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FINITARY CODES FOR BIINFINITE WORDS (*)

by J. DEVOLDER (*) and E. TIMMERMAN (2)

Abstract. - The aim of decoding, or factorizing in a single way, biinfinite words with a finitary
language leads to define, according to the définition of factor izations, two distinct notions of finitary
codes for biinfinite words we call "bi<ü-codes" and "Z-codes". These codes are respectively close
to the precircular codes and to the circular codes. The notion of bm-code is weaker but seems to
be more suitable for biinfinite words. Indeed, bi(ù-codes are characterized using coding morphisms,
as are usual codes and codes for infinité words. Z-codes are rather codes for Z-words. The
relationships between all these finitary codes are studied, and characteristic properties of bi(£t-codes
and Z-codes are given.

Résumé. - Le décodage ou la factorisation unique de mots biinfinis à l'aide d'un langage finitaire
conduit à définir deux notions différentes de code finitaire pour les mots biinfinis selon la définition
des factorisations. Nous appelons ces codes «biiù-codes» et «Z-codes». Ces codes sont respective-
ment proches des codes précirculaires et des codes circulaires. La notion de bia-code, moins
restrictive, semble mieux appropriée aux mots biinfinis. On peut en effet la caractériser à l'aide de
morphismes de codage comme le sont les codes usuels et les codes pour les mots infinis. Les
Z-codes sont quant à eux mieux adaptés au codage des Z-mots. Les relations entre tous ces codes
finitaires sont étudiées, et des propriétés caractéristiques des bi(ù-codes et des Z-codes sont montrées.

INTRODUCTION

The notion of "code language" means a single factorization, whenever it
exists, of each word using words of the considered language. This notion has
been very studied in the domain of finite words and finitary languages (sets
of finite words).

If one deals with infinité or biinfinite words, two distinct approachs may
be used: the first one is to consider finite factorizations (finite séquences of
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3 6 4 J. DEVOLDER, E. TIMMERMAN

words) using finite, infinité and biinfinite words (as done by Do Long Van
et al., [10]), and the second one is to consider infinité factorizations only
using finite words. That leads to the notion of finitary code for infinité (resp.
biinfinite) words. This second way has been used by Staiger for the study of
the "ifl-codes" (codes for infinité words) that we call "co-codes". In this
paper, following this way, we are interested in the study of finitary codes for
binfinite words.

Given a finitary language C, the first point is to define a factorization of
a biinfinite words w by C (we say a C-factorization of w). For finite or
infinité words, two equivalent définitions may be given:

1. A C-factorization of w is a séquence of words of C, the concaténation
of them giving w,

2. A C-factorization of w is an increasing séquence of integers indicating
letters positions where w is eut by words of C, the concaténation of them
giving w.

The fact that a biinfinite word is an equivalent class of Z-words (mappings
from Z, the set of relative integers, into a finite alphabet) implies that these
two définitions are no more equivalent (since with the second définition one
has to choose a représentative of the biinfinite word). That leads to two
distinct notions of finitary code for biinfinite words: the "bico-codes" (the
weak notion, from définition 1) and the "Z-codes" (the strong notion, from
définition 2). The simplest example is the language C={aa) which is a
bia)-code but not a Z-code: the only biinfinite word to be factorized: V
has the siógle C-factorization (xi^aa)i€Z with définition 1, and the two
non-equivalent C-factorizations (2i)ieZ and (2z+l) i e Z with définition 2.
We call C-decompositions these C-factorizations with définition 2.

In the finitary case as well as for infinité words, the codes (and the
(o-codes) may be defined or characterized with coding morphisms. A coding
morphism is a bijection cp between an alphabet X and a language C, extended
to X* onto C* (and to X* onto Cœ), and the language is a code (resp. an
oo-code) iff 9 (so extended) is injective. This mapping cp can also be extended
to mXm onto ^C®, and then it comes that C is a bico-code iff cp is injective,
which indicates that this notion of bi-co codes seems to be the good one for
biinfinite words.

The notion of Z-code (implicitely contained in the works of Beal, Beau-
quier, Blanchard and Hansel, Restivo,...) is more restrictive. It is in fact the
suitable notion of finitary codes for Z-words.
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FINITARY CODES FOR BIINFINITE WORDS 365

These four classes of finitary codes: codes, o-codes, bio-codes and Z-codes
are defined in the fïrst section. They form a strict decreasing hierarchy. The
problem of deflning finitary codes for words in ^A00 (fïnite, left-infinite,
right-infinite, biinfinite words on A) is then solved: the notion of bico-code is
the good notion.

In the second part, we show how codes, precircuiar codes and circular
codes deal with biinfinite words. This leads to see that the notion of
bico-code does not coincide with some known code notion and that
bico-codes (resp. Z-codes) are particular precircuiar (resp. circular) codes.

In the third part, we give a characterization of Z-codes: we show that a
language is a Z-code iff it is a pure bico-code.

In the fourth section, we study bico-codes. Technical properties of
bico-codes and conditions for precircuiar codes to be bico-codes are given.

The rational case is studied in the last section. In this case, the notion of
circular code and the notion of Z-code coincide. The bito-codes are precircuiar
codes, but the converse is false, even in the fïnite case. A technical characteriz-
ation of bico-codes gives, as a conséquence, the decidability for testing whether
a rational language is a bi(o-code.

NOTATIONS AND BASIC DEFINITIONS

In the foliowing A is a fïnite alphabet, A* stands for the set of all (finite)
words over A9 A+ dénotes the language A*-z, where e is the empty word.
The length of the word u is denoted by \u\.

Two words x and x' are said to be conjugale if there exist u and v such
that x = uv and x' — vu, A word z e A + is primitive if z = un implies n = 1. If
z~un with n>\9 z is said to be imprimitive. For every word xeA+ there
exists a unique primitive word ïx and an integer n for which x = (fx)n;

fx is referred to as the primitive root of x.

We shall also consider Am and aA which are the sets of right (resp. left)-
infmite words over A.

A (right) infinité word w = (wn)neM is said to be ultimately periodic if

3peN 3t>0 such that Vfc>0 (VnOf^n<t) wp+n+kt = wp + n. We dénote this
word by w0. . . wp^i(wp. . . wp+t^1)

(û. It is said to be periodic if p can chosen
equal to 0; that is to say w = (w0. . .w^J40.
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366 J. DEVOLDER, E. TIMMERMAN

Let Z dénote the set of relative integers, Ax stands for the set of
Z-sequences of éléments of A. The éléments of Az are called Z-words, Biinfi-
nite words [3, 18] over A are the équivalence classes for the shift relation
over Az:

, VneZ, wtt = vn

The biinfmite word defined by (w„)„eZ is written . . . w0 w1. . .
The set of biinfmite words over A is denoted by 'M0*.

A Z-word (resp. biinfmite word defined by) (w„)„eZ is said to be right-
ultimately periodic if 3/>eZ 3t>0 such that

We dénote such a biinfmite word by . . .wp_x(wp. . .Wp+t.J6*.

A left-ultimately periodic Z-word (resp. biinfmite word) is defined in an
analogous way.

A bi-ultimately periodic Z-word (resp. biinfinite word) is a Z-word (resp.
biinfinite word) which is both ieft-ultimately periodic and right-ultimately
periodic.

A Z-word (resp. biinfinite word defined by) (wn)neZ is said to be periodic
if 3*>0 such that VA: (Vn 0^n<i) wn+kt = wn. Such a biinfinite word is
written > ! . . .w,)0.

Given a language C <= A+ the submonoid generated by C is the language
C* = {vx. . .vn\n^0 vteC for l^i^n], C° stands for the set of infinité
words obtained by concaténation of an infinité séquence of words of C:
Cta= {vov1v2. . . \vteCfor z^O}. In a same way aC={ . . .v2v1v0\vieCfor
i^O} andœCf l={ . . .v_2v_1v0v1v2. . . \vteCïor ieZ}.

For U, F e / and U\ V er *A we define: UV'1^ {teA* \3ve Vtve U)
and y-1U' =

Given a language C <= A+ we shall often consider a bijection cp between
an alphabet X and the language C. This mapping can be extended to X* as
a morphism cpiJ^-^C*. This morphism is said to be a coding morphism
for C (even if it is not injective). The mapping cp can also be extended to
JT(9(z0z1 . . .) is the word <p(20)<P(*i)- • -X and also to T a n d "X™ in an
analogous manner. This extension is denoted also by cp.

Informatique théorique et Applications/Theoretical Informaties and Applications



FINITARY CODES FOR BIINFINITE WORDS 367

1. FACTORIZATIONS AND CODES FOR FINITE, INFINITE AND BIINFINITE WORDS.
DECOMPOSITIONS OF Z-WORDS. Z-CODES

In the sequel, C (the language C will be the "code") is always a subset
ofA + . That means that we consider only notions of code for which the codes
are constitued of finite words. Another notion of code for biinfinite words
has been defined by Do Long Van [9,10]; the codes used by Do Long Van
have always infinité and biinfinite words as éléments.

A. Codes for finite words: codes [4]

DÉFINITIONS AND RECALLS: For any word w in A + , (v0, . . . 9 u B - 1 ) is a

C-factorization of w if w ^ l , w = v0. . ,vn^1 and vteC for Q^i<n.

To have a factorization of w, it is equivalent to give a finite increasing
séquence of integers i0, iu . . ., in where 1 = i0 < ix < . . . < in = \ w | + 1. This
gives a C-factorization if vj=wij. . .wiU+1)_1 (denoted in the sequel by
w[ij,ij+1\) belongs to C for every ƒ Let (p: X* -+ A* by a coding morphism
for C, the set of C-factorizations of ueA* may be represented by cp"1 (w).

A language C c= A+ is said to be a code if every word in C+ has a unique
C-factorization. In other terms: a language C is a code if and only if

(1) Vu,veC uC*DvC*^0 => u = v.

In terms of coding morphisms, we can say: C is a code iff cp:X* -^> A* is
injective.

B. Codes for infinité words: co-codes [20]

DÉFINITIONS: For any word w in Am, (v^)ieN is a C-factorization of w if
w = v0v1v2. . . and vteC for z^O.

To have a factorization of w, it is equivalent to give a strictly increasing
infinité séquence of integers io,il9 . . . , / „ , . . . where ÏO = 1. This gives a
C-factorization if vj = w[ipij+1[ belongs to C for every y'^0. The set of
C-factorizations of a word weA& may be represented by cp ~1 (w), if
cp : X® -• C° dénotes a coding morphism for C.

A language C <= A+ is said to be an (ù-code if every word in C0 has
a unique C-factorization. In other terms: a language C is an (ö-code if and
only if

(1') M
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368 J. DEVOLDER, E. TIMMERMAN

This définition can be expressed in terms of morphisms: let cp be any coding
morphism for C, C is an <o-code if and only if cp : X° -> C is injective.

C. Codes for biinfinite words: bioo-codes [8]

We are going to propose a coding theory for biinfinite words. Of course,
a code for biinfinite words (we say a biœ-code) is a ianguage C for which
every biinfinite word has at most one C-factorization. A problem appears when
we have to say what means "has at most one C-factorization". We suggest
the following définition for a C-factorization, and according with this défini-
tion we obtain the notion of bi(ù-code.

DÉFINITIONS: We define C-factorizations on ^A™ as the équivalence classes
for the shift relation over Cz:

(Onez-(<4)«ez *> 3/?eZ, VneZ, cn = dn+p.

The séquence (cf)ieZ represents a C-factorization of we®A01 if w is obtained
by concaténation of the cn : w = . . .c^1coc1. . .

A Ianguage C c i + is said to be a bm-code if every word in "C™ has a
unique C-factorization.

This définition can be expressed in terms of morphisms: let cp be any coding
morphism for C. There exists a bijection between the set of all the
C-factorizations and T . In the sequel, when necessary, we shall dénote a
C-factorization by a word of ̂ A™.

A Ianguage C is a bm-code if and only if cp : mX* -> ̂ C® is injective. The
unique C-factorization of we^C® is then represented by cp"1 (w).

Clearly the notion of bicô-code cannot be put on an analogous form to (1)
and (lf).

Remark: Let w, veA + . If the primitive roots of u and v are conjugate, the
words u and v cannot belong to a same bico-code: for example, the code
{ ab, ba } is not a bio-code.

Examples 1.1:

— The singleton { u } is a bico-code if w/e.

— The languages { a2 }, {a, bab }, { ba3, ba2 ba, a2 ba2} are fini te bico-codes.

— For every n, the Ianguage { bn } U ob {a2 b)* is an infinité bico-code.

DÉFINITION: We call C-factorization of a Z-word u every C-factorization of
the class of u in mAm,

Informatique théorique et Applications/Theoretical Informaties and Applications



FINÎTARY CODES FOR BIINFINITE WORDS 369

A C-factorization of a biinfmite word w can be expressed in terms of
indices. This supposes that a représentative of w:(wi)ieZ has been chosen.
To have a factorisation of w (or equivalently of (wt)ieZ), one can give a
strictly increasing biinfînite séquence of ùitegers..., z_25 i~u *0' h>— This
gives a C-factorization if Vj~w[ipij+i[ belongs to C for every 7. To avoid
the problems due to the shift on the indices of the séquence (in)n 6 z> one can
impose iog;0 and /_ t <0. But one can see (example 1.2) that uniqueness of
the C-factorization of w does not correspond to uniqueness of such an
increasing séquence.

Example 1.2: Let C={aa), the word V has a single {aa}-factorization:
ad> = a(aa)m.

But one can see that:

(where a{ — a for every ƒ). The single {^aj-factorization of tV> gives two ways
to factorize its représentative.

So, for a given factorization of a Z-word (resp. a biinfînite word) w,
one can sometimes consider several ways to factorize w (resp. any of its
représentatives). We shalî give another notion of code for biinfînite words,
the notion of Z-code, stronger than the previous notion of bico-code, this
other notion requiring a single way for factorizing Z-words.

D. Décompositions of Z-words. Notion of Z-code

The notion of décomposition over Az is defined to count the different ways
to factorize a Z-word by a given C-factorization of this word.

DÉFINITIONS: A décomposition over Az is a strictly increasing séquence
of relative integers: (dn)tteZ such that do^0 and Ó L : < 0 , Let us dénote
by D the set of decompositons over Az, A décomposition d=(dn)neZ is a

C-decomposition of the Z-word u — (ui)ieZ if for every keZ u[dk, dh + l[eC.

A language C <= A+ is said to be a Z-code if every Z-word has at most one
C-decomposition {over Az).

This définition cannot be expressed immediately in terms of coding mor-
phisms. This will be done in the third section (theorem 3.5).

Remark; Any element w of a Z-code is primitive, otherwise uz has several
C-decompositions.

vol. 26, n° 4, 1992



370 J. DEVOLDER, E. TIMMERMAN

Examples 1.3:
— The singleton {u) is a Z-code for any primitive word w#e.
— The codes {a,bab}, {ba3,ba2ba,a2ba2} are not Z-codes (consider

représentatives of the words m(abf, "(ba3 ba2)<°).
— The language { bn } U ab (a2 b)* is a Z-code if and only if n = 1 (Every

word except bz has at most one C-decomposition).
Let us now study how Z-codes deal with biinfïnite words.

LEMMA 1.1: Let w, veAz be représentative of the same biinfinite word w,
and consider C a sub set of A +, The set of C-decompositions of u and the set
of C-decompositions of v have the same cardinality.

Proof: Since u~v there exists p satisfying vt = ui+p for all z'eZ (infïnitely
many p in the case of periodic words, a single p in the alternative case).
A bijection ƒ between the set of C-decompositions of u and the set of
C-decompositions of v can be defmed next way. Let us fix/? such that vt = ui+p

for all i'eZ. Consider a C-decomposition d of u. There exists a single k such
that dk.x<p^dk. Let d'n = dn+k-p for all «eZ.We setf(d) = d'. The séquence
d' is a C-decomposition of v9 and ƒ is a bijection.

COROLLARY 1.2: A language C c A+ is a Z-code if and only if for every
biinfinite word w, one of the représentative of w has at most one C-decom-
position.

Let us consider a Z-word w. To a C-decomposition d of w one can
naturally associate a C-factorization of w: it suffices to consider the class of
(w[dn, <4 + iDnez f° r the shift relation on n. In the following, we dénote by
xw (d) this C-factorization. It is clear that each C-factorization of w can be
obtained using this way and that two distinct C-factorizations of w corne
from two distinct C-decompositions of w (whereas the converse does not
hold: see example 1.2). So we have:

PROPOSITION 1.3: Any Z-code is a bm-code.

E. Relations between these codes

PROPOSITION 1.4: For a language C a A +, consider the properties: (a): the
language C is a Z-code, (b): the language C is a bi(ù-code, (c): the language C
is an (ù-code, (d); the language C is a code, One has: (a) => (b) => (c) => (d) and
the converse implications are f aise.

Proof: (a) => (b): Already seen.
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FINITARY CODES FOR BIINFINITE WORDS 371

(b) => (c): Let C be a bico-code.

The resuit is clear if C is a singleton.

If C has two éléments, the language C is a two-element code and then an
oo-code [12].

If C is not an œ-code but has at least three éléments, there exist
u0>u1,u2, . . .,vo,v1,v2> . . . eCsuch that uo^vo &nduou1u2. . .—vov1v2. . .;
Consider weC-{uo,vo). The word &wu0u1u2. . ,(^<ùwv0v1v2. . .) has two
distinct C-factorizations.

(c) => (d): Let C be an co-code and u,veC such that M C * H ^ C V 0 . Then
and u = v.

Examples 1.4:

— The singleton { aa } is a bico-code but not a Z-code.

— The language {ab, ba } is an co-code but not a bico-code

— The language { a, ab, b2} is a code but not an (o-code.

2. CHARACTERIZATIONS OF SOME SPECIAL CODES RELATED TO BIINFINITE
WORDS

In this part we précise how some special codes (codes, precircular codes,
circular codes) deal with biinfinite words and Z-words. The results are used
in the sequel.

A. Codes and biinfinite words

Let 9 : X* -> C* be a coding morphism for C. A C-factorization denoted
by ^ e T is said to be right (resp. left)-ultimately periodic if x is right (resp.
left)-ultimately periodic. It is periodic if x is periodic. Necessary and suffïcient
conditions for languages to be codes was already given by Devolder [6]:

PROPOSITION 2.1 [6]: Let C be a language c A +. The following conditions
are équivalent.

— The language C is a code,

— Every C-factorization of a periodic biinfinite word is periodic.

— Every C-factorization of a right-ultimately periodic biinfinite word is
right-ultimately periodic.

Let q> : X* -> C* be a coding morphism for a code C.

Ifxy^e^X™ is a C-factorization of a biinfinite word uvm (where v is assumed
to be a primitive word), the word <p (y) is a power of a conjugale of v.

vol. 26, n° 4, 1992



372 J. DEVOLDER, E. TIMMERMAN

(Of course, in the previous proposition, one can substitute left for right,
and Z-words for biinfinite words.)

COROLLARY 2.2: Let C be a code. A C-factorization is periodic if and only
if it factorizes a periodic word.

The result is false when C is not a code, A nonperiodic factorization can
factorize a periodic word. For example, V has a nonperiodic factorization
if C={a,a2}.

B. Precircular codes and biinfinite words

The notion of precircular codes has been defined to study the factorizations
of periodic biinfinite words [6]:

DÉFINITION: A language C a A + is said to be precircular if Vw, p^l,
VM0, . . .,*/„_!, v09 . . . ^ . J G C , V/, seA* such that vo = ts we have:

uo- • ."«-i = ^ i - - -vp-it => n^p and 3h9 Vi « r^+^modp-

In f act the precircular languages are codes [6]. Let us here recall some
other useful properties of precircular codes:

LEMMA 2 .3 : Let C be a language a A+ and cp : X* -• C* a coding morphism
for C. The language C is a precircular code if and only if

V x, y e X* cp (x) and 9 (y) conjugate => x and y conjugale.

PROPOSITION 2 .4 [6]: A language C cr A+ is a precircular code if and only
ifevery periodic word of™Am has at most one C-factorization.

COROLLARY 2 .5: Any bm-code is a precircular code.

Example 2 . 1 : Unfortunately a precircular code is not necessarily a
bico-code: The language {a2, ab, b2} is a precircular code but the word ^ab™
has two C-factorizations.

C. Circular codes and biinfinite words

Circular codes are particular cases of precircular codes. We recall here how
these codes deal with biinfinite words or Z-words.

DÉFINITIONS: A circular code [13] is a language C a A+ such that:

+ such that vo~ts
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FINITARY CODES FOR BIINFINÏTE WORDS 373

we have: (u0. . .un„1 = sv1. . .vp-x t=>n=p t=s and
A code Cis said to be pure if VueA+ V«è 1 (w"eC*=>weC*).
Let us recall some results used in the sequel.

LEMMA 2.6 [6]: A language C a A+ is a circular code if and only if C is a
pure precircular code.

LEMMA 2.7 [6]: Let C be a precircular code <=. A + and cp : X* -> C* a coding
morphism for C. If ^yxz™ (y, z primitive words) is a C-factorization of a word
^uwv™ («, v primitive words), then every C-factorization of a word belonging to
"uA* v& belongs to "y

LEMMA 2,8: Let q>:X* ^> C* be a coding morphism for a code C. The code
C is a pure code if and only if

Vy e X*, y primitive => (p (y) primitive.

Proof If C is a pure code, let us consider yeX+ such that <p(y) is
imprimitive. One has (p(y) = wn for some u and n>\, Since uneC+, ueC+

and w = cp(z) for some zeX+. Since cp(zw) = w" and the language C is a code,
y = zn. Thus y is imprimitive,

Conversely, if uneC+ (n> 1), ̂ " = 9(7) for some y e X+. The word 9(7) is
imprimitive so y = zp for some p>\ and z primitive. The word cp(z) is
primitive and (p(z)p = wn, so w is a power qf cp(z) and weC+ since cp(z)eC+.

In order to obtain a comparison between Z-codes and circular code?, we
prove that the notion of circular codes can be characterized by uniqueness
of the décomposition of bi-ultimately periodic Z-words. Notice the analogy
between the next proposition and proposition 2.4.

PROPOSITION 2.9: Let C be a language <^A + . The next properties are
equivalent.

1. The language C is a circular code.

2. Every periodic 7L-word has at most one C-decomposition.

3. Every bi-ultimately periodic Z-word has at most one C-decomposition.

Proof: 3 => 2: Obvious.

2=> 1: If C is not a circular code, there exists ueC+ such that the circular
condition is not satisfied. The représentatives of the word V has two distinct
C-decompositions.

1=>3: Consider two C-decompositions of a représentative of the word
Since C is a code, the associated C-factorizations are bi-ultimately
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periodic. Let cp : X-> C be a coding morphisrn for C, and ^xyz™ (x, z primitive)
be one of these factorizations. Since C is precircular, the other factorization
can be written (ùxy1 z™ (lemma 2.7). Since C is a pure code, (p (x) is a primitive
word and then cannot overlap; the same holds for (p(z). So the
C-decompositions coincide on the left and on the right. Then y and y1 can
be chosen such that q>(y) = 9(^1), and y — yx since C is a code. The two
factorizations and moreover the two décompositions are in fact the same
one.

CoROLLARY 2.10: Any Z-code is a circular code,

Unfortunately this condition is not sufficient to have a Z-code (see
example 2.2). However the converse of the corollary 2.10 will be proved in
the rational case (see fifth section).

Example 2.2: The language C={ab] U {ab"abn + 1 \n>0) is a circular
code but the word °*(ab) ab2 ab3 ab4. . . has two C-factorizations and thus its
représentatives have two C-decompositions.

3. CHARACTERIZATIONS OF Z-CODES

First we give a simple characterization of Z-codes, which has an immédiate
conséquence in the rational case.

PROPOSITION 3.1: Let C be a language a A +, C is a Z-code if and only if

COROLLARY 3.2: One can décide whether a rational language C a A + is a
Z-code.

Proof: Since if A and B are rational infinitary languages, AB'1 is a rational
fïnitary language, one has only to check whether the rational language:

In the sequel we précise the relation between the notions of bio-code and
Z-code. In this aim, let us consider for weAz the surjective mapping xw

(already considered in proposition 1.3) which associâtes to a C-decomposi-
tion d of w the C-factorization represented by (w[dn,dn+1[)nçZ. Of course, a
bi(ù-code is a Z-code if and only if for every weAz, TW is an injective mapping.

DÉFINITION: A C-factorization c of weAz is said to overlap (or to be an
overlapping factorization) if T" 1 (C) has at least two éléments.
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Of course, C is a Z-code if and only if C is a bico-code such that no
C-factorization overlaps.

Example 3 .1 : For the single {aa}-factorization c of w — az
9 x " 1 ^ ) has

two éléments: (2n)nçZ and (2H + l ) n e Z .

LEMMA 3.3: An overlapping factorization factorizes a periodic biinfïnite
word.

Proof: Let d, d' be two distinct C-decomposition of a Z-word w, associated
to the same C-factorization c : xw (d) = xw (d') = c. Let (ck)k e z be a représenta-
tive of c\ there exist p, q such that for every k-

It is clear that dp = dq implies d=d'.

Then

COCX. . . =^d(p)Wd(p)+l' * * =Wd' (q)Wd'(q) + l- • •

and

. . . C _ 2 C _ 1 = . . 'Wd(p)-2Wd(p)-l= • • 'Wd'(q)-2Wd'(q)-l>

with dp^d'q. So the word w has the period w[dp,d'q[ if dp<d'q and w[rf̂ ,

Examples 3.2: The factorizations m{ab)m and '"(ró, <z)m are periodic factoriza-
tions and do not overlap.

The factorizations ^{aaY and ̂ {àba^by* are periodic factorizations and
overlap.

The nonperiodic factorization of V : (Û1 " ' + x)n e Z overlaps.

As a conséquence of lemma 3.3 and proposition 2 . 1 , an overlapping
C-factorization is periodic whenever C is a code. The following lemma states
precisely the structure of an overlapping periodic factorization.

LEMMA 3.4: Consider a language C, a coding morphism for C cp : X* -> C*
a primitive word y of X* and the periodic C-factorization c = (ùy<ùe(ûXïù. The
factorization c overlaps if and only if<p(y) is imprimitive.

Proof: Let us consider w a représentative of °<p (y)™. Since c overlaps,
w has two distinct C-decompositions d and d'. We keep the notations
of the proof of lemma 3.3. Since c is periodic there exists h such that
dp^dq+h<dp+\ç(y)\ and moreover d'q+h^dp (otherwise d=dr). Then w,
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which has (p(j) as a period, has also the period w[dp>dq+h[ of length strictly
smaller than | <p (j>) |- So <p (y) is imprimitive.

Conversely, let us assume that q> (y) = un for some n ̂  1 and w e ̂ 4 +. Then
c factorizes any représentative w of V . We cousider a C-decomposition of
w:d, associated to c. Frotn the strictly increasing séquences: (di+p\u\)ieZ

(p — 0, . . ., n — 1), by shifting the indices, one can consider n C-decompositions
of w, associated to c. If c does not overlap, these decompositons coincide.
Then ueC+ and there exists zeX+ such that cp(z) = « et y = zn. Thus n-\
since j ; is primitive.

Now we give the main resuit of this part. This characterization of Z-code
is easier to use than the previous ones, since a likewise geometrie condition
is replaced by algebraic ones, One can appreciate this fact for instance in the
proof of proposition 4.2. In fact the theorem 3.5 can be expressed in terms
of coding morphism properties (use lemma 2.8 and the définition of a bico-
code),

THEOREM 3.5: Let C be a language cz A + , C is a Z-code if and only if C is
a pure bi(ù-code.

Proof A Z-code is a circular biœ-code and thus a pure bico-code.

Conversely, assuming C is a pure bioo-code, one has to show that no
C-factorization overlaps. From lemma 3.3, it suffices to consider the periodic
biinfinite words. The result is then an immédiate conséquence of coroi-
lary 2.5, lemma 2.6 and proposition 2.9 (indeed, C is a pure precircular
code and then a circular code),

As a conséquence of theorem 3.5, we shall see in proposition 4.2 that the
composition of Z-codes gives Z-codes.

4. PROPERTIES OF BI© CODES

In order to have a lot of examples of bico-codes, we study simple biœ-
codes and composition of bico-codes.

Barbin and Le Rest have studied the two-element codes [1]. As an applica-
tion, Devolder shows that [u,v) is a precircular code if and only if the
primitive roots of u and v are not conjugate [6], It is now easy to show the
same result for biœ-codes: [u,v} is a bico-code whenever it is a precircular
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code:

PROPOSITION 4 . 1 : Let C={u,v} be a two-word subset of A +. Let uo~ lu
and vo= fv. The language C is a bi(ù-code if and only if u0 and v0 are not
conjugate.

Proof The necessary condition is obvious.

Assume that u0 and v0 are not conjugate. Then C is a precircular code [6].
Let C0 = {u0,v0}. In ^C™ there is at most one word whose représentatives
have two distinct C0-decompositions [15, 1, 6]. It is the word "w0 where w is
the single imprimitive word in u0 v$ U UQ V0 (if exists). Since C is a precircular
code, the periodic word w / has a single C-factorization. So every word in
V has a single C-factorization.

PROPOSITION 4.2: Let C be a language <= X+ and <p:X* -> A* be a coding
morphism for a language D = cp (X) o A + .

If C and D are bm-codes (resp.: Z-codes), <p(C) is a bico-code (resp.:
Jj-codé). If(p(C) is a bm-code {resp.: Z-code) and cp bijective front C to (p(C),
C is a bi(ù-code (resp.; Z-code).

Proof One can consider a coding morphism *F : 7* -* X* forC. As 9 is
bijective from C to cp (C) in both cases, q> ° *F is a coding morphism for cp (C).
In the case of bico-codes, it remains to use the injective property of cp : X*° ->- Am

and Y : Y0 -+ T0 , or that of cp ° ̂ F : Y* -* A*. In the case of Z-codes, it remains
to prove the properties for pure codes. The result is easily obtained from the
characterization 2.8 of pure codes.

Remarks: If C or i) is not a bio-code, cp ( Q may or may not be a bi(û-
code.

— It is possible to have a bico-code cp (C) even if C is not a bitö-code when
cp : C -> cp (C) is not a bijection (In this case, D is not a code of course). For
example let us consider:

C={ab,ba}, D^{c,c2}, q>(fl) = c,

LEMMA 4 .3 : Let Y be an alphabet {finite or not) and P be a mapping from
Y to the set of natural numbers N. The language 7 p = {zp (2) | z e Y P (z) 7e 0 } w
a bico-code.

Proof: Two different words of Fp cannot overlap. And the periodic words
p ) o n e C-factorization.
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LEMMA 4.4: Let C be a bm-code and p be a mapping from C to N.

} is a bi<ù-code.

Proof — The code Cp is the result of the composition of Y$ and C.

Example 4.2: The set Cp may be a bioo-code even if C is not a biœ-code:

Since mabm has two C-factorizations, the code C—{a2,ab,b2} is not a

bico-code. Nevertheless {a2,(ab)2
ib

2} is a bico-code.

In the sequel we give some characterizations for bico-codes. Some properties
of biœ-codes have already been found: a bioo-code C is a precircular co-code,
and the mirror of C:~C is also an co-code (we shall say that C is an
lo-code). Unfortunately, these conditions are not sufficient to have a bico-
code, even if we consider a iïnite biprefix code:

Example 4.3: The language C= { aa, ab, bb } is such a code. The word ̂ att*
has two C-factorizations.

Examples 4.4: The sets of precircular codes, o-codes and "©-codes cannot
be compared.

— The language { ab, ba } is a nonprecircular (biprefix) co-code and is an
To-code

— The language { c, b2, eb } is a precircular lo-code, but is not an a)-code.

Characterization 4.5: Let C be a precircular code a A +. The language C is
a bi(ù-code if and only if C satisfies:

(2) Vs,teA+ such that steC and (mCHmCs).(CùntC*)*09

there exists ueA+ such that (TO r aCs) .(Cw ntC°) = V .
Notation: For convenience, in the following, we shall dénote by Ms the set

"C n aCs and by M's the set 0° D s C™ (when s e A+).

Proof: Let C be a bico-code, then C is a precircular code.

Consider veMs and weM't. The représentatives of the biinfmite word vw
have two different C-decompositions. The corresponding factorizations are
in fact the same one and the word is periodic. There exists u such that v = <au
and w = wtD. For every z/eMs, v'w is periodic and then v' = tùu. Thus Ms

 = <ùu
and in a same way M\ — um.

For the converse, if a Z-word x has two distinct C-decompositions, there
exist s and teA+ such that xeMs.M't, Then x is periodic. Since C is a
precircular code, by proposition 2.4, x has only one C-factorization.
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Remark: In this characterization:
— one cannot omit the condition (2): see example 4.3.
— one cannot replace the condition "precircular code" by "almost circular

code" (the définition of almost circular codes is given just after): see
example 4.5.

Example 4.5: The language C=:{ab,c,bca} is an almost circular non-
precircular code (so C is not a biœ-code) and we have: Ma —

 a(bca) and
M'b = {bcaY, Mte^iabc) and M'a = {abcY and Mb = »(cab) and M'ca = (cabY.

In order to weaken the condition (2) in the previous characterization we
need the notion of almost circular code defined by Leconte.

DÉFINITION 4.1 [14]: A language C is said to be almost circular if it is a code
such that Vs, *#e such that steC, tC*sf\C* is empty or is a monogeneous
semigroup (i. e, of the form u+ for some u).

LEMMA 4.6 [6]: A precircular code is an almost circular code.

PROPOSITION 4.7: A code which satisfies
(2') VJ, teA + , if steC and Ms.M't^0 then Ms and M[ are monogeneous
(that is: there exist u, veA+ such that Ms

 = (Ou and Mf
t = vm) is an almost

circular code and satisfies (2).

Proof: Let us consider w0 and wetC*sC\C* (with s, teA+ and steC).
The words aw0 and raw belong to Ms. But M 5

 = Û>M, where u can be chosen
primitive. Then vt/0, w belong to w*. In a same way, w0, w belong to u* if
M\ — vm and v primitive. So u = v and tC*sC\ C* <= w*. As C is a code,
?C*5P|C* is monogeneous [6], So C is an almost circular code. Let us give
a définition useful in the sequel of the proof:

Let z be a C-factorization of a word uvweA™. We say that z define
the cutting diagram (vl9 . . .,vn) on the word v if 3p^0 3n^2 such that
u = cp (z t). . . (p (zp) M' (with M' #s),

Mi?<<p(z1). . .cp(z p + „) and 1; = ^ . . .x?B.

Note that

*>! = £ iff cp(z1). . .<p(zp + 1) = u

and

Ï;„ = 8 iff q>(z1)...q>(zp+B_1) = Mv.
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Consider now s, t, w, veA + suçh that steC, M^^u, M\ = vm, u and v
primitive. It remains to prove that u = v.

Let <p:X* -> C* be a coding morphism for C, Consider z (resp.zOe^10 a
C-factorisation of vm (resp. Z " 1 ^ ) . Since C is a code, by proposition 2 .1 ,
z and z' are ultimately periodic (z=z1z2,z ' = z/

1z'2
ai) and there exist x?lsUi

conjugate with u such that <p(z2) = v1, cp (z2) = v'"' for some w and ri. The
conjugate words v™' and z//1"' belong to C*. We consider the successive
occurrences of u"B' on which the cutting diagrams defined by z are the same
one: (e, . . ., s) and on which the cutting diagrams defined by z' are also the
same one: (t\ . . .,s').

So we have two cases:

First case: s' and / ' ^ s . the factorizations z and z' define (in their periodic
part) on the studied occurrences of XJ""' cutting diagrams such that s t' e C,
vT'eC*n?C*s\ auvmeMs..M't„ In the fïrst part of the proof we proved
that, in this case, Ms, = ®ul5 AfJ, = z?®. Then M = U. Second case: '̂ = e and then
s' = e. On all the studied occurrences of u"n', the cutting diagrams defined by
z and z' are identical. Then we study what happens with a C-factorization y
of &u and a C-factorization y' of töw5~1, and we conclude if we are in the
analogous first case. If we are in the analogous second case, we have for
some z3, Z3, y3, y'3:z = z3z^, z'^z^ with cp(z3) = *cp (z3) and 7 = ^ 2 ^
y = tD^2y3 with cp(^3) = cp(y3)1y. As 5?eC and C is a code, we obtain a
contradiction.

Remark: There exist almost circular codes which do not satisfy (2'). See
example 4 .3 : C = {aa9 ab, bb}, M'a = a*b™ + a0.

— The conditions (2) and (2') are not sufficient to have a code: For
example: C={a,a2} is not a code and nevertheless Ma-

ma, M'a^a&.

As an immédiate conséquence of proposition 4.7 and characterization 4.5
we have:

THEOREM 4.8; A precircular code C e A+ is a bi(ù~code if and only if C
satisfies:
(2') Vs, teA+ such that steC and Mg.M

f
t^0, the languages Ms and MJ

are monogeneous.

Remark: It is not diffïcult to see that if a code C satisfies the pro-
perty (2'), it satisfies also the property:
(3) Vs, t, t'eA+ such that steC, st'eC, Msi M't and M't^0, one has t~t'.
A n d thus a bico-code satisfies the property (3).
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But the condition (2') in the theorem 4.8 can be replaced neither by (3)
nor by
(4) V s, t e A+ such that steC and Ms.M't^0 the languages Ms and M\ are
singletons.

Example 4.6: The language

is a circular œ-code but not a bico-code.

. . . ac* ac3 ac2 acabab2 ab3 ab4... is the single word which has two C-
factorizations. So, every (Ms, M't) such that st e C, Ms and M\ # 0 is composed
of two singletons. The code C satisfies also the property (3).

5. Z-CODES AND BIco-CODES IN THE RATIONAL CASE. DECIDABILITY

When a language C is rational, one can consider an automaton
^ o = (Qos #o> QF) wïth a finite set of states Qo, a single initial state q0 and a
single final state qF, which recognizes C and such that no edge comes to q0

and no edge gœs from qF. Qo can be chosen trim (i. e, for every state q there
exist a path from q0 to q and a path from q to qF) and unambiguous (Ï. e,
the words of C have a single successful lecture). The automaton Q = (g, ̂ 0> ̂ 0)
obtained by identification of #0 and ^F recognizes C*. If C is a code,
the automaton Q is unambiguous [4]. This automaton looked as a Büchi
automaton recognizes ^C0. Let weAz. There is a bijection ƒ between
the set of successful lectures l = (qja),whqjii+1))ieZ of w on Q and the set
of C-decompositions of w: it suffïces to define f(l) = d where d satisfies:

We dénote by Aq% q. the set of words which can be read on Q from q to q\
and by B^, the set ^€ 0 .>4 f l 0 )^ when (q,q')ï(qo,qo)-

The next technical proposition will be used thoroughly in the following.

PROPOSITION 5.1: Let C be a rational language a A+ and Qo an unambi-
guous automaton recognizing C such as consider ed bef ore.

Let D be the set of finite words which have at least two C-factorizations.
Put X^CDC» and X2 = Utö(Bq^q,nC+).(Bq,,qnC+).(Bq,qnC+y (where

The language Y—Xx \JX2 is the set of words whose représentatives have several
C-decompositions. Y is a rational language.
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Proof: It is known that the language D is rational [4, 11, substraction
lemma]. A word of Xx has clearly two distinct C-factorizations. A représenta-
tive w of a word of X2 has two distinct successful lectures on O since q' # q0

or qi^q& then w have two distinct C-decompositions.

Conversely, if weAz has two distinct C-decompositions, w has two success-
ful lectures on Q (qj{i),whqjii + 1))ieZ and (qkii),wi9qkii+1))ieZ. Consider a

strictly increasing séquence (zp)pe2 such that qj^p) — q0 and define 1 (p) = k (ip).
Since Q is finite and the second lecture successful, there exist q, q' e Q and a
strictly increasing séquence (ƒ>„)« ez such that q^p^q for n>0, qi{pn) = q' for
n<0 and V«3 / Ï qk{h) = q0 and i(pn)'^h<i(pn+1) (between the considered
crossings through # (resp. q') there is a crossing through q0). If ###0 or
q'^q0, weX2. If q=q' = q0, since the C-decompositions are distinct, weXx.

As a conséquence of the previous proposition, Beal's next result [2] is
obtained:

THEOREM 5.2: Let C be a rational language c A +, C is a Z-code if and
only if C is a circular code.

Proof The condition Y=0 is equivalent with Xx — 0 (that is D = 0) and
%2 = 0 ( tnat isVq^q0 BqtqC\C+ = 0); the condition F= 0 is then equiva-
lent with "C is a circular code".

When C is a nonrational language, this condition is not sufficient to have
a biœ-code. See example 2.2.

Corollary 3.2 gives a method to décide whether a rational language is a
circular code.

In the case of infinité words, it suffices to study the rational infinité words
to know whether a rational language is an ©-code [7]. In the case of
Z-words, from theorem 5.2 and proposition 2.9 we have an analogous resuit
for Z-codes. For bico-codes, this is also true:

PROPOSITION 5.3: A rational language C <= A+ is a bi(ù-code (resp: Z-code)
if and only if every bi-ultimately periodic biinfïnite word (resp: Z-word) has at
most one C-factorization (resp: C-decomposition).

Proof (for biœ-codes): Let us consider the set Y defined at propo-
sition 5.1. Let us dénote by Yx the set of words having at least two
distinct C-factorizations and Y2 the set of periodic words having a single C-
factorization and whose C-factorization overlaps. Clearly Y— Yx U Y2. Since
Y is rational, it is a finite union of sets "A^iC? [18]. If «M^C? is not
reduced to a single periodic word, there exists a rational nonperiodic word
in Y, and thus a rational word in Yx. Therefore, if every rational word has
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at most one C-factorization, Y= U auf. By hypothesis, Y= Y2 and Yx is
empty.

It is then clear that the following corollary holds:

COROLLARY 5.4: Let C be a rationa! bm-code a A + , the set X of biinfinite
words which représentatives have several C-decompositions is finite.

Another easy conséquence of proposition 5 .3 is:

COROLLARY 5.5: Let C be a rationa! language <zz A+, C is a bm-code (resp:
X-code) if and on!y ifall its finite subsets are bi(ü-codes (resp: circu!ar codes).

These properties 5.3 and 5.5 are false for a nonrational language (see
example 2.2).

The next lemma gives another property of bito-codes, that will be used in
the rational case:

LEMMA 5.6: A biiù-code C c A+ satisfies the property (4):
(4) Vs, t, s', t\ s", t"eA+ such that st, s't', st" and s"tfeC, C*C\tC*s,
C*nt"C*s" and C*Ot'C*s'ï0, one has t" = t, s" = s' and there exist
p>Q, a primitive word u, a conjugale v of u (v — u"u\ u = u'u") such that
c* n tc*s=(upy, c* n r e * / ' c M*M' and c* n f c*/

Proof: A bico-code C is an almost circular code and we have
C*PitC*s=(up)+ and C* H t'C*s' = (vn)+ for some primitive words u and
v and some integers p and n. Let us consider we C* C\ t" C* s". The représen-
tatives of ™uwvm have two distinct C-decompositions. Then muwv^ bas an
overlapping C-factorization and ^uwv* is periodic, hence v = u"u\ u = uu"
and w e u* «'. Since C is a precircular code, the proof of [6], lemma 5.2, gives
n=p.

Since C is a precircular code, mum has a unique C-factorization. Let
t~1ut=c1. . .cp where cp=st and q e C for every i. The C-factorization of
V is tt(cls . . ., cp)° and belongs to (a(cl. . . cp) c1. . . cp„ 1 st" C* s" t' C°, then
stft — cp=st and t = t". In a same way s" = s'.

A biœ-code must factorize in a single manner the periodic biinfinite words,
the right-infinite words, the left-infinite words and also the biultimately-
periodic biinfinite words. In the rational case, it turns out that these condi-
tions are shown to be sufficient:

THEOREM 5.7: A rational language C cz A+ is a bm-code if and only if C
satisfies the four next conditions:

— the language C is a precircuîar code
— the language C is an (o-code
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— the language C is an ~(ù-code

— the language C satisfies the proper'ty (4).

Proof: We have already seen the necessity of the four conditions
(corollary 2.5, proposition 1.3, and lemma 5.6).

Conversely, it is sufficient to prove that every rational word has at most
one C-factorization* Let us assume that a représentative r of the rational
word muwvm (u and v primitive) has two C-decompositions dv and d2 and
consider a coding morphism q>: X* -> C* for C.

zr maps the two décompositions on two C-factorizations fx and f2. Since
C is a code, ft = ̂ yxz™ for some primitive words y, z e X+. Since C is a
precircular code, f2 =

 myx'zm for some x ' e F (lemma 2.7).
Look at the décompositions d1 and d2. Two cases can happen:
— the décompositions d1 and d2 eut the word r at (at least) a same point

(dx (Z) O d2 (Z) / 0 ) , then d1 — d2 since C is both an "©-code and an œ-code.
— the décompositions dx and d2 coïncide nowhere on the word r. Since

f^^yxz™ and f2
 = &yx'z™, one can obtain s, t, s\ t'eA+ such that 5/eCand

q> (j) e C* H ^ C* 5 (s,t^s since ^ and t/2 coincide nowhere), / /' e C and
(p(z)eC* O '̂ C*^'. Since ^ and <i2 décompose the same word, one can
obtain s"9 t"eA+ such that sf'eC, t" s'eC and C* C\t"C*s"ï0 and the
word ouwv* belongs to "(CTVC**) ( C * n ï " C * O (C* O t'C*sT' The
fourth condition implies that the word ^uwv® is periodic. Therefore, since C
is a precircular code, ^ / ( ^ Y ) has a single C-factorization. Note that
this factorization is <ajö>.

The theorem 5.7 is false for a nonrational language.
No condition can be suppressed in the theorem 5.7, even in the finite case.

Examples 5.3:
— The language C={abab) U {abnabn+1 \n>0} is a precircular suffix

©-code which satisfies the property (4). Indeed for all s,t9s',t'9s'\t"eA +

such that st, s''t', st" and s"feC, and C*DtC*s, C*r\t"C*s" and
C* O t' C* s' ̂  0 , one has

s = s' = s" = t=t' = t" = ab and C* H t C* s = (abab) +.

But the word ^(ab) ab2 ab3 ab*. . . has two distinct C-factorizations.
— The language C=z{a2,ab,b2} is a finite precircular biprefix code, but

^ab™ has two C-factorizations.

— The language C={a,ab,b2} is a finite precircular 7ö-code which
satisfies the fourth condition, but mabm has two C-factorizations.
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- The language C={ab,ba) is a fini te biprefix code which satisfies the
fourth condition, but ^(aby has two C-factorizations.

Remark: In theorem 5.7, the property (4) cannot be replaced by the
property (4'):
(4') Vs, t, s\ t\ s", t"eA+ such that st, s't', st", r'eC, C*ntC*s,
C* O /" C* s", C* H f C* s' & 0 , one has t" = * and 5" = / .

Example 5.4: The language C={a,aba2b,a2bc,c2} is a precircular suffix
o-code which does not satisfy the property (4): m(a2 b) d* has two C-factoriza-
tions but C satisfies the property (4') since:

- C* O t C* s # 0 and st e C implies (j, /) e {(cs c), (aè, a2 ft), (afta, aft) }

- 5?G C and 5 G { c, aft, aèa } implies (s, t)e{ (c, c), (aft, a2 ft), (afta, aft) }.
Using an automaton, in the rational case, theorem 5.7 and theo-

rem 4.8 may be improved. In the following, Qo is an unambiguous auto-
maton such as considered in the beginning of the section 5. Let us dénote
by: Cqt q, the set of words which can be read on Qo from q to q\ Tq q> the
set C + n C M r C * . C , M , Mq the set T n ö C . C Ï M 5 M'q the set

In theorem 5.7 the condition (4) may be replaced by the next one:
V?, ?/eöo"{^o»9F}> Q^q'* i f Tqtq9 Tqq, and Tq%q, are not empty there exist
p9 n>0, a primitive wordw and a conjugate v of u (v = u"u\ u^u'u") such
that Tqt9 = (u?)+

9 Tq>q, e W*M' and r , ^ , = (ü") + .
Another characterization for rational bicö-code can be obtained from theo-

rem 4.8. This gives a decidability result.

THEOREM 5.8: Let C be a rational precircular code c A+ and Qo an
unambiguous automaton recognizing C such as considered bef ore. The precircu-
lar code C is a bi(o-code if and only if for every qeQ0~ {#O?#F}

 sucn tnat

Mq. M'q # 0 , Mq and M'q are monogeneous.

Proof: From the characterization 4.8, one can see that the condition is
sufficient.

Conversely, consider s0, seCq0)q, teCqqF such that Ms0, Ms and A
From the characterization 4.5, Ms0 =

 mu, Mf
t = ̂ u and then Ms =

 mu. Then

CoROLLARY 5. 9*. One can décide whether a rational language is a bi(ù-code.

Proof: One can décide whether a rational language is a precircular code [6]
and whether a rational co-language L is monogeneous (consider an ultimately
periodic word uvm e L, verify if uv& is periodic and check the equality L = uvm).
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