
INFORMATIQUE THÉORIQUE ET APPLICATIONS

B. STEFFEN

C. BARRY JAY

M. MENDLER
Compositional characterization of observable
program properties
Informatique théorique et applications, tome 26, no 5 (1992),
p. 403-424
<http://www.numdam.org/item?id=ITA_1992__26_5_403_0>

© AFCET, 1992, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1992__26_5_403_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 26, n° 5, 1992, p. 403 à 424)

COMPOSITION AL CHARACTERIZATION OF OBSERVABLE
PROGRAM PROPERTIES (*)

by B. STEFFEN 0) , C. BARRY JAY (2) and M. MENDLER (3)

Communicated by G. LONGO

Abstract. — In this paper we model both program behaviours and abstractions between them as
laxfunctors, which gêner alizé abstract interprétations by exploiting the natural ordering of program
properties. This generalization provides aframework in which correetness (safety) and completeness
of abstract interprétations naturally arise from this order. Furthermore, it supports modular and
stepwise refinement: given a program behaviour, its characterization, which is a "best" correct and
complete denotational semantics for it, can be determined in a compositional way.

Résumé. - Dans cet article nous modêlisons à la fois les comportements des programmes et les
abstractions entre eux comme des fonctions qui généralisent les interprétations abstraites en tirant
profit de l'ordre naturel des propriétés des programmes. Cette généralisation offre un cadre dans
lequel la correction (sûreté) et la completude des interprétations abstraites résultent naturellement
de cet ordre. De plus, elle autorise le raffinement modulaire et pas à pas: étant donné le
comportement d'un programme, sa caractérisation, qui est une sémantique dénotationnelle complète
et aussi correcte que possible, peut être déterminée par composition.

1. INTRODUCTION

Abstract interprétation is a method for analyzing program behaviours, L e.
the relationship between programs and their observable properties [CC77a,
CCUb, Nie86, AH87, JN90]. It abstracts from standard (denotational) seman-
tics for programming languages to non-standard semantics, which are
intended to retain correct (safe), but not necessarily complete, information
about given properties of interest. This intention is hard to specify without a
précise notion of behaviour, which, despite its primacy, was missing in the
framework of abstract interprétation.

(*) Received June 1991, revised August 1991.
(1) University of Aarhus, Denmark.
(2) LFCS, University of Edinburgh, Scotland.
(3) Institute for Computer Aided Circuit Design, University of Erlangen, Germany.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/92/05 403 22/S4.20/© AFCET-Gauthier-Vülars

4 0 4 B. STEFFEN, C. BARRY JAY, M. MENDLER

In this paper, the notion of behaviour is defmed formally as a simple
generalization of abstract interprétation, in which opérations (specifically,
sequential composition) are preserved up to a notion of inequality, which,
intuitively, expresses précision of information. It can then be used to specify
the properties of programs, which must be respected, both by abstract
interprétations and the abstractions between them. This notion of behaviour
is not restricted to programming languages, nor need it be derived from a
standard denotational semantics. For example, abstractions between seman-
tics can also be viewed as behaviours in our framework, so preserving their
direction and composition. This contrasts with logica! relations [Plo80], which
are symmetrie and do not compose, counter to intuition [MJ86].

Moreover, this précision ordering on properties defmes a partial order on
behaviours so that correctness and completeness of one behaviour for another
arise naturally. By treating abstract interprétations as behaviours this provides
an intuitive and simple notion of correctness and completeness of one abstract
interprétation for another, generalizing the approach using correctness corres-
pondences [JN90, MJ86], which aside from being complicated, yields a non-
transitive notion of correctness.

Unlike denotational semantics or abstract interprétations, behaviours are
not, in gênerai, compositional. However, compositionality can be systemati-
cally recovered by applying the characterization functor, which maps a behavi-
our to the abstract interprétation that identifies those programs which behave
identically in any context. This construction preserves simultaneous observa-
tion and stepwise construction of behaviours and therefore permits the hie-
rarchical development of abstract interprétations from behavioural spécifica-
tions.

The development of this paper is based on the categorical framework for
two reasons. First, it provides a very gênerai and well-developed mathematical
background for computer science in gênerai, and typed programming lan-
guages in particular. Second, the inequalities which are central to our concept
of behaviour have been studied extensively as lax functors [KS74], However,
neither of these reasons for using catégories is imperative, as the point is
that behaviours preserve opérations up to inequality. This is equally meaning-
ful for untyped languages, where the programs form a set equipped with
some opérations, and our behaviours are a form of "weak" homomorphism.

Altogether, the paper is structured as follows. After sketching our model
in Section 2, we develop our notion of behaviour in Section 3. We introducé
simulation relations in Section 3.1 in order to motivate the subséquent deve-
lopment, where behaviours are defined as lax functors (Section 3.3) between

Informatique théorique et Applications/The o retical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 0 5

ordered catégories (Section 3.2). Subsequently, we defme the dual notions
of correctness and completeness of one behaviour (abstract interprétation)
wrt another in Section 3.4. Section4 présents (Section 4.1) and illustrâtes
(Section 4.2) the main resuit of this paper, as well as two corollaries, which
establish the modularity and functoriality of our framework (Section 4.3).
Finally, Sections 5 and 6 mention conclusions and directions for future work.

2. THE MODEL

Our model consists of ordered catégories (similar to O-categories [SP82]),
with behaviours corresponding to morphisms between them. It can be sket-
ched by means of the following diagram:

O

if is a category which we identify with a programming language: its objects
are types and its morphisms are programs. Denotational semantics and
abstract interprétations D : if -> B are both structure-preserving functors
(into, say, a category of domains). For the purposes of this exposition, we
consider the simplest case, where the only structure of if is composition.

(9 is an ordered category of observations or properties, L e. its morphisms
are ordered in a way compatible with composition, with smaller morphisms
representing stronger properties. For example, for strictness analysis one
usually considers (9 = Q (cf. Example 3.5-3) which has one object and two
morphisms 1 (reflecting strictness wrt the parameter under considération)
and T (reflecting that no information could be inferred) satisfying JL ̂ T.

A behaviour B : if *—y (9 is an assignment of properties to programs which
is weakly functorial or compositional, Le. is a lax functor (Section3.3). For
example, the strictness of a composite program/; g cannot be inferred from
the strictness of its components ƒ and g. Rather, we have for strictness

vol. 26, n° 5, 1992

B. STEFFEN, C. BARRY JAY, M. MENDLER406

behaviour B

which allows us to infer correct, but incomplete information about ƒ; g from
the behaviours off and g, e.g. i f /and g are both strict then so is ƒ; g, but
otherwise no information can be deduced.

Let now B' : 2 *—>• (9 be a given behaviour (lax functor) for the semantics
D {e.g. strictness for continuous functions between domains). Then D is
correct for B if

Completeness is exactly dual, L e. D is complete for B if D; B' ̂ B. Thus, D
is correct and complete for B if D; B' = B, as indicated by the diagram above.

The Characterization Theorem 4.6 states that every behaviour B has a
"best" correct and complete abstract interprétation J B which is its characte-
rization. More precisely, we factorize the lax functor B as a functor J2B
followed by a lax functor eB. Data types are preserved by i B , Le. it is
injective on objects, and it is computationally relevant, Le. surjective on
morphisms. lts effect is to identify those programs which have the same
behaviour in any context. That £B is the "best" possible such abstract
interprétation refers to the following universal property:

O

Let D be another abstract interprétation for B which is correct and complete,
datatype preserving, and computationally relevant (Section 4.1). Then ÜB
factors through D in a unique way.

Behaviours may have structure themselves: they may either represent the
simultaneous observation of some more primitive behaviours, or they may

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 0 7

be constructed by stepwise abstraction. In fact, this structure is preserved by
the characterization functor ü, as can be easily derived from the Characteriza-
tion Theorem 4.6:

First, ü is modular, i. e. the characterization of a behaviour, which is the
simultaneous observation of a pair of behaviours E^ and B2, is obtained
from their characterizations using categorical products.

Second, 1 isfunctoriaL Hence, the characterization of the stepwise abstrac-
tion B^ B2 along two behaviours factors through the characterization of
B,O.

Thus correct and complete abstract interprétations can be, constructed
hierarchically along the structure of their behavioural spécifications which is
reminiscent of the well-known paradigm of software development.

Related Approaches

[CC79, Ste87, Ste89] are concerned with the systematic development of
abstract interprétations for imperative languages. Cousot/Cousot consider
only the phenomenon of simultaneous observation. Moreover, they do not
aim to obtain an abstract interprétation which satisfies a spécifie behaviour.
Rather, they consider a given abstraction function, and try to mimic the
complete semantics (static semantics) on the corresponding codomain as
précise as possible.

In contrast, like this paper, [Ste87, Ste89] are concerned with developing
an abstract interprétation that satisfies a given program behaviour, or in
their terminology which cannot be distinguished from its spécification on a
given level of observation. Whereas [Ste87] only deals with functoriality,
[Ste89] also considers modularity.

The categorical approach presented here generalizes and simplifies these
approaches.

3. BEHAVIOURS OF PROGRAMS

A programming language is represented by a category if in our setting;
the types of the ianguage are its objects (or if untyped then it has a single

(*) This is particularly useful for data flow analysis since one can successively abstract from
certain program properties, until the universal model °U is decidable. Of course^_properties like
decidability are not covered by our framework. They must be investigated separately.

vol. 26, n° 5, 1992

408 B. STEFFEN, C BARRY JAY, M. MENDLER

object) and the programs are its morphisms. Usually, the language will have
further structure (e. g. ^-abstraction or fixpoints) which we would expect
semantics to preserve (see Section 6), but hère, for the sake of simplicity, we
will refrain from assuming more than sequential composition and empty
programs, which are the composition and identities, respectively, of =Sf. (But
see [Jay90<2, Jay90^, Jay91] for related treatments of handling more structure.)

Thus, a denotational semantics for if is a functor if -> 3}. Typically, 3 is
the category of domains Dom or, alternatively, one of its full subcategories.
For some authors (e.g. [BHA86]) the semantics is represented as a single
domain + ^ a ; which is the coalesced sum of the objects of @, but this
suppression of typing information obscures the functoriality of the semantics.
Abstract interprétations are also functors, and may be thought of as non-
standard denotational semantics.

Each family of observable properties of S£ (e.g. {"strict", , "no-
information"}) is naturally ordered by implication so that these properties,
or observations, form an ordered category (Section 3.2).

A behaviour maps programs (or perhaps denotations) into an ordered
category of properties, or observations. The only behaviours of interest are
those for which the property of a composite program is at least as strong as
that determined by its parts, whence a behâviour is a lax functor
(Section 3.3). Lax functors also arise as abstractions between abstract inter-
prétations, e.g. the abstraction map abs for strictness of [BHA86]. Once the
nature of behaviour is made explicit, the définition of correctness, and the
dual notion of completeness, arise naturally from the ordering.

To motivate our définition of behaviours as lax functors into ordered
catégories we will begin with simulation relations which generate an important
class of behaviours.

3.1. Simulation Relation

DÉFINITION 3.1: Let sé and â§ be catégories. A simulation relation
R: sé *—ygè from sé to Se consists of

(i) a function, also denoted R, from objects of sé to objects of&&, and

(ii) for each pair of objects A and A' of sé^ a relation

between the homsets of sé and $ which together satisfy

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 0 9

(iii) geRf and g' e Rf' impïies g; g' eR (f; f') for morphisms

A^A'^A"

RA ̂ RA'^ RA"

(iv) for any object A in sé then idRAeRA A(idA).
Note that the simulation relations that are (partial) functions on the homsets
are just (partial) functors.

EXAMPLE 3.2: A subcategory sé' of sé which contains all of the objects of
sé is called slim. sé1 may be thought of as the collection of morphisms
(programs) having some property satisfied by identities and preserved by
composition. Then there is a simulation relation R : sé *—y 1 (1 is the terminal
category with one object * and whose sole morphism is id#) defmed by

(i) RA = df * for all objects A

dt) if ƒ in sé'
(ii) if ƒ : A - B then RAt Bf= .

{{ } otherwise

Conversely, such a simulation relation R détermines a slim subcategory of sé,
whose morphisms are those related to id^ by R. Thus simulation relations
with codomain 1 directly correspond to program properties that are satisfied
by identities and preserved by composition. More complicated behaviours
for sé are obtained by expanding the codomain of R.

Simulation relations compose, and so can be used to model stepwise
abstraction. Let R.sé *—yê$ and S:$ x—+<€ be simulation relations. Then
7?; S:sé *—+<€ is the simulation relation defmed by

(i) (R;S)A = dfS(R(A))

(ii) iff:A^Bthtn(R;S)A}Bf=dfU{SRAtRBg\geRA,Bf}.
For example, R may represent a translation into another programming

language, whose behaviour is given by S (Section 4.3). Note that $ plays
the rôle of observations for R and also that of a language for S. This
phenomenon leads us to model observations by catégories.

Mycroft and Jones [MJ86] modelled abstraction using logical relations
which are like simulation relations, except that they use a relation between
the objects of the two catégories instead of a function. This additional
freedom allows a single type to be abstracted to a family of types, which is
counter-intuitive for abstraction, as is the fact that composites of logical
relations are not necessarily logical relations. We will introducé a notion of

vol. 26, n° 5, 1992

4 1 0 B. STEFFEN, C. BARRY JAY, M. MENDLER

abstraction that generalizes simulation relations while avoiding these problems
(Définition 3.9).

Categorical products are used to represent a pair of morphisms B : 5£ *—• (9
and B' : ££ *—• & by a single morphism < B, B' > : if x—• (9 x 0'. The original
morphisms are recovered by projection. Thus, if the morphisms are behavi-
ours then the induced behaviour into the product represents their simultane-
ous observation. Therefore, we believe that any adequate category of behavi-
ours must have products in order to allow the modular construction of
complex behaviours from its components. This excludes the category of
simulation relations:

PROPOSITION 3.3: The category of simulation relations does not have binary
products.

Proof: It suffices to show that there is no product of 1 with itself, i. e.
there is no category % such that for each category sé', the simulation relations
jé *—>S£ are in bijection with pairs of slim subcategories of sé
(Example 3.2). Assume that such a category 3£ exists. 1 has a unique slim
subcategory. Thus there is a unique simulation relation 1 *—*-#", which forces
SC to have a unique object *, whose monoid of endomorphisms #"(*, *) has
a unique submonoid, Le. is trivial. Thus 9C is isomorphic to 1. On the
other hand, simulation relations into 1 are in bijection with individual slim
subcategories, which yields a contradiction. D

In order to guarantee the modularity of the framework, one must generalize
from relations to lax functors between ordered catégories, whose définition is
our next goal.

3.2. Ordered Catégories

One abstract interprétation is correct (or safe) wrt another if the denota-
tions of the former have weaker (fewer) properties. To capture this ordering
of properties we interpret programming languages in ordered catégories which
generalize catégories of domains.

DÉFINITION 3.4: An ordered category is a category^ whose homsets are
partially ordered, with composition preserving the order, i.e. if f^g:A~^ B
and f' S g' :B -+ C then f; f' èg; g' :A^> C. In short, an ordered category is a
category enriched over partial orders [KS74].

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 411

EXAMPLE 3 . 5 .

1. Let Dom be the category of domains. With the pointwise ordering of
continuous fonctions it is an ordered category.

2. Let (9 be any category. Then its power category P (9 has the same objects
as (9 with homsets given by the powersets of those of (9

ordered by subset inclusion. The identity for an object A is {idA} and
composition is computed pointwise: given two morphisms f— [ft \ iel} : A -> B
and g={gj\jsJ} : B -+ C of P(9 then

For instance, let 1 be the terminal category with one object * and whose sole
morphism is id#. Then 2 = df PI is the category with one object * and two
morphisms { } ̂ {id^ }. If 6 is a category of properties then P (9 is a category
of families of properties, with larger morphisms representing more properties.

3. If $ is an ordered category then ^co, the local daal of (9, is the ordered
category obtained by reversing the orders on the homsets. Thus the local
duals of power catégories represent stronger properties by smaller morphisms,
as is usual. For example, in 2C0 we have [id^}^{ }. This ordered category
will be used to represent a single property, and so deserves special termino-
logy: we call it Q and dénote {id^} by J_ and { } by T.

4. Any ordinary category JS? may be coerced to a discrete ordered category
by giving its homsets the discrete order, i.e.f^g ifff=g. Then, J?CO = J£.

5. Catégories and simulation relations form an ordered category in the
obvious way: Composition is defined in Section 3.1 and clearly, the identity
functors are the identity simulation relations. Simulation relations are ordered
by letting

if they agree on objects and if RABf^ SABf for every morphism/: A-* B.

3 .3. Lax Functors

Lax functors are a weak notion of functor appropriate to ordered catégories
and the study of behaviour. The laxness of the functor reflects the loss of

vol. 26, n° 5, 1992

4 1 2 B. STEFFEN, C. BARRY JAY, M. MENDLER

information that arises when approximating the behaviour of a large program
by composing the behaviours of its parts.

DÉFINITION 3.6: Let sé and S$ be ordered catégories. A lax functor or
behaviour F: <sé *—y@è consists of

(i) a function, also called F,from objects of sé to objects of M, and

(ii) for each pair of objects A and A' of sé, an order preserving function

which together satisfy

(iii) given morphisms ƒ : A -> A' and g:A'-+ A" then

F(f;g)^Ff;Fg

(iv) given an object A of sé then

If these inequalities are actually equalities then F is an ordered or rigid functor.
Also, if the inequalities (iii) and (iv) are reversed (so that Ff Fg^F(f; g) and
idFA^FidA) then F is called a colax functor. Note, the colax functors
F\sé x—^arejust lax functors -séco >^^FC D .

Given a fïxed start state, a typical behaviour for an imperative languages
would be simply to consider the effects of programs on a distinguished
variable that we regard as input-output parameter. This behaviour is certainly
not compositional (i. e. does not define a rigid functor), because side effects
of the first program part on other variables may change the effect of the
second program part. Thus the behaviour of a composite cannot be inferred
from its component behaviours. However, it can be safely approximated by
"no information", which guarantees the properties of a lax functor. Another
example is the strictness behaviour of functional languages. We will concen-
trate on this example in the sequel:

EXAMPLE 3.7

1. Strictness ([AH87]) for Dom is given by the lax functor B':Dom *—*Q
which maps all domains to * and which is defïned for a continuous function
f\X^ Yby

__
T otherwise

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 1 3

Subcategories of Dom inherit this behaviour, by composition with the inclu-
sion functor.

2. Let i ? be a programming language, i.e. a discrete ordered category.
Then every denotational semantics D : i f -> Dom yields a strictness behaviour
for if:

D ; B ' : i f >^+Q

3. Any functor F : jsf -> ê§ is a lax functor if we regard s£ and ë% as discrete
ordered catégories.

4. Composites of lax functors are lax. They can be used for stepwise
construction of behaviours. For example, if T\T -*<£' is a functor (say
realizing a translation from if into if ') and B' : if' *—>-B is a behaviour for
if' then 71; B' is a behaviour for i f (see Section 4.3).

5. Let R\ï£ *—>d) be a simulation relation. It can be thought of as a
colax functor ^£ x—+ Y (9 or equivalently, a lax functor JS? *—yP(9co (since JS?
is discrete). For example, slim subcategories of S£ correspond to lax functors

The ordered catégories and lax functors themselves form an ordered
category Ord, wherein F^LG.sé x—+ 3t if F and G agrée on objects and
Ff^Gfïor each morphism ƒ. In contrast to simulation relations, lax functors
can represent simultaneous observations, as can be inferred from:

PROPOSITION 3.8: Ord has cartesian products. The cartesian product of
ordered catégories & and (9' is their cartesian product (9 x Q' as ordinary
catégories with pointwise ordering on the homsets.

Proof: First note that the pointwise ordering in (9^(9' ensures that the
ordinary projections K1 : (9 x (9' -• (9 and n2 : (9 x (9' -> & are lax, in fact, rigid
functors. Now let F : ̂ * — ^ and F' : <g x—^0' be lax functors. Then, point-
wise pairing of objects and morphisms defmes a lax functor

It is easy to establish that this lax functor has the universal properties that
make 0 x 0 ' into a categorical product in Ord. •

This proposition can be extended to arbitrary limits, so that gênerai
methods of combining observations are possible, e, g. pullbacks could be used
to represent sharing constraints.

vol. 26, n° 5, 1992

414 B. STEFFEN, C. BARRY JA Y, M. MENDLER

Lax functors are the promised élaboration of simulation relations (cf.
Example 3.7-5), which constitute an adequate notion of abstraction between
behaviours, and in particular, abstract interprétations:

DÉFINITION 3.9: Let B : if *—•# and B' : <£ *-+& be behaviours for JSf.
An abstraction F:W *—>-B is a lax functor making the following diagram
commute:

B/ \B'

\
o

The behaviours for ££ and the abstractions between them form its category of
behaviours, denoted B (J§?). It is also known as the comma category <£/Ord.

3.4. Correctness and Completeness

Let B,B':J<f *—>® be two behaviours. As established above, we consider
small morphisms in (9 to be more informative than large ones. Thus B' is
correct (or safe) for B if

Dually, it is complete for B if B' ̂ B. Correctness implies that B' yields no
more information thanB, while completeness implies that it yields at least as
much.

Now, fîx a programming language $£ which we regard as a discrete ordered
category and consider the following diagram of lax functors:

Then D is correct and complete for B iff there is a lax functor B' such that
D; B' is both correct and complete for B, Le, iff there exists a morphism

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 415

B':D x—)~B in B(J£f). Of particular interest are decidable correct and com-
plete abstract interprétations for B, because they specify complete data flow
analysis algorithms for B.

It does not make sense to defme either correctness or completeness sepa-
rately, without fïrst specifying B', e.g. strictness for domains, since almost
every abstract interprétation D would be correct (complete) for some behavi-
our on B. This is true in all approaches, though often the behaviour is merely
implicit. Logical relations improve on the gênerai situation, but still account
for B' indirectly, at the technical level of domain équations [JN90, MJ86].
Here B' is accounted for directly, which yields greater clarity and flexibility:
D is correct (complete) for B if D; B' is correct (complete) for B. This
définition of correctness (completeness) is transitive and non-symmetric, as
can be illustrated by the following example, involving higher-order strictness
analysis. The formalism used here is new: the proofs are in the original paper
[BHA86].

Let if be a programming language generated from a single type A and
equipped with a denotational semantics D : if -• 3, where B is the full
subcategory of Dom generated by the image of A in Dom. The standard
strictness behaviour B' for B inherited from Dom (Example 3.7 (2)) yields
strictness for if via

Thus, D is correct and complete for B by définition. Let ^ be the full
subcategory of domains generated by 2 = d /{_L^T}. There is an abstraction
abs : B *—+$è which is correct for the strictness behaviour B'.

From this (or directly) can be constructed a (smallest) rigid functor (an

abstract interprétation) D' : if -> ̂ which is correct for D; abs. A short dia-

vol 26, n° 5, 1992

4 1 6 B. STEFFEN, C. BARRY JAY, M. MENDLER

gram-chase now shows that D' is also correct for B since D'; B'^D; abs;
B'^D; B' = B.

Correctness is the critical notion for abstract interprétation, because the
safety of a program transformation dépends on the correctness of the proper-
ties it is based on. Completeness naturally arises as the exact dual of correct-
ness in our framework. Of course, for "standard behaviours", complete
abstract interprétations are usually undecidable, and so completeness was
neglected. However, there may well be decidable abstract interprétation for
"nonstandard behaviours". Thus, completeness can express useful minimal
requirements for data flow analysis algorithms. Further, there are situations,
where completeness is critical. For example, in data refinement (e.g. [HJ88])
an implementation must have at least the properties of the specifying abstract
data type. We conjecture that these properties define a behaviour in our
framework for which successful data refmement is simply completeness.

4. CHARACTERIZATION OF BEHAVIOUR

We wish to construct an abstract interprétation from a behaviour. Each
behaviour yields an équivalence relation on the programs obtained by relating
those programs which behave identically. Abstract interprétations are behavi-
ours that are characterized by yielding a congruence relation.

The point of the characterization functor is to associate to each behaviour
an abstract interprétation that corresponds to the largest congruence which
refînes the équivalence relation of the behaviour, L e. which relates programs
that have the same behaviour in any context. This yields a categorical
congruence (see below) on the category of programs, whose quotient will be
the desired characterization of the original behaviour.

4.1. The Characterization Functor

DÉFINITION 4.1: Let ^ be a category. A congruence on <€ [Mac71, BW85] is
afamily EAt B of équivalence relations on the homsets <fë (A, B) {where EAtB(f,f')
is writtenf=f' when the congruence E is understood) satisfying,forf,f' :A^B
and g,g' : B —> C

f=f' andg = gf implyf; g~f'; g'

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 1 7

Given a congruence E on a category # there is a quotient category <& (E)
having the same objects as <§ whose morphisms are the équivalence classes
of morphisms in <$.

Of course, there is also a quotient functor Q:^ -># (£) , which maps each
morphism to its congruence class. It is injective on objects (preserves data-
types) and is also surjective on objects and morphisms (is computationally
relevant). The category of quotients Q(i f) is the full subcategory of B(i f) of
quotient functors, where we consider quotient functors as lax functors
between discrete ordered catégories (see Example 3.3.3). The universal pro-
perty of quotient functors is given by

PROPOSITION 4.2: Let Ebe a congruence on <$ with quotient Q. IfH: <&
is a lax functor such that for all morphisms f f' : A —• B in *$

f=f' impliesHf^Hf'

then there is a unique lax functor H' :%>(E) *—>(9 satisfying Q; Hf = H.

C

O < -XC(E)

Moreover, if H is a rigid functor then H' is a rigid functor too.

Proof: (Sketch) H' agrées with H on objects, and maps a congruence class
[ƒ] of morphisms to H f D

EXAMPLE 4.3. — Let D:Jèf->^ be a denotational semantics and define
two parallel morphisms ƒ and ƒ' to be denotationally equivalent, written
ED(ff), if D/=D/ ' . Then D factorizes through the corresponding quotient
functor i D i n a unique way:

vol. 26, n° 5, 1992

418 B. STEFFEN, C. BARRY JAY, M. MENDLER

We have:

PROPOSITION 4.4: Q (if) is a meet semi-lattice.

Proof- Let .2 : JS? -> * and 5' : i? -» * ' be quotient functors arising from
congruences E and £" respectively. It follows from Proposition 4.2 that there
is at most one lax functor F\<% x—•<*' satisfying â; F= M'9 which must then
be a quotient. We then say &<L2!. Such an i7 exists iff E ̂ E' that is, E (ff)
implies E' (ƒ,ƒ'). The meet of 1 and ü' (their categorical cartesian product)
is the quotient corresponding to E O E'. D

DÉFINITION 4 .5 : Let B : Jèf x—*- (9 be a behaviour. Morphisms f, f' :A-+ B in

££ are behaviourally congruent if for all morphisms g:A'-*A and h:B -> B'
we have

B(g;f;h) = B(g;f';h),

that is f and f' have the same behaviour in ever y (input-output) context.
Then the quotient functor âB:J£ -+% corresponding to this congruence is the
characterization of the behaviour B.

Applying Proposition 4.2 to the behavioural congruence on S£ generated
by B with H=B shows that B = ÜB;eB for some behaviour sB, Le, 1B is
correct and complete for B. This characterization of behaviours is the object
part of the functor J specified in the following theorem:

THEOREM 4.6. (Characterization Theorem): Q (JSP) is a coreflective subcate-
gory ofB(J?)9 i.e. the inclusion tf/Q(JS?) in B(if) has a right adjoint ü, called
the characterization functor.

Proof Let B : üf *—>- (9 be a behaviour. Then its image under J2 is defined
to be the quotient functor â B : <£ -> °U as described in Définition 4 .5 ,

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 1 9

The counit of the coreflection is 8B : 2 B *—>- B. To see its universal property,
let 2' : if -> %' be another quotient functor which is correct and complete
for B, Le. 2!\ B' = B for some behaviour B'. Then 2ff=2' g implies that ƒ
and g are behaviourally congruent since 2' is a functor. Thus, 2 B (f) = 2 B (g)
and so applying Proposition 4.2 with 2' as quotient shows there is a unique
functor F : tfé' -• ̂ r making all triangles in the diagram above commute. D

Note that the universal property is more genera! than it may at fïrst appear,
since Example 4.3 shows that every abstract interprétation factorises through
some quotient functor.

The Characterization Theorem 4.6 generalizes the well-known result that
there exists a unique largest congruence relation in every équivalence relation.
Let us now illustrate the situation obtained so far by means of strictness
analysis.

4.2. Strictness Analysis

The behaviour of a program is usually given by the behaviour of its
denotation, but may also be determined in other ways, e. g. by first manipulat-
ing the syntax. Here both methods are used to obtain strictness analyses
[AH87] for some simple languages which illustrate the main features of this
framework. First, we consider the behaviour of the denotations.

Let 2 be the full subcategory of domains generated by Nx the flat natural
numbers. lts behaviour B':S> *—>-Q is induced by the strictness behaviour
of Dom (Example 3.7(2)). The structure of Dom is so rich that it prevents
identifications through behavioural congruence (unlike many languages):

LEMMA 4.7: The characterization for the strictness behaviour B' : Dom *—*Q
on domains is the identity.

Proof: Let ƒ, g\D -• D' be continuous functions which are behaviourally
congruent. Given xeD let h:D'->2 be the unique continuous function
such that /T^-L) is the down-closure of ƒ(x) in D'. Then f=g implies
B'(hf(x)) = B'(hg(x)) whence g(x)^f(x). By symmetry, f(x)Sg(x) and so
f(x) = g(x). •

Consider a simply typed A.-calcuius which is freely generated by a type iV
(of natural numbers) equipped with zero 0 : N and successor s : N -• iV, and
perhaps some other constants. Let if be the corresponding category whose
objects are the types, and whose morphisms X^> Y are équivalence classes
under a-conversions of terms t : Y equipped with a context F of type X.
Additional conversions (e. g. the (3- and r|-conversions which would make

vol. 26, n° 5, 1992

4 2 0 B. STEFFEN, C. BARRY JAY, M. MENDLER

the category cartesian closed [LS86]) are not imposed since they are not
syntactic, but arise from the behaviour.

The standard denotational semantics for 5£ is given by D : =£? -• ^ , where
N is mapped to N± and constants, including zero and successor, receive their
Standard interprétation as Üfted functions (though non-deterministic choice
requires powerdomains, see below). The behaviour for <£ is then given by
B = d / D ; B' : i? > ^ Q .

The constant numerals of üf, e.g. 0, sO, . . ., when regarded as morphisms
N-t N with free variable x:N, e.g. Xx.0,Xx.sQ,... are all non-strict, while
the denotation of a variables is the identity, which is strict. Thus, numerals
and variables are not behaviourally congruent. If the language is pure, i. e.
there are no other constant symbols, then an inductive argument shows that
the constant numerals are all behaviourally congruent. However, in the
présence of additionaî constants, more distinctions can be made. Consider,
for example

(i) addition, +• :NxN-*N

(ii) bottom, ±:.N

(iii) non-deterministic choice, | : N x N -^ N
(The denotation of non-deterministic choice requires powerdomains, though
its strictness behaviour is clear: it is strict iff both of its arguments are.)

There are now six separate congruence classes of morphisms Nx TV -• N
(equivalently, N -• TV -• N), represented by the following A,-terms:

\xy.0

I

\xy.x\y

\xy.x Axy.y

Xxy.x + y

\
Xxy. -L

They correspond to the strictness values of Burn, Hankin and Abramsky
[BHA86] for this type, which form the domain 2 -> 2 '-• 2. However, if the

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITÏONAL CHARACTERIZATION 4 2 1

language has fewer constants then there are fewer congruence classes, which
is not reflected in their model since it is independent of the language.

Conversely, more constants may yield more distinctions. For example, let
££ also have a conditional, c : N -> N -> N -> TV, whose denotation is given by

D(c)bmn =

m if b=\
n if 6 = 0
1 otherwise

Then truth values (where true and false are represented by 1 and 0 respec-
tively) are distinguished from each other and from the other constant nume-
rals. By contrast, their abstraction abs (Section 3.4) identifies all the numer-
als. Thus abs is incomplete for B, or more precisely, D; abs; B'>B.

Note that often the strictness of first-order functions is all that we are
interested in. However, the characterization of the corresponding behaviour
is the same as that of B since higher-order morphisms yield first-order
morphisms in appropriate contexts. Thus, the behaviour of interest may be
extremely simple, and yet specify complicated abstract interprétations.

4.3. Compositionality of the Characterization

Behaviours may be constructed by means of simultaneous observation
(B, B') and step-wise abstraction B'; B". In this section such structure is
used to construct the characterization of behaviours hierarchically by means
of two corollaries to the Characterization Theorem 4.6.

COROLLARY 4.8 (Modularity): SL preserves all limits in B(JSf). In particular,
given two behaviours B : if *—>(9 and B' : if *—>(9' then the characterization
Q (B, B') of their simultaneous observation is the meet of ü B and M B\

Proof: Right adjoints preserve limits. D
This result generalizes the well-known fact that the intersection of two

congruence relations is a congruence relation itself.

EXAMPLE 4.9. — Let if be the richest language considered in Section 4.2.
For m > 0 we defme a non-standard denotational semantics Dm : if -> 3 which
differs from D in that D(» is the successor modm, i.e. the lifted function
rci—^rc+l {modm). Let Bm = d /Dm ; B' be the corresponding behaviour of if.
Then the congruence classes of numerals are those of mod-m arithmetic and
{J_}. These cannot be identified since every numéral can be mapped to the
congruence class of 0(= "false") by sufficient applications of s.

vol. 26, n° 5, 1992

4 2 2 B. STEFFEN, C. BARRY JAY, M. MENDLER

Simultaneous observation of Bm and B„ is characterized by J Bq, where q
is the least common multiple of m andw. Note that lBq distinguishes only
those programs which need to be distinguished for realizing simultaneous
mod-m and mod-n observations.

COROLLARY 4.10 (Functoriality): Let B = B'; B" : if x—>• (9 x—>- & be a
composite of iax f une tors. Then we have

3. B = â B'; £w> B (B") = âW;£ (eB,; B")

In particular, ü B factors through 1 B\

Proof: The Iax functor B" : B' x—»• B is a morphism of B(J*P). Since functors
preserve domain and codomain of morphisms, we have Qw B (B") : ü B' -> 1B,
which yields the resuit. D

Stepwise abstraction of behaviours arises naturally in the search for the
right level of abstraction. Consider data flow analysis: decidable abstract
interprétations directly specify data flow analysis algorithms. Usually how-
ever, the abstract interprétation associated with a certain data flow problem
is not decidable. Thus further abstractions are necessary. A common such
abstraction step is to interpret conditional branching by non-deterministic
choice. It can be realized by a syntactic translation as in the following.

EXAMPLE 4.11: The conditional cxyz can be translated into the non-
deterministic choice y\z. This syntactic translation détermines a functor
T : JÖP -• S£ (which is not mirrored by any endo-functor on the category of
denotations). It yields a new behaviour Bx =T; B on «5? which is correct for B
without being complete forit. Thus, given eBl then MBX is correct for B and
complete for Bi. Now functoriality shows that 2.B1 décomposes as Si (T);
â (eT; B), which may thus simplify its calculation.

5. CONCLUSION

We have presented a language independent framework for abstract inter-
prétation that explicitly deals with behaviours of programs, with the benefit
that the notion of correctness is simplified and the notion of completeness
naturally arises as its dual. These improvements do not require considering
observations (properties) as morphisms of a category. The usual relational
approach with sets of observations would do. Ho we ver, our framework
additionally supports the hierarchical development of abstract interprétations
and data flow analysis algorithms along the structure of the specifying

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPOSITIONAL CHARACTERIZATION 4 2 3

program behaviour, by means of stepwise and modular refinement in the
categorical framework. All these features have been illustrated by means of
some simple strictness analyses.

6. FUTURE WORK

In this paper the characterization of a behaviour is universal amongst
quotient functors. It therefore focuses on substitution as a language construct
and on datatype preserving abstract interprétations. This suggests two direc-
tions for generalizations. First, other language constructs such as fixpoints,
products, gênerai limits, or ^-abstraction should be considered. We believe
that the development in this paper can be reformulated for quotient functors
that also preserve these language constructs, to achieve this generalization.
Second, one could generalize to abstract interprétations that do not neces-
sarily preserve data types. Hère an approach using "coequalizers" rather than
"quotient functors" seems appropriate.

ACKNOWLEDGEMENTS

The development of this paper has been strongly influenced by discussions with Eugenio
Moggi. Furthermore, we would like to thank Yves Lafont, Don Sannella and Terry Stroup for
helpful comments, and Norbert Götz for giving us a hand in typing the manuscript.

REFERENCES

[AH87] S. ABRAMSKY and C. L. HANKIN, eds, Abstract Interprétation of Déclara-
tive Languages, Ellis-Horwood, 1987.

[BHA86] G. L. BURN, C. L. HANKIN, and S. ABRAMSKY, The Theory of Strictness
Analysis for Higher Order Functions, Sci. Comput. Programming, 1986,
7, pp. 249-278.

[BW85] M. BARR and C WELLS, Toposes, Triples and Théories, Springer Verlag,
1985.

[CC77Û] P. COUSOT and R. COUSOT, Abstract Interprétation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In 4th P.O.P.L., 1977, pp. 238-252.

[CC77Z?] P. COUSOT and R. COUSOT, Automatic Synthesis of Optimal Invariant
Assertions: Mathematical Foundations. A.C.M. Sigplan Notices, 1977,
72, pp. 1-12.

[CC79] P. COUSOT and R. COUSOT, Systematic Design of Program Analysis
Framework. In 6th P.O.P.L., 1979, pp. 269-282.

[HJ88] C. A. R. HOARE and H. JIFENG, Data Refmement in a Categorical Setting.
Technical Report, Oxford Univ. Computing Lab., February 1988.

vol. 26, n° 5, 1992

4 2 4 B. STEFFEN, C. BARRY JAY, M. MENDLER

[Jay90a] C. B. JAY, Extending Properties to Catégories of Partial Maps. Tech.
Rep. E.C.S.-L.F.C.S.-90'l07, University of Edinburgh, 1990.

[Jay90e] C. B. JAY, Partial Functions, Ordered Catégories, Limits and Cartesian
Closure. In: G. BIRTWISTLE (ed.) IV Higher Order Workshop, Ban/f, 1990,
Springer, 1991.

[Jay91] C. B. JAY, Modelling Réduction in Confluent Catégories. Tech. Rep.
E.C.S.-L.F.C.S.-91'1%1, University of Edinburgh, 1991.

[JN90] N. D. JONES and F. NIELSON, Abstract Interprétation: A Semantics Based
Tool for Program Analysis. In Handbook of Logic in Computer Science.

[KS74] G. M. KELLY and R. STREET, Review of the Eléments of 2-Categories.
In G. M. KELLY, éd., Proceedings Sydney Category Theory Seminar
1972/1973, Springer-Verlag, 1974, pp. 75-103.

[LS86] J. LAMBECK and P. J. SCOTT, Introduction to Higher-Order Categorical
Logic, vol. 7 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1986.

[Mac71] S. MACLANE, Catégories for the Working Mathematician. Springer Ver-
lag, 1971.

[MJ86] A. MYCROFT and N. D. JONES, A Relational Framework for Abstract
Interprétation. In Proceedings, 'Programs as Data Objects'. Springer
Verlag, L.N.C.S.217, 1986.

[Nie86] F. NIELSON, A Bibliography on Abstract Interprétations. A.C.M. Sigplan
Notices, 1986, 21, pp. 31-38.

[PI08O] G. D. PLOTKIN, Lambda Defmability in the Full Type Hierarchy. In
R. HINDLEY and J. SELDIN, eds., To H.B. Curry: Essays in Combinatory
Logic, Lambda Calculas and Formalisms. Academie Press, 1980.

[SP82] M. SMITH and G. PLOTKIN, The Category-theoretic Solution of Recursive
Domain Equations. S J.AM. J. Comput., 1982, 11.

[Ste87] B. STEFFEN, Optimal Run Time Optimization - Proved by a New Look at
Abstract Interprétations. In T.A.P.S.O.F.T.'ül, L.N.C.S.249, 1987, pp. 52-68.

[Ste89] B. STEFFEN, Optimal Data Flow Analysis via Observable Equivalence. In
M.F.C.S/%9, 1989.

Informatique théorique et Applications/Theoretical Informaties and Applications

