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FINITARY CODES FOR BIINFINITE WORDS (*)

by J. DevoLpER (*) and E. TIMMERMAN (%)

Abstract. — The aim of decoding, or factorizing in a single way, biinfinite words with a finitary
language leads to define, according to the definition of factorizations, two distinct notions of finitary
codes for biinfinite words we call “biw-codes” and “Z-codes”. These codes are respectively close
to the precircular codes and to the circular codes. The notion of biw-code is weaker but seems to
be more suitable for biinfinite words. Indeed, biw-codes are characterized using coding morphisms,
as are usual codes and codes for infinite words. Z-codes are rather codes for Z-words. The
relationships between all these finitary codes are studied, and characteristic properties of biw-codes
and Z-codes are given.

Résumé. — Le décodage ou la factorisation unigue de mots biinfinis & I'aide d’'un langage finitaire
conduit a définir deux notions différentes de code finitaire pour les mots biinfinis selon la définition
des factorisations. Nous appelons ces codes « biw-codes » et « Z-codes ». Ces codes sont respective-
ment proches des codes précirculaires et des codes circulaires. La notion de biw-code, moins
restrictive, semble mieux appropriée aux mots biinfinis. On peut en effet la caractériser a l'aide de
morphismes de codage comme le sont les codes usuels et les codes pour les mots infinis. Les
Z-codes sont quant a eux mieux adaptés au codage des Z-mots. Les relations entre tous ces codes
finitaires sont étudiées, et des propriétés caractéristiques des biw-codes et des Z-codes sont montrées.

INTRODUCTION

The notion of “code language” means a single factorization, whenever it
exists, of each word using words of the considered language. This notion has
been very studied in the domain of finite words and finitary languages (sets
of finite words).

If one deals with infinite or biinfinite words, two distinct approachs may
be used: the first one is to consider finite factorizations (finite sequences of
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364 J. DEVOLDER, E. TIMMERMAN

words) using finite, infinite and biinfinite words (as done by Do Long Van
et al., [10]), and the second one is to consider infinite factorizations only
using finite words. That leads to the notion of finitary code for infinite (resp.
biinfinite) words. This second way has been used by Staiger for the study of
the “ifl-codes” (codes for infinite words) that we call “w-codes”. In this
paper, following this way, we are interested in the study of finitary codes for
binfinite words.

Given a finitary language C, the first point is to define a factorization of
a biinfinite words w by C (we say a C-factorization of w). For finite or
infinite words, two equivalent definitions may be given:

1. A C-factorization of w is a sequence of words of C, the concatenation
of them giving w.

2. A C-factorization of w is an increasing sequence of integers indicating
letters positions where w is cut by words of C, the concatenation of them
giving w.

The fact that a biinfinite word is an equivalent class of Z-words (mappings
from Z, the set of relative integers, into a finite alphabet) implies that these
two definitions are no more equivalent (since with the second definition one
has to choose a representative of the biinfinite word). That leads to two
distinct notions of finitary code for biinfinite words: the “‘biw-codes” (the
weak notion, from definition 1) and the “Z-codes” (the strong notion, from
definition 2). The simplest example is the language C={aa} which is a
bim-code but not a Z-code: the only biinfinite word to be factorized: ®a®
has the siigle C-factorization (x;=aa);_, with definition 1, and the two
non-equivalent C-factorizations (2i);., and (2i+1),_., with definition 2.
We call C-decompositions these C-factorizations with definition 2.

In the finitary case as well as for infinite words, the codes (and the
®-codes) may be defined or characterized with coding morphisms. A coding
morphism is a bijection ¢ between an alphabet X and a language C, extended
to X* onto C* (and to X® onto C®), and the language is a code (resp. an
w-code) iff @ (so extended) is injective. This mapping ¢ can also be extended
to °X® onto “C®, and then it comes that C is a biw-code iff ¢ is injective,
which indicates that this notion of bi-® codes seems to be the good one for
biinfinite words.

The notion of Z-code (implicitely contained in the works of Beal, Beau-
quier, Blanchard and Hansel, Restivo,...) is more restrictive. It is in fact the
suitable notion of finitary codes for Z-words.
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FINITARY CODES FOR BIINFINITE WORDS 365

These four classes of finitary codes: codes, ®-codes, bim-codes and Z-codes
are defined in the first section. They form a strict decreasing hierarchy. The
problem of defining finitary codes for words in ®A4% (finite, left-infinite,
right-infinite, biinfinite words on 4) is then solved: the notion of biw-code is
the good notion.

In the second part, we show how codes, precircular codes and circular
codes deal with biinfinite words. This leads to see that the notion of
bim-code does not coincide with some known code notion and that
bio-codes (resp. Z-codes) are particular precircular (resp. circular) codes.

In the third part, we give a characterization of Z-codes: we show that a
language is a Z-code iff it is a pure biw-code.

In the fourth section, we study biw-codes. Technical properties of
biw-codes and conditions for precircular codes to be biw-codes are given.

The rational case is studied in the last section. In this case, the notion of
circular code and the notion of Z-code coincide. The biw-codes are precircular
codes, but the converse is false, even in the finite case. A technical characteriz-
ation of biw-codes gives, as a consequence, the decidability for testing whether
a rational language is a biw-code.

NOTATIONS AND BASIC DEFINITIONS

In the following A is a finite alphabet, 4* stands for the set of all (finite)
words over A, A" denotes the language A*-g, where ¢ is the empty word.
The length of the word u is denoted by |u]|.

Two words x and x' are said to be conjugate if there exist u and v such
that x=wuv and x'=vu. A word ze A" is primitive if z=u" implies n=1. If
z=y" with n>1, z is said to be imprimitive. For every word xe A" there
exists a unique primitive word _/x and an integer n for which x=( \/} "
\/)—c is referred to as the primitive root of x.

We shall also consider 4° and ®4 which are the sets of right (resp. left)-
infinite words over A.

A (right) infinite word w=(w,), . is said to be ultimately periodic if

dpeN >0 such that V>0 (Vr0<n<®) w, 11 =W,., We denote this
word by wg. ..w,_;(W,...w,,,_)° Itis said to be periodic if p can chosen
equal to 0; that is to say w=(w,...w,_ )"
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366 J. DEVOLDER, E. TIMMERMAN

Let Z denote the set of relative integers, 4% stands for the set of
Z-sequences of elements of A. The elements of A% are called Z-words. Biinfi-
nite words [3, 18] over A are the equivalence classes for the shift relation
over A%

(wn)nezz(vn)nez <~ HPEZ’ VnEZ’ wn=vn+p'

The biinfinite word defined by (w,), .z is written .. .wow,. ..
The set of biinfinite words over A is denoted by “A4°.

A Z-word (resp. biinfinite word defined by) (w,),.z is said to be right-
ultimately periodic if ApeZ 3t>0 such that

VE>0 (VnOSn<t) wpipin=Wpin

We denote such a biinfinite word by .. .w,_; (w,...w,,_)"

A left-ultimately periodic Z-word (resp. biinfinite word) is defined in an
analogous way.

A bi-ultimately periodic Z-word (resp. biinfinite word) is a Z-word (resp.
biinfinite word) which is both left-ultimately periodic and right-ultimately
periodic.

A Z-word (resp. biinfinite word defined by) (w,),. is said to be periodic
if 3¢>0 such that Vk (Vn0<n<i?) w,, ,,=w, Such a biinfinite word is
written “(wy . .. w)%.

Given a language C = A" the submonoid generated by C is the language
C*={v,...v,|n20 v,eC for 1<i<n}, C” stands for the set of infinite
words obtained by concatenation of an infinite sequence of words of C:
C*={v5v,7,...|v;eCfori=20}. In a same way °C={ . . .v, v, vo|v;,€ C for
i20}and °C*={...v_,v_, 040 v,...|0,eCforieZ}.

For U, V < A® and U, V' = ®4 we define: UV~ '={te4*|Ive Ve U}
and V' "' U'={sed*|IveV vse U }.

Given a language C = A we shall often consider a bijection ¢ between
an alphabet X and the language C. This mapping can be extended to X* as
a morphism ¢ :X* — C*. This morphism is said to be a coding morphism
for C (even if it is not injective). The mapping ¢ can also be extended to
X°(0(2z92y...)1s the word @ (zo) @ (z,)...), and also to ®X and “X® in an
analogous manner. This extension is denoted also by o.
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FINITARY CODES FOR BIINFINITE WORDS 367

1. FACTORIZATIONS AND CODES FOR FINITE, INFINITE AND BIINFINITE WORDS.
DECOMPOSITIONS OF Z-WORDS. Z-CODES

In the sequel, C (the language C will be the “code”) is always a subset
of A*. That means that we consider only notions of code for which the codes
are constitued of finite words. Another notion of code for biinfinite words
has been defined by Do Long Van [9,10]; the codes used by Do Long Van
have always infinite and biinfinite words as elements.

A. Codes for finite words: codes [4]

DEFINITIONS AND RECALLS: For any word w in 4%, (vg,...,v,-4) is a
C-factorization of wif n=1, w=1v,...v,_, and v;e C for 0Zi<n.

To have a factorization of w, it is equivalent to give a finite increasing
sequence of integers iy, iy, .. .,i, where 1=iy<i;<...<i,=|w|+1. This
gives a C-factorization if »;=w;;...w; ;41— (denoted in the sequel by
wli;, i;+4[) belongs to C for every j. Let ¢: X* - A* by a coding morphism
for C, the set of C-factorizations of u€ A* may be represented by ¢ ~* ().

A language C c A™ is said to be a code if every word in C* has a unique
C-factorization. In other terms: a language C is a code if and only if

) Vu,0eC uC*NoC*#QF = u=no.

In terms of coding morphisms, we can say: C is a code iff @: X* —» 4% is
injective.

B. Codes for infinite words: w-codes [20]

DermNiTIONs: For any word w in 4°, (v);.n 1S a C-factorization of w if
W=v50,v,... and v;€ C for i=0.

To have a factorization of w, it is equivalent to give a strictly increasing
infinite sequence of integers iy, iy, ...,4, ... where ig=1. This gives a
C-factorization if v;=wl[i},i;,,[ belongs to C for every j=0. The set of
C-factorizations of a word weA® may be represented by ¢~ '(w), if

¢ : X® — C* denotes a coding morphism for C.

A language C < A% is said to be an w-code if every word in C® has
a unique C-factorization. In other terms: a language C is an ®-code if and
only if

1) Vu,veC uC*NvC°#F = u=v.
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This definition can be expressed in terms of morphisms: let ¢ be any coding
morphism for C, C is an m-code if and only if ¢: X® — C® is injective.

C. Codes for biinfinite words: biw-codes [8]

We are going to propose a coding theory for biinfinite words. Of course,
a code for biinfinite words (we say a biw-code) is a language C for which
every biinfinite word has at most one C-factorization. A problem appears when
we have to say what means “has at most one C-factorization”. We suggest
the following definition for a C-factorization, and according with this defini-
tion we obtain the notion of biw-code.

DeriniTioNs: We define C-factorizations on “A® as the equivalence classes
for the shift relation over CZ:

(cn)nezz(dn)nez had BPEZ, VHEZ, ¢, =4,

n n+p*

The sequence (c;); .z represents a C-factorization of we®A® if w is obtained
by concatenation of the ¢,:w=...c_,;cocy. - .

A language C = A™ is said to be a biw-code if every word in ®C® has a
unique C-factorization.

This definition can be expressed in terms of morphisms: let ¢ be any coding
morphism for C. There exists a bijection between the set of all the
C-factorizations and “X®. In the sequel, when necessary, we shall denote a
C-factorization by a word of “X®.

A language C is a bim-code if and only if @:°X® — “C® is injective. The
unique C-factorization of we®C® is then represented by ¢ ~* (w).

Clearly the notion of bim-code cannot be put on an analogous form to (1)
and (1").

Remark: Let u, ve A*. If the primitive roots of v and v are conjugate, the
words u and v cannot belong to a same biw-code: for example, the code
{ab,ba} is not a bie-code.

Examples 1.1:

— The singleton {u} is a bio-code if us#e.

— The languages {a?}, {a,bab}, { ba®, ba® ba, a® ba® } are finite biw-codes.
— For every n, the language { 5"} \U ab (a* b)* is an infinite biw-code.

DerntTioN: We call C-factorization of a Z-word u every C-factorization of
the class of u in ®A4°.

Informatique théorique et Applications/Theoretical Informatics and Applications
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A C-factorization of a biinfinite word w can be expressed in terms of
indices. This supposes that a representative of w:(w));., has been chosen.
To have a factorization of w (or equivalently of (w;);.z), one can give a
strictly increasing biinfinite sequence of integers..., i_,, i_4, Iy, i1,... LhiS
gives a C-factorization if v;=w(ij, i;, [ belongs to C for every j. To avoid
the problems due to the shift on the indices of the sequence (i,), .z, one can
impose i, 0 and i_; <0. But one can see (example 1.2) that uniqueness of
the C-factorization of w does not correspond to uniqueness of such an
increasing sequence.

Example 1.2: Let C={aa}, the word “a® has a single { aa }-factorization:
°a®=“(aa)®.

But one can see that:
010,030, 050g. . .= .. .0;0,.030,.050¢. . .01 .0,05.0,05.0g . .

(where a;= g for every i). The single { aa }-factorization of “a® gives two ways
i g g
to factorize its representative.

So, for a given factorization of a Z-word (resp. a biinfinite word) w,
one can sometimes consider several ways to factorize w (resp. any of its
representatives). We shall give another notion of code for biinfinite words,
the notion of Z-code, stronger than the previous notion of biw-code, this
other notion requiring a single way for factorizing Z-words.

D. Decompositions of Z-words. Notion of Z-code

The notion of decomposition over A% is defined to count the different ways
to factorize a Z-word by a given C-factorization of this word.

DerFINITIONS: A decomposition over A% is a strictly increasing sequence
of relative integers: (d,),.z such that d,=0 and d_;<0. Let us denote
by D the set of decompositons over 4% A decomposition d=(d,),. is 2
C-decomposition of the Z-word u= (u;); . 4 if for every ke Z uld,, d, [ C.

A language C < A" is said to be a Z-code if every Z-word has at most one
C-decomposition (over A%).

This definition cannot be expressed immediately in terms of coding mor-
phisms. This will be done in the third section (theorem 3.5).

Remark: Any element u of a Z-code is primitive, otherwise u% has several
C-decompositions.

vol. 26, n° 4, 1992



370 J. DEVOLDER, E. TIMMERMAN

Examples 1.3:

— The singleton {u} is a Z-code for any primitive word u#e.

— The codes {a,bab}, {ba® ba*ba,a*ba*} are not Z-codes (consider
representatives of the words ©(ab)®, ®(ba® ba?)).

— The language {b"} U ab(a®b)* is a Z-code if and only if n=1 (Every
word except b% has at most one C-decomposition).

Let us now study how Z-codes deal with biinfinite words.

LeMMA 1.1: Let u, ve AZ be representative of the same biinfinite word w,
and consider C a subset of A*. The set of C-decompositions of u and the set
of C-decompositions of v have the same cardinality.

Proof: Since u=~v there exists p satisfying v;=u,, , for all ieZ (infinitely
many p in the case of periodic words, a single p in the alternative case).
A bijection f between the set of C-decompositions of u and the set of
C-decompositions of v can be defined next way. Let us fix p such that v,=u,, ,
for all ie Z. Consider a C-decomposition d of u. There exists a single k£ such
thatd,_,<p=<d,. Letd,=d, ,—pforall ne Z. We set f(d)=d'. The sequence
d' is a C-decomposition of v, and fis a bijection.

CorOLLARY 1.2: A language C = A% is a Z-code if and only if for every
biinfinite word w, one of the representative of w has at most one C-decom-
position.

Let us consider a Z-word w. To a C-decomposition d of w one can
naturally associate a C-factorization of w: it suffices to consider the class of
wld,, d,; D,z for the shift relation on n. In the following, we denote by
T, (d) this C-factorization. It is clear that each C-factorization of w can be
obtained using this way and that two distinct C-factorizations of w come
from two distinct C-decompositions of w (whereas the converse does not
hold: see example 1.2). So we have:

PropoSITION 1.3: Any Z-code is a biw-code.
E. Relations between these codes

ProposITION 1.4: For a language C = A™, consider the properties: (a): the
language C is a Z-code, (b): the language C is a biw-code, (c): the language C
is an w-code, (d): the language C is a code. One has: (a) = (b) = (c) = (d) and
the converse implications are false.

Proof: (a) = (b): Already seen.

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITARY CODES FOR BIINFINITE WORDS 371

(b) = (c): Let C be a bim-code.

The result is clear if C is a singleton.

If C has two elements, the language C is a two-element code and then an
w-code [12].

If C is not an ®-code but has at least three elements, there exist
Ugy Uy, Usy -+ 5 TVgs V1, Vs, - - . €Csuch that ug #vgand ugu, u,. .. =00, 0,5. . .3
Consider we C—{uo, v, }. The word ®“wugu, u,. . .(=“wvyv, v,. . .) has two
distinct C-factorizations.

(¢) = (d): Let C be an w-code and u, ve C such that u C* N v C*# . Then
uC°NovC°#J and u=v.

Examples 1.4:

— The singleton {aa} is a biw-code but not a Z-code.

— The language {ab,ba} is an @-code but not a biw-code

— The language {a,ab,b”} is a code but not an o-code.

2. CHARACTERIZATIONS OF SOME SPECIAL CODES RELATED TO BIINFINITE
WORDS

In this part we precise how some special codes (codes, precircular codes,
circular codes) deal with biinfinite words and Z-words. The results are used
in the sequel.

A. Codes and biinfinite words

Let ¢ : X* » C* be a coding morphism for C. A C-factorization denoted
by xe®X® is said to be right (resp. left)-ultimately periodic if x is right (resp.
left)-ultimately periodic. It is periodic if x is periodic. Necessary and sufficient
conditions for languages to be codes was already given by Devolder [6]:

ProPOSITION 2.1 [6]: Let C be a language <= A*. The following conditions
are equivalent:

— The language C is a code,

— Every C-factorization of a periodic biinfinite word is periodic.

— Every C-factorization of a right-ultimately periodic biinfinite word is
right-ultimately periodic.

Let @ : X* — C* be a coding morphism for a code C.

If xy®e®X® is a C-factorization of a biinfinite word uv® (where v is assumed
to be a primitive word), the word ¢ (y) is a power of a conjugate of v.
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372 J. DEVOLDER, E. TIMMERMAN
(Of course, in the previous proposition, one can substitute left for right,
and Z-words for biinfinite words.)

CoROLLARY 2.2: Let C be a code. A C-factorization is periodic if and only
if it factorizes a periodic word.

The result is false when C is not a code, A nonperiodic factorization can
factorize a periodic word. For example, “a® has a nonperiodic factorization
if C={a,d*}.

B. Precircular codes and biinfinite words

The notion of precircular codes has been defined to study the factorizations
of periodic biinfinite words [6]:

DEerFINITION: A language C < A™ is said to be precircular if Vn, p=1,
Vg, .« oylly_1, Vgs « - 50,1 €C, VI, s€ A* such that v, = ts we have:

Ug: Uy =SV;... 0, gt = n=p and 3Ih,Viu;= 0, medp

In fact the precircular languages are codes [6]. Let us here recall some
other useful properties of precircular codes:

LeMwMmA 2.3: Let C be a language = A" and ¢ : X* — C* a coding morphism
for C. The language C is a precircular code if and only if

Vx,ye X* @ (x) and ¢ (y) conjugate = x and y conjugate.

PROPOSITION 2.4 [6): A language C = A" is a precircular code if and only
if every periodic word of ®A® has at most one C-factorization.

COROLLARY 2.5: Any biw-code is a precircular code.

Example 2.1: Unfortunately a precircular code is not necessarily a
biw-code: The language { a?,ab,b*} is a precircular code but the word “ab®
has two C-factorizations.

C. Circular codes and biinfinite words

Circular codes are particular cases of precircular codes. We recall here how
these codes deal with biinfinite words or Z-words.

DEerINITIONS: A circular code [13] is a language C = A™ such that:

VYr,p20, Vug, ...,t,_4,7,...,0,_,€C, VieA* VseA" suchthatv,=ts

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITARY CODES FOR BIINFINITE WORDS 373

we have: (4. . .4, =5v,...v,_;t=n=pt=¢and Viy,=1).
A code C is said to be pure if Vue A*Vn21 (u"e C* = ue C*).
Let us recall some results used in the sequel.

LeMMA 2.6 [6]: A language C = A" is a circular code if and only if C is a
pure precircular code.

Lemma 2.7 [6]: Let C be a precircular code = A™ and ¢ : X* — C* a coding
morphism for C. If ®yxz® (y, z primitive words) is a C-factorization of a word
uwv® (u, v primitive words), then every C-factorization of a word belonging to
“u A* v* belongs to ®y X* z°.

LEmMMA 2.8: Let ¢: X* — C* be a coding morphism for a code C. The code
C is a pure code if and only if

VyeX*, y primitive = ©(y) primitive.

Proof: If C is a pure code, let us consider ye X* such that ¢(y) is
imprimitive. One has ¢ (y)=u" for some u and n>1. Since v"'eC*, ueC”
and u= @ (z) for some ze X*. Since ¢ (z")=u" and the language C is a code,
y=2z" Thus y is imprimitive.

Conversely, if w"e C* (n>1), u"= @ (y) for some ye X*. The word ¢ (y) is
imprimitive so y=z" for some p>1 and z primitive. The word ¢ (z) is
primitive and ¢ (z)’ =u", so u is a power of ¢ (z) and ue C* since @ (z2)eC".

In order to obtain a comparison between Z-codes and circular codes, we
prove that the notion of circular codes can be characterized by uniqueness
of the decomposition of bi-ultimately periodic Z-words. Notice the analogy
between the next proposition and proposition 2.4.

ProrosiTioN 2.9: Let C be a language — A*. The next properties are
equivalent:

1. The language C is a circular code.
2. Every periodic Z-word has at most one C-decomposition.
3. Every bi-ultimately periodic Z-word has at most one C-decomposition.

Proof: 3 =2: Obvious.

2=1: If C is not a circular code, there exists ue C* such that the circular
condition is not satisfied. The representatives of the word “u® has two distinct
C-decompositions.

1=3: Consider two C-decompositions of a representative of the word
uwv®. Since C is a code, the associated C-factorizations are bi-ultimately

()
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374 J. DEVOLDER, E. TIMMERMAN

periodic. Let @ : X — C be a coding morphism for C, and ®xyz® (x, z primitive)
be one of these factorizations. Since C is precircular, the other factorization
can be written “xy; z° (lemma 2.7). Since C is a pure code, @ (x) is a primitive
word and then cannot overlap; the same holds for ¢(z). So the
C-decompositions coincide on the left and on the right. Then y and y, can
be chosen such that @ (y)=¢(y,), and y=y, since C is a code. The two
factorizations and moreover the two decompositions are in fact the same
one.

CoOROLLARY 2.10: Any Z-code is a circular code.

Unfortunately this condition is not sufficient to have a Z-code (see
example 2.2). However the converse of the corollary 2.10 will be proved in
the rational case (see fifth section).

Example 2.2: The language C={ab}U {ab"ab"*'|n>0} is a circular
code but the word ®(ab) ab? ab® ab*. . . has two C-factorizations and thus its
representatives have two C-decompositions.

3. CHARACTERIZATIONS OF Z-CODES

First we give a simple characterization of Z-codes, which has an immediate
consequence in the rational case.

PRroPOSITION 3. 1: Let C be a language = A*, C is a Z-code if and only if
oteagnan (et nanHNc=g.

COROLLARY 3.2: One can decide whether a rational language C = A% is a
Z-code.

Proof: Since if A and B are rational infinitary languages, 4B~ ! is a rational
finitary language, one has only to check whether the rational language:

OO NA).(CHCH ' NAT)NC is empty.

In the sequel we precise the relation between the notions of biw-code and
Z-code. In this aim, let us consider for we A% the surjective mapping <,
(already considered in proposition 1.3) which associates to a C-decomposi-
tion d of w the C-factorization represented by (w(d,, d, D),z Of course, a
bio-code is a Z-code if and only if for every we A%, 1, is an injective mapping.

DEerFmNiTION: A C-factorization ¢ of we A% is said to overlap (or to be an
overlapping factorization) if 1, ! (c) has at least two elements.
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Of course, C is a Z-code if and only if C is a bio-code such that no
C-factorization overlaps.

Example 3.1: For the single {aa }-factorization ¢ of w=a?%, 1, (c) has
two elements: (27n),., and 2n+1), 5.

LemMmA 3.3: An overlapping factorization factorizes a periodic biinfinite
word.

Proof: Let d, d' be two distinct C-decomposition of a Z-word w, associated
to the same C-factorization c:t,(d)=1,,(d")=c. Let (c;), .z be a representa-
tive of c; there exist p, ¢ such that for every £

a=Wldy i dpris [=WIdg s dgvisal

It is clear that d,=d implies d=d’.
Then

CoC1---“WapWap+1- - “Waer@Wa@+1---
and

€ C T Wi =2 Wapy-1T - War@—-2War @15

with d,#d;. So the word w has the period w(d,, d][ if d,<d; and w[d,, d,|
if d,>d;,.

Examples 3 .2: The factorizations ®(ab)® and “(ab, a)® are periodic factoriza-
tions and do not overlap.

The factorizations “(aa)® and “(aba,b)® are periodic factorizations and
overlap.

The nonperiodic factorization of ®a®: (a!"!*1), e Z overlaps.

As a consequence of lemma 3.3 and proposition 2.1, an overlapping
C-factorization is periodic whenever C is a code. The following lemma states
precisely the structure of an overlapping periodic factorization.

LemMA 3.4: Consider a language C, a coding morphism for C ¢ : X* — C*
a primitive word y of X* and the periodic C-factorization ¢=°y°€°X®. The
Sfactorization ¢ overlaps if and only if ¢ (y) is imprimitive.

Proof: Let us consider w a representative of “@ (¥)°. Since ¢ overlaps,
w has two distinct C-decompositions d and d’. We keep the notations
of the proof of lemma 3.3. Since ¢ is periodic there exists 4 such that
d,<d,,,<d,+|¢(y)| and moreover d,,#d, (otherwise d=d'). Then w,
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which has ¢ (y) as a period, has also the period w[d,, d;.,[ of length strictly
smaller than | ¢ ()|. So ¢ () is imprimitive.

Conversely, let us assume that @ (y)=u" for some n=1 and ue A*. Then
¢ factorizes any representative w of ®4®. We consider a C-decomposition of
w:d, associated to c. From the strictly increasing sequences: (d;+p|ul);cz
(p=0, ...,n—1), by shifting the indices, one can consider » C-decompositions
of w, associated to ¢. If ¢ does not overlap, these decompositons coincide.
Then ue C* and there exists ze X* such that ¢ (z)=u et y=2z". Thus n=1
since y is primitive.

Now we give the main result of this part. This characterization of Z-code
is easier to use than the previous ones, since a likewise geometric condition
is replaced by algebraic ones, One can appreciate this fact for instance in the
proof of proposition 4.2. In fact the theorem 3.5 can be expressed in terms
of coding morphism properties (use lemma 2.8 and the definition of a biw-
code).

THEOREM 3.5: Let C be a language — A*, C is a Z-code if and only if C is
a pure bio-code.

Proof: A Z-code is a circular biw-code and thus a pure bio-code.

Conversely, assuming C is a pure biw-code, one has to show that no
C-factorization overlaps. From lemma 3. 3, it suffices to consider the periodic
biinfinite words. The result is then an immediate consequence of corol-
lary 2.5, lemma 2.6 and proposition 2.9 (indeed, C is a pure precircular
code and then a circular code).

As a consequence of theorem 3.5, we shall see in proposition 4.2 that the
composition of Z-codes gives Z-codes.

4. PROPERTIES OF Blo-CODES

In order to have a lot of examples of bim-codes, we study simple bicw-
codes and composition of bim-codes.

Barbin and Le Rest have studied the two-element codes [1]. As an applica-
tion, Devolder shows that {u,v} is a precircular code if and only if the
primitive roots of u and v are not conjugate [6]. It is now easy to show the
same result for bim-codes: {u,v} is a bim-code whenever it is a precircular
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code:

ProPOSITION 4.1: Let C={u,v} be a two-word subset of A*. Let uy=_ /u
and vy= \/5 The language C is a biw-code if and only if uy and v, are not
conjugate.

Proof: The necessary condition is obvious.

Assume that u, and v, are not conjugate. Then C is a precircular code [6].
Let Co={uo,v0}. In ®Cy there is at most one word whose representatives
have two distinct Cy-decompositions [15, 1, 6]. It is the word “w® where w is
the single imprimitive word in u, vy (U ug v, (if exists). Since C is a precircular
code, the periodic word “w® has a single C-factorization. So every word in
“C® has a single C-factorization.

ProprosITION 4.2: Let C be a language < X* and ¢ : X* — A* be a coding
morphism for a language D=@(X) = A™.

If C and D are biw-codes (resp.: Z-codes), ¢(C) is a biw-code (resp.:
Z-code). If ¢ (C) is a biw-code (resp.: Z-code) and ¢ bijective from C to ¢ (C),
C is a biw-code (resp.,; Z-code).

Proof: One can consider a coding morphism ¥:Y* — X* forC. As ¢ is
bijective from C to ¢ (C) in both cases, ¢ ¥ is a coding morphism for ¢ (C).
In the case of biw-codes, it remains to use the injective property of ¢ : X® - 4°
and ¥: Y® - X®, or that of ¢°¥: Y* — A4°. In the case of Z-codes, it remains
to prove the properties for pure codes. The result is easily obtained from the
characterization 2.8 of pure codes.

Remarks: If C or D is not a biw-code, ¢ (C) may or may not be a biw-
code.

— It is possible to have a bio-code ¢ (C) even if C is not a biw-code when
¢:C— ¢ (C) is not a bijection (In this case, D is not a code of course). For
example let us consider:

C={ab,ba}, D={c,c*}, o(@=c,
o®)=c% o (O={c}
Lemma 4.3: Let Y be an alphabet (finite or not) and B be a mapping from

Y to the set of natural numbers N. The language Yy={z*@|ze Y B(2)#0} is
a biw-code.

Proof: Two different words of Y, cannot overlap. And the periodic words
°(zP @)* have only one C-factorization.
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LEMMA 4.4: Let C be a biw-code and B be a mapping from C to N.
Co={uP“|ueCBw)#0} is a bio-code.

Proof. — The code Cy is the result of the composition of Yy and C.

Example 4.2: The set Cy may be a bio-code even if C is not a biw-code:

Since “ab® has two C-factorizations, the code C={a? ab,b*} is not a
biw-code. Nevertheless { a?, (ab)?, b*} is a bio-code.

In the sequel we give some characterizations for bim-codes. Some properties
of bim-codes have already been found: a bim-code C is a precircular w-code,
and the mirror of C: C is also an w-code (we shall say that C is an
“w-code). Unfortunately, these conditions are not sufficient to have a bio-
code, even if we consider a finite biprefix code:

Example 4 .3: The language C={ aa, ab,bb} is such a code. The word ®ab®
has two C-factorizations.

Examples 4 .4: The sets of precircular codes, m-codes and "‘®-codes cannot
be compared.

— The language {ab,ba} is a nonprecircular (biprefix) w-code and is an
“w-code

— The language {c,b%, cb} is a precircular “®-code, but is not an w-code.

Characterization 4.5: Let C be a precircular code = A”. The language C is
a biw-code if and only if C satisfies:

) Vs, te A* such that ste C and (°C N °Cs).(C°NtC)# D,

there exists ue A™ such that (°C N\ °Cs).(C® N t C°)=""u".

Notation: For convenience, in the following, we shall denote by M, the set
*C M “Cs and by M, the set C* (" sC® (when se 4 ™).

Proof: Let C be a bio-code, then C is a precircular code.

Consider ve M, and we M;. The representatives of the biinfinite word vw
have two different C-decompositions. The corresponding factorizations are
in fact the same one and the word is periodic. There exists u such that v="u
and w=u". For every v'€e M, v'w is periodic and then v'=“u. Thus M;="u
and in a same way M;=u".

For the converse, if a Z-word x has two distinct C-decompositions, there
exist s and re 4" such that xe M. M;. Then x is periodic. Since C is a
precircular code, by proposition 2.4, x has only one C-factorization.
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Remark: In this characterization:
— one cannot omit the condition (2): see example 4. 3.
- one cannot replace the condition “precircular code” by ‘““almost circular

code” (the definition of almost circular codes is given just after): see
example 4.5.

Example 4.5: The language C={ab,c,bca} is an almost circular non-
precircular code (so C is not a biw-code) and we have: M,=%(bca) and
M= (bca)®, M,.,=%(abc) and M, =(abc)® and M,="“(cab) and M,,= (cab)®.

In order to weaken the condition (2) in the previous characterization we
need the notion of almost circular code defined by Leconte.

DEFINITION 4.1 [14]: A language C is said to be almost circular if it is a code
such that Vs, t#¢ such that ste C, t C*s (M C* is empty or is a monogeneous
semigroup (i. e. of the form u* for some u).

LEMMA 4.6 [6]: A precircular code is an almost circular code.

PROPOSITION 4.7: A code which satisfies
(2") Vs,ted”,if steC and M. M, & then M, and M, are monogeneous
(that is: there exist u, ve A* such that M;=“u and M;=1") is an almost
circular code and satisfies (2).

Proof: Let us consider wy and wetC*s N\ C* (with s, te 4™ and steC).
The words “w, and “w belong to M,. But M,=“u, where u can be chosen
primitive. Then w,, w belong to u*. In a same way, w,, w belong to v* if
M;=v® and v primitive. So u=v and tC*s N C*cu*. As C is a code,
t C* 5N C* is monogeneous [6]. So C is an almost circular code. Let us give
a definition useful in the sequel of the proof:

Let z be a C-factorization of a word uvwe A®. We say that z define
the cutting diagram (v, ...,v,) on the word v if 3p=0 3n=2 such that
u=0(zy)...0(z,)u (with ' #¢),

(p(zl)' . '(p(zp+1)=uv1’ (p(zp+i)=vi(p(2p+n)=vnv,,
w<@(zy). .. 0(zp4p) and V=0y. ..,

Note that

v, =¢€ iff @(z)...0(z,+1)=u
and

v, =€ iff @(z). .. @(z,4,-1)=uv.
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Consider now s, t, u, ve A* such that steC, M,=“u, M,=v°, u and v
primitive. It remains to prove that u=ro.

Let ¢: X* - C* be a coding morphism for C. Consider z (resp.z)eX® a
C-factorisation of v® (resp. t~!v®). Since C is a code, by proposition 2.1,
z and z' are ultimately periodic (z=z,2%,z =z} z5") and there exist v,,v}
conjugate with v such that ¢ (z,)=v}, ¢ (z3)=v7 for some n and »’. The
conjugate words v7" and »™ belong to C*. We consider the successive
occurrences of 7" on which the cutting diagrams defined by z are the same
one: (g, . ..,&) and on which the cutting diagrams defined by z’ are also the
same one: (¢, . . .,s").

So we have two cases:

First case: s" and ¢’ #¢. the factorizations z and z’ define (in their periodic
part) on the studied occurrences of v}* cutting diagrams such that s'#' € C,
VM e C* Nt C*s', ®w®e M, . M,.. In the first part of the proof we proved
that, in this case, M, =%v,, M, =v%. Then u=v. Second case: ' =¢ and then
s'=¢g. On all the studied occurrences of v%", the cutting diagrams defined by
z and z' are identical. Then we study what happens with a C-factorization y
of “u and a C-factorization y’ of “us™ !, and we conclude if we are in the
analogous first case. If we are in the analogous second case, we have for
SOme s, 75, ys, Ysiz=2373, =252 with @ (z;)=10(z5) and y="y, s,
y'=%y,y3 with ©(¥3)=¢(y3)s. As steC and C is a code, we obtain a
contradiction.

Remark: There exist almost circular codes which do not satisfy (2'). See
example 4.3: C={aa,ab,bb}, M,=a*b"+a".

— The conditions (2) and (2") are not sufficient to have a code: For
example: C={a,a®} is not a code and nevertheless M,=“a, M,=a®.

As an immediate consequence of proposition 4.7 and characterization 4.5
we have:

THEOREM 4.8: A precircular code C = A" is a bin-code if and only if C
satisfies:
(2) Vs, teA” such that ste C and M, .M+, the languages M, and M,
are monogeneous.

Remark: 1t is not difficult to see that if a code C satisfies the pro-
perty (2'), it satisfies also the property:
(3) Vs, t, 'eA” such that steC, st'e C, M, M, and M,# J, one has t=1".
And thus a biw-code satisfies the property (3).
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But the condition (2") in the theorem 4.8 can be replaced neither by (3)
nor by
(4) Vs, te A" such that ste C and M,. M, # (J the languages M, and M, are
singletons.

Example 4. 6. The language
C={acab}U{ac"  ac"|n21}\U{ab"ab"**|n21}

is a circular m-code but not a biw-code.

...ac*ac® ac® acabab® ab® ab* . . . is the single word which has two C-
factorizations. So, every (M, M;) such that ste C, M, and M, # ¥ is composed
of two singletons. The code C satisfies also the property (3).

5. Z-CODES AND Blo-CODES IN THE RATIONAL CASE. DECIDABILITY

When a language C is rational, one can consider an automaton
Qo=(Qo, 90, 95) With a finite set of states Q,, a single initial state g, and a
single final state gp, which recognizes C and such that no edge comes to g,
and no edge goes from gp. Q, can be chosen trim (i. e. for every state g there
exist a path from g, to ¢ and a path from ¢ to g;) and unambiguous (i.e.
the words of C have a single successful lecture). The automaton Q=(Q, q,, go)
obtained by identification of ¢, and g, recognizes C*. If C is a code,
the automaton Q is unambiguous [4]. This automaton looked as a Biichi
automaton recognizes °C®. Let we A% There is a bijection f between
the set of successful lectures 1=(g; ;) Wi q;i+1))icz of w on Q and the set
of C-decompositions of w: it suffices to define f(1)=d where d satisfies:
d@)={icZ|q;,=q0}-

We denote by A4, , the set of words which can be read on Q from ¢ to ¢,
and by B, , the set 4, , .4, , when (g,q")# (4o, 90)-

The next technical proposition will be used thoroughly in the following.

ProPosSITION 5.1: Let C be a rational language < A™ and Q, an unambi-
guous automaton recognizing C such as considered before.

Let D be the set of finite words which have at least two C-factorizations.
Put X, =°CDC® and X,=\J®(B; N C").(B; ,NC").(B, ;N\ C*)° (where
(9:9)€ 2%~ (9o, 90))-

The language Y= X, \J X, is the set of words whose representatives have several
C-decompositions. Y is a rational language.
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Proof. It is known that the language D is rational [4, 11, substraction
lemma]. A word of X has clearly two distinct C-factorizations. A representa-
tive w of a word of X, has two distinct successful lectures on Q since ¢’ # g,
or g#4q,, then w have two distinct C-decompositions.

Conversely, if we A% has two distinct C-decompositions, w has two success-
ful lectures on Q (g; ) Wi @ja+1)iez a0 (G 4y Wis i+ 1))iez- Consider a
strictly increasing sequence (i,), . z such that g; ;, = g, and define 1 (p) =k ().
Since Q is finite and the second lecture successful, there exist ¢, g€ Q and a
strictly increasing sequence (p,), .z such that g, ,,,=¢ for n>0, g, ,,y=¢" for
n<0 and Vnih q,4,=q, and i(p,)<h<i(p,.+,) (between the considered
crossings through ¢ (resp. ¢') there is a crossing through g,). If g#¢, or
q' #4q9, we X,. If g=q' =gq,, since the C-decompositions are distinct, we X.

As a consequence of the previous proposition, Beal’s next result [2] is
obtained:

THEOREM 5.2: Let C be a rational language < A*, C is a Z-code if and
only if C is a circular code.

Proof: The condition Y= (¥ is equivalent with X; = (J (that is D= %) and
X,=( (that is Vq#gq, B, ,MN C*=); the condition Y= (¥ is then equiva-
lent with “C is a circular code™.

When C is a nonrational language, this condition is not sufficient to have
a biw-code. See example 2.2.

Corollary 3.2 gives a method to decide whether a rational language is a
circular code.

In the case of infinite words, it suffices to study the rational infinite words
to know whether a rational language is an ®-code [7]. In the case of
Z-words, from theorem 5.2 and proposition 2.9 we have an analogous result
for Z-codes. For biwm-codes, this is also true:

PROPOSITION 5.3: A rational language C = A* is a biw-code (resp. Z-code)
if and only if every bi-ultimately periodic biinfinite word (resp: Z-word) has at
most one C-factorization (resp: C-decomposition).

Proof (for bim-codes): Let us consider the set Y defined at propo-
sition 5.1. Let us denote by Y, the set of words having at least two
distinct C-factorizations and Y, the set of periodic words having a single C-
factorization and whose C-factorization overlaps. Clearly Y=Y, U Y,. Since
Y is rational, it is a finite union of sets 4, B; C? [18]. If ®4;B;C{ is not
reduced to a single periodic word, there exists a rational nonperiodic word
in Y, and thus a rational word in Y,. Therefore, if every rational word has
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at most one C-factorization, Y=1J“u. By hypothesis, Y=Y, and Y, is
empty.
It is then clear that the following corollary holds:

CoOROLLARY 5.4: Let C be a rational biw-code = A*, the set X of biinfinite
words which representatives have several C-decompositions is finite.

Another easy consequence of proposition 5.3 is:

COROLLARY 5.5: Let C be a rational language < A*, C is a bio-code (resp:
Z-code) if and only if all its finite subsets are biw-codes (resp: circular codes).

These properties 5.3 and 5.5 are false for a nonrational language (see
example 2.2).

The next lemma gives another property of biw-codes, that will be used in
the rational case:

LEMMA 5.6: A biw-code C = A* satisfies the property (4):
4) Vs, t,5, 1,5, t"eA” such that st, s't', st and s"t'€eC, C* N\ tC*s,
C*N ' C*s" and C*N\ Y C*s'£J, one has t"=t, s""=s" and there exist
p>0, a primitive word u, a conjugate v of u (v=u""v', u=u'u'"") such that
C*NtC*s=Wr)*, C*N1"C*s" cu*v and C* N\t C*s'=(2")*.

Proof: A biwn-code C is an almost circular code and we have
C*MNtC*s=WP)* and C* N1 C*s'=(v")* for some primitive words u and
v and some integers p and n. Let us consider we C* N ¢'' C* s”’. The represen-
tatives of “uwv® have two distinct C-decompositions. Then “uwz® has an
overlapping C-factorization and “uwv® is periodic, hence v=u""', u=u'u"
and weu* . Since C is a precircular code, the proof of [6], lemma 5.2, gives
n=p.

Since C is a precircular code, “4® has a unique C-factorization. Let
t"'ut=c,...c, where ¢,=st and ¢;eC for every i. The C-factorization of
“u® is “(cy, . . .,C,)” and belongs to “(c;...c,) ¢;...c,_yst” C*s" ' C°, then
st”=c,=stand t=¢". In a same way s"' ="

A biw-code must factorize in a single manner the periodic biinfinite words,
the right-infinite words, the left-infinite words and also the biultimately-
periodic biinfinite words. In the rational case, it turns out that these condi-
tions are shown to be sufficient:

THEOREM 5.7: A rational language C = A* is a biw-code if and only if C
satisfies the four next conditions:

— the language C is a precircular code
— the language C is an ®-code
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— the language C is an "o-code

— the language C satisfies the property (4).

Proof: We have already seen the necessity of the four conditions
(corollary 2.5, proposition 1.3, and lemma 5. 6).

Conversely, it is sufficient to prove that every rational word has at most
one C-factorization. Let us assume that a representative r of the rational
word “uwv® (u and v primitive) has two C-decompositions d; and 4, and
consider a coding morphism ¢: X* — C* for C.

7, maps the two decompositions on two C-factorizations fl‘ and f,. Since
C is a code, f;="yxz® for some primitive words y, ze X*. Since C is a
precircular code, f, =°yx’ z® for some x’' € X* (lemma 2.7).

Look at the decompositions d; and d,. Two cases can happen:

— the decompositions d; and d, cut the word r at (at least) a same point
(d, (Z) N\ d, (Z) # &), then d, =d, since C is both an "®-code and an wo-code.

— the decompositions d; and d, coincide nowhere on the word r. Since
f1="C%pxz® and f,=“px’' z° one can obtain s, ¢, 5", '€ 4" such that sze C and
o(»NeC*NtC*s (s,t#¢ since d; and d, coincide nowhere), s't'e C and
P(2)eC* N ¢ C*s'. Since d; and d, decompose the same word, one can
obtain 5", "€ A* such that st"eC, t's'eC and C* N\ t" C*s” # ¢ and the
word ®uwv® belongs to °(C* Nt C*s) (C*N " C*s") (C* Nt C*s')®. The
fourth condition implies that the word “uwv® is periodic. Therefore, since C
is a precircular code, “uws® (=“u®) has a single C-factorization. Note that
this factorization is ©y®.

The theorem 5.7 is false for a nonrational language.

No condition can be suppressed in the theorem 5.7, even in the finite case.

Examples 5.3:

— The language C={abab}J{ab"ab"*'|n>0} is a precircular suffix
@-code which satisfies the property (4). Indeed for all s,¢,5,¢,5",t"'eA™
such that st, s'¢, st and s"t'eC, and C*NtC*s, C*N ' C*s" and
C* Nt C*s'# J, one has

s=s'=s"=t=¢=("=ab  and C* M\t C*s=(abab)™".

But the word ®(ab) ab® ab® ab*. . . has two distinct C-factorizations.

— The language C={a? ab,b*} is a finite precircular biprefix code, but
®ab® has two C-factorizations.

— The language C={a,ab,b*} is a finite precircular ‘®-code which
satisfies the fourth condition, but ®ab® has two C-factorizations.
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— The language C={ab,ba} is a finite biprefix code which satisfies the
fourth condition, but “(ab)® has two C-factorizations.

Remark: In theorem 5.7, the property (4) cannot be replaced by the
property (4'):
@) Vs, t, s, t', s, t"e¢A™ such that st, 5'¢, st’, 'eC, C*NtC*s,
C*N ' C*s", C*N ' C*s'£(H, one has "=t and 5" =s".

Example 5.4: The language C={a, aba®b,a* bc,c*} is a precircular suffix
@-code which does not satisfy the property (4): “(a? b) c¢® has two C-factoriza-
tions but C satisfies the property (4') since:

— C*NtC*s# ¥ and ste C implies (s, £) e { (¢, ¢), (ab, a* b), (aba, ab) }
— steC and se{c,ab,aba} implies (s, )€ { (c, ¢), (ab, a* b), (aba, ab) }.
Using an automaton, in the rational case, theorem 5.7 and theo-

rem 4.8 may be improved. In the following, Q, is an unambiguous auto-
maton such as considered in the beginning of the section 5. Let us denote

by: C, . the set of words which can be read on Q, from g to ¢', T, , the
set C*NC,,,.C*.Cp o» M, the set °CN°C.C, ., M, the set

C*NC, 4 C°.

In theorem 5.7 the condition (4) may be replaced by the next one:
Vg,9€00—{40:9r}> 9#9,f T, ,, T, , and T, , are not empty there exist
p, n>0, a primitive wordu and a conjugate v of u (v=u"u', u=u'u"") such
that T, ,=@")*, T, , cu*w and T, ,=(@")".

Another characterization for rational bio-code can be obtained from theo-
rem 4.8. This gives a decidability result.

THEOREM 5.8: Let C be a rational precircular code = A" and Q, an
unambiguous automaton recognizing C such as considered before. The precircu-
lar code C is a bio-code if and only if for every qe Qo~{qo,qr} such that
M, .M, #J, M, and M, are monogeneous.

Proof: From the characterization 4.8, one can see that the condition is
sufficient.

Conversely, consider sy, s€ C, ,, t€C, ,. such that M, M, and M, (.
From the characterization 4.5, M,,=“u, M;="u and then M ;=%u. Then

M, =°u and M;=u".
COROLLARY 5.9: One can decide whether a rational language is a biw-code.

Proof. One can decide whether a rational language is a precircular code {6]
and whether a rational w-language L is monogeneous (consider an ultimately
periodic word uv®” € L, verify if uv® is periodic and check the equality L= uv®).
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