the partially ordered set {0, $, l } m , we define the concept of least upper
bound as usual For example, lub{0, 1} = $ and M>{$010, 1110, 0100} =
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For any Boolean function ƒ : {0, l } m —> {0, 1}, its temary extension
f : {0, $, l } m -> {0, $, 1} is defined by:

f (t) = lub {ƒ (t)\t E {0, l } m and t Ç t } .

For example, let ƒ be the two-argument (inclusive) OR function; then

f (0$) = lub {ƒ (00), ƒ (01)} - lub {0, 1} = $.

Note that any Boolean function ƒ agrées with its temary extension f when
the argument t is binary.

The reader can verify that the functions defined in Figure 3 are the temary
extensions of the Boolean functions OR (+), AND (o) and INV (") (inversion
or complement). We use the same symbols for temary extensions of AND,
OR, and INV, as we do for the binary functions.

The following important property, the monotonicity property, is easily
verified to hold for the ternary extension f of any Boolean function ƒ :

s Ç t implies f (s) Ç f (t),

for all s, t G {0, $, l } m . This property is interpreted as follows: If input
vector t is at least as uncertain as input vector s, then the gate output f (t)
cannot be less uncertain than f (s).

5. ALGORITHM A

In ternary simulation we use the domain {0, $, 1}, and we replace the
Boolean excitation functions by their temary extensions. To distinguish two
versions of the same network, one with a binary and the other with a temary
domain, we dénote them by N and N, respectively. Let N — ({0,1}, Af, «S, £)
be a binary network, and N = {{0, $, 1}, Af, 5, f) its temary counterpart,
called the ternary extension of N, There are n inputs and m state variables
in N and N. State variable vectors in the temary domain are denoted by s
and the input and vertex excitation function vectors by X and S. Let a • b
be a (binary) total state of N. Our new first algorithm of ternary simulation
is formally defined as follows:

Algorithm A
h := 0;
s0 := 6;

Informatique théorique et Applications/Theoretical Informaties and Applications



GENERALEED TERNARY SIMULATION OF SEQUENTIAL CIRCUITS 167

repeat
h := h + 1;
sh := lub{sh~\ S(a-sh~1)}]

until sh = s*1"1;
In the following, we use A (roman) to dénote the name of the algorithm

and A (italic) to dénote the length of the séquence of states that the algorithm
produces. Propositions 1 and 2 below are based on [9].

PROPOSITION 1: Algorithm A produces afinite séquence s 0 , . . . , sA of states,
where A^m. Furthermore, this séquence is monotonically increasing, i.e.,

sh C s H i 5 for Q<,h<A.

Proof: First, by the f act that t E lub {t, t '} for any t, t', it follows that

sh Ç lub { s \ S (a • sh)} = sh+1, for 0 £ h < A.

Second, in each step of the algorithm, at least one state variable must become
<&; otherwise the algorithm terminâtes. Since there are m state variables, it
follows that A cannot exceed m. D

Let iV be a network in state b with inputs held constant at a.
Define the set of all states reachable from b in the GMW analysis as:
reach (Ra (b)) — {c|W?*c}. In the following, if h > A, by s^ we mean sA.

PROPOSITION 2: The least upper bound of the set of all the states reachable
in the GMW analysis of a network N is covered by the result of Algorithm
A for N, Le.,

lub reach (Ra (b)) C s A .

Moreover,

b (Ra) c implies c Ç s .

Proof: The proof of the second claim is by induction on h. For h — 0,
we have b (Ra)° c implies c = b. But also s0 = b. Hence b (Ra)° c implies
c Q s0. Assume now that b (Ra)

h c implies c Q sh, and suppose that
cRa d. By définition of Ra, each component d{ of d has either the value
of the corresponding component Ci in c or it is equal to the excitation
Si (a • c). Thus d C lub {c, S (a • c)}. The latter expression is equal to
lub {e, S (a • c)}, since the ternary extension S agrées with 5 on binary

vol. 28, n° 3-4, 1994



1 6 8 C.-J. SEGER, J. A. BRZOZOWSKI

arguments. Using the induction hypothesis, the monotonicity of S, and the
monotonicity of lub, we find d Ç lub {sh, S (a • sh)} = sh+1. Thus the
second claim holds. By Proposition 1, sA covers sh for every h; hence the
main claim is established. D

The main resuit of this section is the following theorem:

THEOREM 1: Let N — ({0, 1}, X, <S, £) be an input-, gate-, and wire-state
binary network, and let N — ({0, $, 1}, X, <S, £) be its ternary counterpart
IfN and N are started in total state a - b, then the result sA ofAlgorithm A
for N is equal to the lub ofthe set of all the states reachable from the initial
state in the GMW analysis of N, Le.,

sA = lubreach(Ra (6)).

Proof: By Proposition 2, lubreach (Ra (b)) is covered by the result of
Algorithm A for N. It remains to be shown that the lub of the reachable
states of Af covers sA. This follows from Corollary 2 in Appendix A. In the
corollary it is shown that, for every vertex j , there is a state s ; E {0, l } m such
that bR*a 5

J and s ƒ C lub {bj, sj}. This is sufficient to prove the result. D

6. ALGORITHM B

For completeness, we include a description of Algorithm B which is
unchanged, although the proof of Proposition 4 is modified to fit the new
définition of outcome. In Algorithm B, we see how much of the uncertainty
introduced by Algorithm A is eventually removed, if the network is started
in the state produced by Algorithm A and the binary input a is applied.

Algorithm B
h := 0;

t° — s
repeat

h :=
tk :=

until th

;

h-

S
H ;
(a • th

PROPOSITION 3: Algorithm B produces afinite séquence t ° , . . . , tB of states,
where B ^ m. Furthermore, this séquence is monotonically decreasing, Le.,

, for 0^h<B.
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Proof: We first prove by induction on h that th Zj th+l. For the basis,
observe that sA = lub {$A, S (a *sA)}. It follows from the properties of lub
that t° = sA 3 S (a • sA) = t1. Now assume inductively that th Ij tA + 1 .
By the monotonicity of S if follows that

t*+ 1 = S (a • tfc) 3 S (a • th+1) = t*+2,

and the induction step goes through. In view of this, at least one state
variable must change from $ to a binary value in each step of the algorithm;
otherwise the algorithm terminâtes. Since there are m state variables, B
cannot exceed m, and the proposition follows. D

PROPOSITION 4: The least upper bound of the set of all the states in the
outcome of the GMW analysis of a network N is covered by the result of
Algorithm B for N, Le.,

lub out {Ra (b)) QtB.

Moreover, for every h ^ 0,

lub out {Ra {b)) Ç t \

Proof: We prove the latter claim by induction on h.lf h = 0, then th = sA.
Since out {Ra (&)) Ç reach {Ra (6)), we have lub out {Ra {b)) U. sA by
Theorem 1, and the basis holds. Now suppose that h > 0 and that th satisfies
the claim, but th+1 does not Then there must exist c E out {Ra {b)) and a
vertex i such that ĉ  2 (t>h+1)i- Since c% G {0, 1}, this can only happen if
( t / l + 1) ï — t~%. We now assert that the excitation S% (a • d) is equal to (t / i + 1) z

for every state d in out {Ra (&)). Note that

S {a • d) = S (a • d) Ç S (a • th) - t& + 1 ,

where the inequality follows from the inductive assumption (which implies
d Q th) and the monotonicity of S. Now, since (t / t + 1) z is binary and
covers S% {a • d), it must be equal to St {a • d), as claimed. Now consider
any non-transient cycle in out {Ra {b)), Since the excitation of the i-th
variable is constant throughout the cycle, the value of the variable must be
constant throughout the cycle. Since the cycle is non-transient, that value
must be equal to the excitation. Thus dx = (t / l+1)2 = ~c~% for every state d
in the cycle. Since the non-transient cycle was arbitrary, we have shown
that d% — {th+1)i = ~c% for every state d in every non-transient cycle in
out {Ra (6)). This, together with the fact that St(a-e) ~c^ for every state e
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in out (Ra (6)), implies that every state d e out (Ra (&)) reachable from a
non-transient cycle will also have di — (th+1)i = cï. However, these results
together imply that di = cï for every d e out (Ra (6)), contradicting the
assumption that c G out (Ra (&)). Hence, the induction step goes through.
The main claim of the proposition now follows in view of Proposition 3. D

The characterization of the results of Algorithm B is given in the foUowing:

THEOREM 2: Let N = ({0, 1}, X, <S, £) be an input-, gate-, and wire-state
binary network, and let N = {{0, <£, 1}, X^ <S, S) be its ternary counterpart
IfN and N are started in total saté a • b, then the result tB of Algorithm B
is equal to the lub of the outcome of the GMW analysis, Le.,

tB = lub out (Ra (b)).

Proof: By Proposition 4, lub out (Ra (6)) is covered by the result of
Algorithm B. It remains to be shown that the lub of all the states in the
outcome of TV covers tB. This follows from Lemma 9 in Appendix A. In
the lemma it is shown that there exists a non-transient cycle Z reachable
from the initial state and such that the lub of all the states in Z covers tB.
This suffices to prove the theorem. D

An important corollary that follows directly from the construction in the
proof is:

COROLLARY 1: Let N and N be as in Theorem 2, and let tB be the result of
Algorithm B when N is started in total state a -6. IftB is not binary, then
there is a non-transient cycle, reachable from a-b in the GMW analysis ofN,
such that every gate and wire vertex j with tƒ = * oscillâtes.

7. DELAY-EVSENSITTVE CIRCUITS

A delay-insensitive circuit fonctions correctly independently of the sizes
of the delays in its components and wires. Consequently, the vérification of
such a circuit by a GMW analysis requires an input-, gate-, and wire-state
network model. In this section we show that our new ternary simulation
can be a powerful tooi for proving that certain behaviors cannot be realized
delay-insensitively.

Traditionally [11, 12, 15, 21], asynchronous circuits have been operated
in fundamental mode, in which the environment is allowed to change the
circuit inputs only if the circuit is stable. More recent asynchronous design
techniques use the input/output mode of opération [2, 3, 17, 22]. In this

Informatique théorique et Applications/Theoretical Informaties and Applications
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mode, the environment does not have to wait until the circuit has stabilized
completely; a new input can be applied as soon as the circuit has given
an appropriate output response. The analysis of circuits operated in the
input/output mode requires the more gênerai form of ternary simulation
developed in this paper. The work below follows closely the ideas of [3].
Lemma 1 is a generalization of the result of [3], where a more restricted
définition of input/ouput mode-realization was used along with the original
version of Algorithm A.

In order to show that certain behaviors cannot be implemented delay-
insensitively by gate circuits, we first prove that a particular very simple
behavior, called Ai, cannot be implemented. We then use réduction
techniques to show that several common behaviors, like that of the
C-ELEMENT [19] and the set-reset latch, cannot be implemented.

The behavior Ai is defined as follows. It has one input X and one output
0, and it is operated in the input/output mode. The initial "input/output
state" of the behavior is X * O = 0 • 0, and this state is stable, in the sense
that the output will not change unless the input changes. Once the input has
changed, the behavior reaches the state 1-0; this state is unstable, because
the output should (eventually) change to 1, resulting in state 1-1. As soon as
the output has changed, the environment is allowed to change the input back
to 0. However, the behavior should not change the output again, ie., it must
remain in state 0 - 1 . This can be summarized by the following transitions:

Any network N realizing Ai must have the following properties:
Pi If ci = 0 • b is a state of Af representing the initial state of the behavior,

then every state c (including b) reachable by an /?o-secluence from b
must have the output O equal to 0. (The output cannot change by itself.)

7*2 The input is allowed to change in any state 0 • c, defined as above,
and the state 1 • d reached after this input change must be unstable and
must have O = 0. (The output cannot change instantly, because the
output wire has a delay.)

P3 In every 7?i-sequence starting with d and ending with a state in out
(Ri, d)» O changes exactly once. (Exactly one output change is specified
in Ai.)

P4 Let e be any state that can be reached by an R\-séquence from d and
that has O = 1. Then the input is allowed to change again. The state
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5 3 l 1 "4 — •** -KT

•o-
Figure 4. - Network N

0 • ƒ so reached must have O = 1. (Input-output mode permits an input
change as soon as the output changes.)

7*5 Every state g reached from ƒ by an /?o-sequence must have O = 1.

(The output should not change again.)

We now show that no such delay-insensitive design exists.

LEMMA 1: The behavior A\ does not have a delay-insensitive input/output-
mode realization,

Proof: We show that, if a network N with initial state q\ that is a
delay-insensitive input/output-mode realization of Ai existed, then we could
construct a network N that would have contradictory properties.

Consider the network N derived from N as shown in Figure 4. Notice
that a delay element is introduced for the input as well as every wire. Since,
by assumption, network N also contains a delay element for each wire, we
have an input-, gate- and wire-state network model for N. Let sr dénote
the vector of internai state variables of N, except for the output variable
which is denoted by O.

The initial state of N is X - xss'O = X • xsis2s3Xs/0 = 0 • 1100060.
Consider now any RQ-séquence. Note that, by conditions Pi and Pi, the
output O of N will not change before X changes to 1. Note also that,
eventually, x, s\9 53, and X will change because the input delay is unstable.
In fact, every ^0 -séquence starting in 0 • 1100060 can lead to any state of
the form OOOlldO, where d is reachable form c in N by an i?o-sequence.
Because of Property P2, all such states must be unstable. By P3, N eventually
reaches a state 1 • el, for some vector e. Thus we must have an RQ -séquence
OOOlldO ->* OOOllel. From P4 and P5 it now follows that O cannot change
any more, even if X becomes 0 again; this has to hold for all possible
values that s' may reach. Thus, the s'-component of the state of N becomes
irrelevant, and we replace it by # from now on. After O becomes 1, we
have the foliowing i?o -séquence:

OOOllel -> 00111#l -> 00101#l -> 00100#L

Informatique théorique et Applications/Theoretical Informaties and Applications



GENERALEED TERNARY SIMULATION OF SEQUENTIAL CIRCUITS 173

In the last state, the variables x, si, S2, $3> X' and O are stable and
will not become unstable again. It follows that the outcome of the GMW
analysis of N started in state 0 • 1100060, always yields states of the form
0 • 00100#l, Ï>. ,

h e out (jRo, 1100060) implies the O component of h is 1.

Consequently, even in the présence of arbitrary input, gate and wire delays,
the final outcome of the transition yields 0 = 1. Note that, in the analysis
above, N is operated in input/output mode.

Next we show that ternary simulation of N contradicts the conclusion
reached above. By Property Pi, as long as the input X of N is 0, the
excitation of the output delay must be 0. Hence the output delay is initially
stable. Algorithm A produces the following séquence:

0-1100060^0-

where the # indicates that we don't know the values of the s' portion of
the state. Trivially, 1100060 RQ 1100060, and we have shown above that
1100060 #o OOOllel, Le.9 both 1100060 and OOOllel are reachable from
1100060 (in zero or more steps). Consequently, the output O can take the
values 0 and 1 in the GMW analysis of the network. By Proposition 2,
Algorithm A must produce O = $. Subsequently, 52 becomes $, and the
final resuit of Algorithm A has the form 0 • $ $ $ $ $ t $ for some vector
t of ternary values.

{O}

{O}

FigureS. - Behavior of C-ELEMENT

Applying Algorithm B to state 0 • $ $ $ $ $ t $ , we find that it terminâtes in
the third step with state 0 • 00$$$ t$ . Consequently, Algorithm B predicts
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{0}

{0}

FigureS. - Behavior of C-ELEMENT

that O has the value $. But then, by Theorem 2, there exists a state
in the outcome of the GMW analysis where O = 0. This contradicts
the GMW analysis above. Therefore, the network N with the postulated
properties cannot exist, and we have proved that behavior Ai does not have
a delay-insensitive gate realization operated in the input/output mode. D

Using Lemma 1 we use the arguments of [3] to show that the behavior
of the C-ELEMENT - a basic component of delay-insensitive design - does not
have a delay-insensitive realization in input/output mode. The behavior of
the C-ELEMENT, with inputs X\ and X^ and output O, is shown in Figure 5,
where the entries within the nodes consist of input, internai, and output state.
Whenever the two inputs agrée, the output should take on their common
value. When the inputs disagree, the output should retain its current value.
The C-ELEMENT has the sub-behavior:

1 0 • 7*2 • 0

If we ignore the input Xi and associate X2 with X, we obtain a behavior
isomorphic to Ai. Thus if a delay-insensitive implementation of a C-ELEMENT

operated in input/output mode existed, then so would a delay-insensitive
implementation of behavior Ai operated in input/output mode. In view of
Lemma 1, the C-ELEMENT cannot be realized by a delay-insensitive gate circuit.
For additional results concerning delay-insensitive realizations see [3, 7],

We conclude this section with a sketch of a proof that it is impossible
to construct a delay-insensitive gate circuit that would act as an arbiter.
This result was proved by [1] in a totally different formalism. A primitive
arbiter has two inputs X\ and X2. A 1 on either input represents a request
for a shared resource. The outputs O\ and O2 represent grants for use of the
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resource. The essential fonction in the arbitration process is to ensure that,
when X\ and X2 are both 1, only one of them can be served. The arbiter
can grant the resource to X\ by setting O\ — 1, O% ~ 0, or to X2 by setting
O\ = 0, 0% — 1. The arbiter is not allo wed to always give préférence to one
of its inputs but must, in fact, implement the "criticaT race above. In view
of Theorem 2, ternary simulation for this situation must yield O\ — Ö2 = $.
By Corollary 1, however, it is possible for O\ and O% to oscillate under
suitable delay assumptions. Clearly such a behavior is not allowed for an
arbiter. Consequently, no delay-insensitive gate circuit can realize an arbiter.
For additional details the reader is referred to [7].

Acknowledgement - The authors would like to thank Jo Ebergen of the University of Waterloo
for the new définition of outcome used in this paper and for many useful suggestions conceming
this work.

A. PROOFS OF MAIN RESULTS

Let N and N be input-, gate-, and wire-state networks as in Theorem 1.
We require some notation for refening to the fan-in and fan-out vertices of
a given gate vertex i i n a network. Let the set of its fan-in vertices be

<** = {j\U> *)££}-

Note that a1 fW" = 0 if i ^ j . With a slight abuse of notation, given a vector
v of length m and al ^ 0, we write al (v) to dénote the components of the
vector corresponding to the fan-in vertices; thus, if a% = {ai , 0:2,..., a r } ,
then al (v) = v a i , v a 2 , . . . , Var- Similarly, let the fan-out vertices of i be

Again, note that ft1 f) f33' — 0 if i ^ j . Given a vector v of length m and
/?* 7̂  0, by fi1 (v) we dénote the components of the vector corresponding to
the fan-out vertices of vertex i. Finally, if sh

9 0 < h ^ A dénotes the result
of Algorithm A after h steps, and vertex s ƒ — * , let 7j dénote the step in
which this vertex changes to $> Le., if s^"1 = bj and s | = ^ , then 7̂  = k.

The following technical result conceming binary and ternary excitations
will be needed in Lemma 2.

PROPOSITION 5: Let N and N be as in Theorem 1, and let j be a gate vertex
of N with indegree dj and fan-in set a?. / / s E {0, $, l } m is such that
Sj = bj E {0, 1} and lub{sj, Sj (a • s)} = $, there exists ê e {0, 1}^
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such that é Ç aJ (s) and Sj (a • s) — bj for every s G {0, l } m such
that aj (s) = e7.

Proof: We prove the claim by contradiction. Assume that, for all
é G {0, l}d* such that ë E aj (s), there is some state s G {0, l } m such
that é = a? (s) and Sj (a • s) — bj. Since Sj dépends only on the vertices
in a?, we can conclude that Sj — (a • s) = 6j implies S'y = (^ • s') = 6j
for every s7 G {0, l } m such that a? (5) = o? (s1). Altogether, we have
that Sj = (a- s) = bj for every s G {0, l } m such that aj (s) Ç aj (s).
By the définition of ternary extension, this implies that Sj (s) = fy; hence
lub {sj, Sj (a • s)} = Zut {6j, 6^} — bj, contradicting the assumption that
lub {SJ, Sj (a • s)} = $. D

The following is the key lemma required to show that the result of
Algorithm A is covered by the set of states reachable in the GMW analysis.

LEMMA 2: Let N and N be as in Theorem 1, and let sh, 0 ^ h ^ A
be the result of Algorithm A after h steps. Then, for each h, there exists
sh G {0, l } m with the following properties:

1. bRl sh.

2. If j is an input delay or gate vertex, then

3 \ bJ if sf = $.

For the next two properties, let j be a wire vertex in thefan-out set of vertex
i and in the fan-in set of vertex k (i = k is possible).

3. If 4 = bk e {O, 1}, then

u I bj if ŝ  = b% and s • = bj,
3 1 Sj (a • sh) if s^ = $ or Sj= $•

4- If s^ = sh
k = $ , then

7i ^ 7fc implies Sj — Sj (a • sh).

Proof: We prove the lemma by induction on h. The basis, h = 0, follows
trivially since s° — 6 G {0, l } m . Assume inductively that the state sh has
been reached and that sh satisfies Properties 1-4. We will show how to reach
a state s^+1 that satisfies all four properties. We do this in two steps. We first
show that there is a state sh+1 reachable from sft in which all input delay and
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gate vertices that change to $ in step h + 1 in Algorithm A are unstable. We
then conclude the proof by showing how 5f t+1 can be reached from sh+1.

It is convenient to introducé the following shorthand. Let Ch+l be the set
of gate and input delay veitices that change to $ in step h + 1, Le.,

Ch+1 = {j e 1U ö|sj = bj and s j + 1 = $ } .

Now, let s^+1 — 5j for every input delay and gate vertex. If j G Cfc+1,
let a3 (sh+1) = e?, where c? G {0, 1}^ is such that é Ç a3 (sh) and
Sj (a • s) = 6j for all s € {0, l } m such that a3 (s) = c7. By Proposition
5 such a e? is guaranteed to exist. If j £ Ch+1, let aj (sh+1) = a3 (sh).
Note that this completely détermines sh+1. We first claim that every vertex
in Ch+1 is unstable in sh+1. To verify this, consider two cases. First, if j
is an input delay vertex, then h must be 0 and the input delay excitation
fonction Xj must be bj. Thus input delay vertex j is unstable at h = 0.
Since, by construction, no input delay vertex changes in going from sh to
5 / l+1 , input delay vertex j must still be unstable in sh+l. On the other
hand, if j is a gate vertex, then a3 (sh+1) = c3. But c3 was chosen so that
Sj (a • sh+1) = £y. By Property 2 of the induction hypothesis, s*- = &y; thus
vertex j is unstable in sh+1.

We now claim that shR*a s
h+1. Clearly, the claim holds if sh+1 = sh.

Hence, assume s^+1 ^ sh. It is sufficient to show that each vertex that
changes in going from 5^ to shJrl is unstable in the total state a • sh. Let

^ 1j be such a vertex, Le., assume 5^+1 ^ s^. By construction, it follows
that j must be a wire vertex in the fan-in set of some vertex k G ChJrl

and in the fan-out set of some vertex i. However, ak (sh+1) = ck and, by
définition, ck Ç ak (sh). In particular, ck = sf*1 Q s1}. If s^ = bi and
s^ — bj then, by Property 3 of the induction hypothesis, sj1 = bj. However,
s^ = bj implies that s^+1 = bj and thus in this case s^+1 = s j . On the
other hand, if s^ = $ or s^ — $ then, again by Property 3 of the induction
hypothesis, we have s^ = Sj (a • sh), and thus vertex j is unstable in the
total state a- sh. Altogether, s^+1 is either equal to s^ or Sj (a - sh) for
1 < i ^ m; thus s^i?* sA+1.

We are now ready to construct s^1 Af j e Ch+l let 5^+1 = Sj (a • 5^+1 )
and P (sh+1) - ^ ' (S (a • 5h+1)). If j ^ Cfc+1, let 5 J + 1 = s j + 1 and
/3J (5

/l+1) = /?J' (5^+1). Note that this uniquely détermines sh+l. We now
must verify that 5^+1 satisfies Properties 1-4. First, it follows immediately
from the construction that sh+1Rl sh+1. From the fact that shRl sh+1 and
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from the induction hypothesis, it follows that bR*a s
h+l and Property 1 holds.

Secondly, by construction, s^+1 = s^ for every input delay and gate vertex
and the only gate and input delay vertices that are changed in going from
ëh+l to 5 h + 1 are those that change to $ at step h + 1 in Algorithm A; hence
it follows from the induction hypothesis that Property 2 holds for every gate
and input delay vertex in s^+1.

Now, consider any wire vertex j which is in the fan-out set of vertex i
and in the fan-in set of vertex k and for which s^+1 = è&. If s^+1 = s^
and s^+1 = s^ then, by the construction, sf+1 = sf and s^+l = s^. Thus,
by the induction hypothesis, Property 3 holds for j . On the other hand, if
i e C^+1, the construction of sft+1 ensures that every wire vertex in the
fan-out set of gate i will be unstable, since we simultaneously set its output
to its current excitation and change its input. Hence, Property 3 holds in
this case too. Finally, if s^+1 = b% but s^+1 = $, it follows immediately
that h must be 0 and that the circuit was started in a state in which wire
vertex j was unstable, Le., bj — Sj (a - b), Since neither i nor k is in C1,
it follows that s] = s® = bi and that s1- — s^ = bj. Since the excitation
of wire vertex j is completely determined by the value on gate or input
delay vertex i, it follows that wire vertex j will remain unstable in total
state a • sh+1 and Property 3 holds.

Finally, consider any wire vertex j such that j G /?\ j G ak,
^ i = sh+i _ ^ m<^ ^ ^ ^ There are two cases to consider. If

i e Ch+l then, by the construction of sh+1, we have s^+1 = 5,- (a • sh+l).
On the other hand, if i g Ch+1

9 then k g Ch+1, since otherwise 7^ > 7».
However, if neither i nor k is in Ch+l then none of i, j , and k changes in
going from sh to sh+1. Since j is a wire vertex, its excitation dépends only
on the value on vertex i. Consequently, the excitation of vertex j does not
change in going from sh to sf t+1. By Property 4 of the induction hypothesis,
it follows that s j + 1 = Sj (a • 5/fc+1). D

From this result, we immediately obtain the following:

CoROLLARY 2: Let N and N be as in Theorem L Then, for 1 ^ j ; ^ m,
there exists a state sj G {0, l } m such that bR*a s

j and

lub{bj, 5 J } D s / .

Proof: If sƒ = bj, the result follows trivially. So assume sj1 = $. If j
is an input delay or gate vertex, then the result follows immediately from
Lemma 2, Property 2. So assume j is a wire vertex between vertices i and fc,

Informatique théorique et Applications/Theoretical Informaties and Applications



GENERALIZED TERNARY SIMULATION OF SEQUENTIAL CIRCUITS 179

Le., (i, j) e £ and (j, k) G S. If vertex j is unstable in the total state a • 6,
then we can reach a state in which Sj = 6j. Hence, assume wire vertex j is
stable in state a • 6. The excitation of wire vertex j is completely determined
by the value on vertex i\ thus Sj (a • s) = &i for every 5 G {0, l } m such
that Si — bi. Assume vertex j changes to $ at step r in Algorithm A.
This implies that vertex i must have changed to $ in step r — 1, and thus
S4 = <J>. By Property 2 of Lemma 2, this implies that we can reach a state
s G {0, l } m such that s» = 6j. This means that 5j (a • s) = bj\ thus we can
reach a state 5 in which ëj = bj. D

The proofs of the results below follow closely the gênerai pattern used in
[4]. The main différence is that in [4] Algorithm B was applied to a gate-state
network, whereas here we apply it to an input-, gate-, and wire-state network.

Given the result tB of Algorithm B, if t? = <3>, we say that vertex j
is indefinite; otherwise it is definite. Note that every input delay vertex is
definite since we assume that the inputs to the circuit are always binary. Let
V dénote the set of definite vertices and J the set of indefinite vertices.

Assuming there is at least one indefinite vertex j (Le., Algorithm B does
not yield a binary result), there must be some other vertex i G aJ which
is also indefinite. Otherwise, all inputs to vertex j would be binary and its
excitation could not be <&. Since the network N is finite, we must have at
least one cycle of indefinite vertices; such a cycle will be called indefinite.
Note that, since we are using an input-, gate-, and wire-state network - thus
every loop in the network is of length at least two - there must be at least
one gate vertex and one wire vertex in every indefinite cycle.

Eventually we want to show that, if the result of Algorithm B contains
at least one $, there exists a non-transient cycle of length ^ 2 (Le., an
oscillation) in the graph of the relation Ra for N such that all indefinite
vertices "take part" in the oscillation, Le., each vertex variable takes on both
values 0 and 1 in the cycle. Furthermore, that cycle is reachable from the
initial state of N.

The foliowing définitions help to simplify the proofs. A total state a - c
of Af is compatible with a • tB if c Ç t 5 . Also, a total state a • c of N is
definite stable if all the definite vertices are stable in that state. Finally, a
total state a • c of N is loop unstable if there is at least one unstable wire
vertex in each indefinite cycle of N.

LEMMA 3: Let N and N be as in Theorem 1 and let sA G {0, l } m be a
state derived as in the proof of Lemma 2. If th is the result of Algorithm B
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after h steps, 0 < h < B, then there is a state th G {0, l } m such that:

I. bRl th,

II. th Ç t \

III. if t j = $ then t) = 5/ .

Proof: We proceed by induction on /i. For the basis, let t° — sA. Properties
I-III follow trivially from the fact that t° = sA, from Proposition 2, and
from the assumption that sA satisfies Properties 1-3 of Lemma 2.

Assume inductively that th has been constructed and let

t ^ if J { , }
3 ! $ otherwise.

Clearly, thR^ th+1. Together with the induction hypothesis Property
I, it follows that bR^ th+l. For Property II, consider any vertex j . If
fc+i _ $ t h e n i t foiiows trivially that t^+1 Ç t^+1 . Hence assume that

^ G {0, 1}. By définition of Algorithm B, t^+ 1 = Sj (a • t'1). By the
induction hypothesis Property II and the monotonicity of S, it follows that
Sj (a • th) Ç Sj (o • tfc) = t j + 1 . But Sj (a • th) = S,- (a • tA), since the
ternary extension S agrées with S on binary arguments. By construction,
£ 1 G {0, 1} implies that t^+1 = Sj (a • tA). Thus, it follows that
£ E ty+ 1 . Since j was arbitrary, Property II follows. Finally, by the

monotonicity of Algorithm B (Proposition 3) if t^+ 1 = <& then t^ = $.

= thjHowever, by construction, if t^+ 1 = $ then t^+1 = thj. This, together

with the induction hypothesis Property III, implies that if t^+ 1 — $ then

= th = SA a n d p r o p e r t y m follows. Since Properties I-ÏÏI hold for

, the induction goes through and the lemma follows. D

LEMMA 4: Let t G {0, l } m be any state such that t Ç tB. Then t is
definite stable.

Proof: By Proposition 3, t 5 = S (a • tB). Now consider any definite

vertex j . By the définition it follows that t? G {0, 1} and thus

t? = Sj (a • tB) G {0, 1}. However, by the assumption that t Ç tB, and by

the monotonicity of S, it follows that Sj (a-t)Q S ; (a • tB) = tf G {0, 1}

and therefore Sj (a • t) = t?. But Sy (a • t) = 5; (a • i), since the ternary

extension S agrées with S on binary arguments. Altogether, if t? G {0, 1}

then Sj (a -1) — tB = *ƒ, where the last equality follows from the fact

that tf Ç tf. D
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COROLLARY 3: Let tB be a state derived as in the proof of Lemma 3. Then
tB is definite stable.

Proof: The proof follows immediately from Lemma 4 and Property II of
Lemma 3. D

LEMMA 5: Let tB be a state derived as in the proof of Lemma 3. Then
tB is loop unstable.

Proof: It is sufficient to prove the claim for each indefinite simple cycle,
where a cycle is simple if it has no repeated vertices except for the first and
the last vertex in the cycle. Let C be an arbitrary indefinite simple cycle in N.
Note that C contains only gâte and wire vertices, since no input delay vertex
can be indefinite. A gâte vertex i in C is said to be terminating if no other
gâte vertex in C becomes 4> in Algorithm A after vertex i. Clearly, there
must be at least one terminating vertex in C. Assume vertex i is terminating
in C and that it became $ at step r of Algorithm A. Since i is in C, one of
the wire vertices in /3% must be the successor vertex to i in C; assume this
is vertex j . We now claim that j is unstable in tB. Note first that since i
and j are indefinite vertices, le., t f = tf = $ by Property III of Lemma 3,
we can conclude that tf = s f and tf = s ƒ . Furthermore, since j is a wire
vertex, its excitation is completely determined by the value on gâte vertex i.
Thus, if j is unstable in sA, then it is also unstable in tB. Finally, since i
is terminating, it follows that ^ > 7^ for every other gâte vertex in C. In
particular, if j G ak (k — i is possible), then 7i ^ 7^- By Lemma 2 Property
4 it follows that sf = Sj ( a - s A ) . D

The proof now proceeds as follows. Starting with a state 5 G {0, l } m we
first exhibit a séquence of states

s = s j 5 , . . . , < § ,

where r is the number of indefinite gâte vertices, and, for 0 ^ k < r, exactly
k indefinite gâte vertices in sk have values complementary to those in s, and
the other indefinite gâte vertices are the same as in s. Note that we do not
say anything about the indefinite wire vertices. For convenience, we will say
that k indefinite vertices have been "marked" in this way. By repeating this
process of marking (Le., complementing) all of the indefinite gâte vertices,
we show the existence of an oscillation involving all the indefinite gâte
vertices. We then show that every indefinite wire vertex also oscillâtes in
the constructed cycle.
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LEMMA 6: Let tB be the result ofAlgorithm B and let a-s be any total state
compatible with a • tB, definite stable, and loop unstable. Assume that zero
or more, but not all, indefinite gate vertices are marked. Assume also that
every wire vertex between a marked and an unmarked indefinite gate vertex
is unstable, Then there exists at least one unmarked indefinite gate vertex k,
such that all indefinite wire vertices in ak are unstable,

Proof: Consider the directed graph G — (V', £'), where

V = {ieS\tf =$}, and
£' = {(i, j) e£\ieÇ or 3i = Si(a- s)}.

G can be obtained from the network graph by retaining only the indefinite
vertices and those edges between indefinite vertices that are in the fanout set
of vertices that are stable in a • s. G has two important properties:

i. there is no path from a marked vertex to an unmarked vertex, and

ii. there is no cycle in G.

Both properties follow from the construction of G and the assumptions
in the lemma.

Now consider a reverse path in G. Start at some unmarked gate vertex
k E V' and traverse G backwards. From (ii) and the fact that G is finite, it
follows that a reverse path in G started at vertex k must stop at some vertex,
say j . Note that j must be a gate vertex, and, by (i), must be unmarked.
Furthermore, since each indefinite gate vertex has at least one indefinite wire
vertex in its fan-in set, it follows that all indefinite wire vertices in aJ must
be unstable; otherwise the reverse path would not have stopped at j . D

LEMMA 7: Let tB be the result ofAlgorithm B and let a - s be any total
state compatible with a • tB, definite stable, and loop unstable. If, for some
indefinite gate vertex j , all indefinite vertices in a? are unstable, then there
exists a state s reachable from s, compatible with tB, definite stable and
loop unstable, such that

L SJ = ~sj, and

ii. all indefinite wire vertices in $ are unstable in s.

Proof: We construct s in two steps. First we show that there is a state
s reachable from s such that ëj — Sj (a-s). We then show how to reach
5 from s.

For every input delay and gate vertex fc, let <?& = s*. If k ^ j , let
ak (s) = ak (s). Let aj (s) = e7, where ë G {0, l}d* is such that
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ë E aj (tB) and Sj (a-c) = fy for all c G {0, l } m such that aj (c) = ë.
We claim that such ë is guaranteed to exist. Suppose it did not, Le., assume
that, for all ë G {0, l}dj such that ë E aJ (tB), there is some state
w G {0, l } m such that ë = a? (w) and Sj (a * w) = Wj. Since Sy dépends
only on the vertices in a J , we can conclude that Sj (a - w) = Wj implies
Sj (a - wf) - Wj for every w1 G {0, l } m such that o? (w) = aj (wf).
Altogether, we have that Sj (a - w) = WJ for every w G {0, l } m such that
a? (w) E aJ (tB). By the définition of ternary extension, this implies that
Sj (a-tB) = WJ. But, by Lemma 3, S (a• tB) = tB; thus tB = WJ G {0, 1}.
This contradicts the assumption that j is an indefinite gate vertex. Hence,
our claim that such ë exists is true.

It remains to be shown that si2* 3. However, this follows from the fact
that ë E a? (tB), the fact that all indefinite vertices in a^ are unstable, and
the fact that s is compatible with t^ .

We now are ready to construct à. For every input and gate vertex i let

\ ëi otherwise,

and

f ( ( - 3 ) ) i f < = i i
\ ft (s) otherwise.

Clearly, ëR^ s and thus sR*a s. By construction, Sj = 5^ (a • 3) = 57, and
Property (i) holds. On the other hand, the construction of s ensures that
every wire vertex in the fan-out set of gate j will be unstable, since we
simultaneously set their outputs to their current excitations and change their
inputs. Thus Property (ii) follows. If gate vertex j is indefinite, then each
wire vertex in $ is also indefinite. Consequently, it is straightforward to
verify that 3 is definite stable, loop unstable, and compatible with tB. D

LEMMA 8: Let tB be the result of Algorithm B and let a - s be any total
state compatible with a • tB, definite stable, and loop unstable. Assume there
are r indefinite gate vertices. Then, for each k, 0 < k ^ r, there is a state
sk G {0, l } m with k vertices markedsuch that sR%sk and a-sk is compatible
with a • tB, definite stable, loop unstable, and every wire vertex between a
marked and an unmarked indefinite gate vertex is unstable.
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Proof: We proceed by induction on the number of indefinite gate vertices
which have been marked, i.e.9 complemented. For the basis, k = 0, let s° = s
and the claim follows tnvially. Now assume inductively that the claim holds
for k > 0. By Lemma 6, it follows that there exists an unmarked indefinite
gate vertex j such that all indefinite gate vertices in aJ are unstable in
a - sk. But Lemma 7 guarantees the existence of a state sfc+1, such that
skRa sk+1 and a • sk+1 is compatible with a • tB, definite stable, and loop
unstable. Furthermore, gate vertex j is complemented, and all the indefinite
wire vertices in /?J are unstable in a • sfe+1. Now mark vertex j , and note
that all indefinite wire vertices between marked and unmarked indefinite
gate vertices are still unstable. Hence, the induction step goes through and
the lemma follows. •

COROLLARY 4: Let tB be the result of Algorithm B and let a - s be any
total state compatible with a * tB, definite stable, and loop unstable. Then
there is a state s reachable front s and such that a • s is compatible with
a • tB, definite stable, loop unstable, and all indefinite gate vertices have
complementary values in s and s.

Proof: This follows immediately from Lemma 8 for k equal to the number
of indefinite gate vertices. D

We are now ready to state and prove the main result of this section:

LEMMA 9: Let N and N be as in Theorem 2. Then there exists a non-transient
cycle Z which is reachable from the initial state b such that

lub{s\s e Z} Z\tB.

Proof: By Lemmas 3 and 5, and Corollary 3, it follows that a * tB is
compatible with a * tB, definite stable, and loop unstable. Hence, Corollary
4 can be applied. Since Corollary 4 can be applied any number of times and
there is only a finite number of possible states, there must exist a cycle in the
Ra graph. By the construction of Corollary 4 it follows that each indefinite
gate vertex oscillâtes. By the construction in Lemmas 7 and 8, it is also easy
to see that every indefinite wire vertex in the fanout sets of the indefinite
gate vertices also oscillâtes. However, a wire vertex j in the fan-out set (3%

of some gate vertex i is indefinite if and only if gate vertex j is indefinite.
Hence, every indefinite vertex is oscillating. Since all definite vertices are
stable, it follows that the cycle is non-transient. D
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