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ENUMERATION OF BORDERED WORDS
LE LANGAGE DE LA VACHE-QUI-RIT (*) (*)

by M. REGNIER (3)

Communicated by Jean BERSTEL

Abstract. — We consider here the family of bordered words on a g-ary alphabet, 1.e. the words
bwb. We also consider the k-bordered words. We enumerate such words, using generating functions
and combinatorics on words, and derive asymptotic estimates by the Darboux method. In particular,
we prove that the density of k-bordered words is o, a,#0.

Résumeé. — Nous considérons la famille des mots avec bord (i.e. de la forme bwb) sur un alphabet
a q lettres, et plus généralement des mots a k bords imbriqués. Nous énumérons ces mots a l'aide
de fonctions génératrices et de combinatoire des mots, et obtenons des résultats asymptotiques par
la méthode de Darboux. En particulier nous prouvons que la densité des mots a k bords est un
nombre o, non nul.

1. INTRODUCTION

This note is devoted to bordered words on a g-ary alphabet 4, which are
to be counted. A 1-bordered word w is defined as a word: bw'b where b and
w' are in 4%, and b, the border, is non empty. For example, w=101.1.101.
One can define recursively the set B,,; of the k+ 1-bordered words: w is in
B, ., if wis in By, and if its largest border is in B,. For example, w is in B,
as b=101 is in B,. To count the words in sets B,, we make use of the
associated generating functions B, (z). The scheme is the following: we first
establish functional equations satisfied by the series B, (z). To do so, we need
a unique representation of the words in B,. Hence, we define a notion of k-
minimality. This part makes use of general theorems in combinatorics on

(*) Received March 1990, final version October 1991.

(*) This subtitle refers to the famous Rabier’s commercial drawing: a cow with two identical ©
“Vache-Qui-Rit” boxes as ear-rings. Inside each cheese box, a cow with two earrings...
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304 M. REGNIER

words. To get asymptotics for the coefficients, we do not need to solve the
functional equations. We study the singularities of B, (z), that appear to be
polar singularities. Then one can apply the Darboux theorem, and prove that
the number of k-bordered words of length n, %, satisfies b~ .g", where o
is computable, with any given precision, from the functional equation.

First, we list some general theorems in combinatorics to be used in the
following sections. Then, we introduce our techniques on the set B,. In the
following Section, we consider the more general and intricate case of the set
B,. Finally, we extend these methods and results to the general case of sets
B,. In the last section, we deal with the asymptotics of % and numerical
computations.

2. k--MINIMALITY

The aim of this section is to determine a unique representation of k-
bordered words. We first state our definition.

DermaTION 1: Let A be a g-ary alphabet. A word we A" is a 1-bordered
word if there exist two words be A* and xe A* such that:

w=bxb.

Then, b is a border of w.

A word we A" is a k-bordered word, k=2, if it is a 1-bordered word and if
its largest border is a (k— 1)-bordered word.

One notes B, the set of k-bordered words and S=A*— B, =B, the set of
unbordered words.

Remarks:

{i) The empty word and the words of length 1 are in S.

{11) This definition does not allow overlaps. Accordingly, 0101 is a side of
01010101 but 010101 is not.

Example: w=1011101 is a 1-bordered word on a binary alphabet. The
words b, =1 and b,= 101 are both borders of w.

We see on this example that a word in B, {more generally in B,) may have
several borders. In order to enumerate G,, we need a unigue representation of
words in B,. This problem of deciding a unique representation is fairly general
in combinatorics on words. Some interesting examples can be found in [CP,
Dar78, 0dI85] and [Lot83, ch.5]. Hence, we define below a k-minimality
notion in B,, i.e. a subset G, of B,_, such that any k-bordered word may
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ENUMERATION OF BORDERED WORDS 305

be written, in a unique manner:
b= g Wi,

which yields the functional equation on the corresponding generating
functions:

B, (2)=G,.(2®) W (2). )
Thus, the problem reduces to the enumeration of k-minimal words.

DEeFINITION 2: A bordered word x is said to be k-minimal if:
(i) xeB,
(i) w<x,w < x, weB,e>w=x

This subset of B, is noted G, .
Example: x=1001001€ B,. As 1001 £ x and 1001 <x, x¢ G,, but 1001 € G,.

Remark: A word in G, has no side in B, _;.

THEOREM 2. 1: Any k-bordered word b, in B, can be written, in a single way,
as:

b =g, wg
with g, € G,.

Proof: From Definition 2, any word x in B,_, contains exactly one side
in G,. Hence, if k=2, let b,_, be the largest border of b, and choose g, as
its only side in G,. Now, remark that the smallest border of a word is always
in S= B, and choose g, as its only side in its subset G,.

Our aim is now to enumerate the set G,. To do so, we need some
characterizations of the words g,. For a sake of clarity, we first consider the
case of 1-bordered words and 2-bordered words.

3.1 BORDERED WORDS

We show here that G, =S—{e}=B,—{¢e}, and then derive the generating
functions B, (z) and S(z). We need some basic results from combinatorics
on words.

Dermuarion 3: Two words u and v are said to be conjugate if there exist
words a, e€ A* such that: u= ae, v=-ea.
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306 M. REGNIER

From the Defect Theorem [Lot83, ch. 1], one easily deduces the conjugacy
theorem in [Lot83, ch. 1]:

THeOREM 3.1: Two words u and ve A* are conjugate iff there exists some
ze A* such that:

Zu=nz.
This equality holds iff there exist a, e€ A* such that:

v=ea, u=ae
zee(ae)*

The proof is given in [Lot83]. Now, we prove:

LemMA 3. 1: The set of O-minimal words is:
G, U{e}=s.
Moreover, a word in S cannot overlap with himself.

Proof: Let s be in S, and not 0-minimal. Let w be a word in S satisfying
w<s and w<s. Then, s=wu=ovw. From conjugacy theorem, this would

imply: s=ea.e.(ae)*, which is not in S. Hence, any word in S is 0-minimal.
Similarly, a word in S cannot overlap with himself, as it would also imply:
S=wu=ow.

As a corollary of Lemma 3.1, we get the functional equation:
B, (2)=[S(z)—1].W(2). 2

We use the methods developed in [GJ83] and [Fla84]. The concatenation
s.w' of two different words translates into the product of the generating
functions counting these words. The repetition of the word s is taken into
account by squaring z in the corresponding generating function S. Moreover,
we have exactly ¢" words of length n. Thus:

W)=Y qz"= 1

#20 1—gz '
As: B, (2)+ S(z)= W (z), Proposition 3.1 follows.
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ENUMERATION OF BORDERED WORDS 307

THEOREM 3.2: The series B, and S satisfy the functional equations:

S(Z)=2—S(22)
1—gz

BO=| (2 h@ ]
1—gz| 1—gz%

which yields:
S@-(+g2)=q(g~1) Y, (=1Yz*"" [T w(?).
i=0 i=0

Remark: Such an approach where combinatorial constructions translate
into functional properties of generating functions is quite powerful. A general
framework can be found in [Fla84]. An example, related to the analysis of
the Knuth-Morris-Pratt algorithm, can be found in [Rég89].

4.2 BORDERED WORDS

In this section, we generalize the scheme of the previous section. Our
characterization of G, will rely on the Lemmas of 1-factorization and 2-
factorization.

LemMmA 4.1 (1-factorization lemma): Let xez*, ze P, be a word in A*.
Then, if a word s€ S is a right (resp. left) factor of x, then s is a right (resp.
left) factor of z.

Proof: If s & z, then there exists o« € z (or z=Pa), o #¢ such that: s=a.z",
mz='1. Thus: s=o.(Bo)" ! B.a is not in S.

LeEmMA 4.2 (2-factorization lemma): Let g,=sas be a word in G,, and
x=wsasez*, with ze P. Then:

Z=usas

Example: Let us show what happens for a word in B,, but not in G,,
such as: 1.0100101. We have: s=1 and as=0100101e P. Let w=00. Then
x=wsas=00101.00101 and z=00101; here z+#as and sas ¢ z.

vol. 26, n® 4, 1992
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ProrosITION 4. 1: Let H, be the subset of B,:
H,={sas; seS, aseP}.
Then:
(@) G, H, =B,
(it) Any b, € B, can be written:

{ by=s(as)"
b

=sas.(usas)", usase P

where s and a are defined by: g(b,)=sas, and m=1.
Proof: (1) From Proposition 3.1, one can write g,=sas. If as¢ P, the 1-
factorization Lemma implies: g, =s(as)™, and g, is not minimal.

(ii) The proof of (ii) is deferred to the Appendix. It uses the 0-minimality
and 2-factorization lemma, whose proof is also in Appendix. Note that the
second form implies that b, is in B,, as sas.usas is.

We can turn now to the study of the generating function of 2-bordered
words. We prove:

PROPOSITION 4.2: Let G,(x,z2)= Y. x!*1Z%| pe the bivariate generat-
gp=sase Gy

ing function of the set G,. It satisfies the functional equation:
[S(zx)— 1= G, (zx,2)]. W (2)= G, (x, 2) + G, (x, 2%). ©))
Proof: We define a 3-variate generating function associated to H; — G,

(P(X,Z, t)=ZXIS|ZIGSIt|usas' lsaser 1usase}’

We shall write two equations in ¢ and G, and eliminate ¢ from them. We
have:

Y Xl l=[S(zx) — 11 W (2).
b1 eBy

by =sws

From Proposition 4. 1, this is also:

|s| mlast Ist las| . m}usas|
2 (Y xtigmiete 3 3 alviglelgninel)

g2€Gy mz=1 usase P mz1

=Y G,(x, 2"+ Y, ¢(x,z,z").

m=1 mz1

Informatique théorique et Applications/Theoretical Informatics and Applications
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Hence:

[SE)-1W@)= ) G,(x,z"+ ) ¢(x,2,2") O]

m=1 m21

To get the equation (5), we consider the words g, wg,=sas.w.sas€ B,. From
the 2-factorization lemma, we get:

Y sl e lvear= Y Ga(x, 2™+ Y 0 (x,2,17).

m=2 m21
Hence:

G, (xt,z) W)=Y G,(x,zt"™)+ Y o (x,z,1™). ©)

mz2 m=1
Eliminating ¢ from (4) and (5) yields G,.
Finally, unwinding (3), we get a closed formula for G,.

THEOREM 4. 1: The bivariate generating function of the set G, is:

am.q

G, (z,x)= Z (=)W (") Z [S(xz2"*m)—1]18(n)
where 0 (n) is defined, for a binary decomposition n=Y b,;2" as

o(m=[] w*.

b;j#0

Moreover:

B,(2)=G, (2, 2°) W(2).

5. PROPERTIES OF k-BORDERED WORDS

In this section, we extend the scheme of Section 4 to the general case of
k-bordered words. We first study the set G,, and prove a k-factorization
Lemma. Then, we associate to G, a k-variate generating function
G (t, .. ., t,). We prove that G, (¢, . . .,¢,) and G, (z) satisfy equations simi-
lar to (2) and (3).

We first derive some properties of G,.
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THEOREM 5.1: Let g, be in G,. It can be factorized as:

Sk =81 -PRip=...=g.pli=... =g, .p}

with g;€G,;, p;€ P. Moreover, this decomposition satisfies either one of the two
cases:

(i) Vi:0,=1 and g, < p;.
(i) 3'm such that g,, < p,, and g,,.p,€G;, m+1=j<k—1.
Then:

Pn=Pi=Pj+1= -+ - TDk-1
9, =2k"1"71-1

B, =251 0<I<k—1—j

Examples:
k=1:g,=s€ef.
k=2:g,=s.as, seS, aseP.

k=3:g,=s(as)® or sas.usas. We can rewrite:

{ sas .(as)?=s.(as)?

sas .usas=s.(asusas).

k=4:g,=s(as)” or s(as)®.ws(as)® or sasusas.wsasusas or sas.(usas)®> or
5. (asusas)®. We can rewrite, for example:

5. (asusas)® = sas . (usas . asusas . asusas) = sasusas . asasusasusas
We have: g,.p,€B,— B; and g,.p,, g5.p;€B;.
Proof: As g, € B,_,, its largest border b satisfies:
beB,_,cB,_j;c...cB.
Thus, there exists a sequence: g, _{, 8-, - - -»&; such that:

81<8:<. . <8y-2=<8k-1=<8k

81825 - E8-258k-1 58k
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ENUMERATION OF BORDERED WORDS 311

and we get the factorization. We then rely upon the overlapping lemma:

LEMMA 5.1 (k-overlapping theorem): Let g, be a word in G, and xe€z*,
ze P a word in L* such that:

& x=ygyeL*

Then: z=wg, or ze{py, .. ., Py-1}-

Our proof will make use of the following theorem, also a consequence of
[Lot83, ch.1].

THEOREM 5.2: Two words x, ye A commute iff they are power of the same
word. More precisely, the set of words commuting with a word xe A" is a
monoid generated by a single primitive word.

Proof of Lemma 5.1: We know from the non-overlapping property and 1-
factorization lemma that the property holds true for g, in G,. Assume now
that it holds true for G, . .., G,_,. If z#wg,, then z < g, and g, =e,.z" with
e, < z and p = 1. Noticing that:

— p+1__ ..t P —
8y-2=¢€,.2 =Y .€,.Z27=Y . &

we restrict the problem to x=2z. As non-overlapping property implies g, € x,
we may define i, 1Zi<k—1 by:

&EEX<girr
If i<k—1, we deduce from our equation:
xXcg = g=e.xP ecx
{ giagi=gi'x=gi+1égk = g=g- x"a, a<<x.
Moreover, we have
p2l (@sxESge—y) and m21 (as g S g1 =281 | =] &)
Then:

acx, xcxa or xa=ax with |a|=|a| and a<x.

xa=ax .
or, from Theorem 5.2: a=¢ and g, =g;.x? =g;.p¥, hence: x=p,.
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Now, if i=k—1, we may prove x=p,_;. If p,_; S x S g, the two equa-
tions yg, =g, x and g,=g,_, pf_, imply that:

x=Bpi 1, BEP-1E 8

Hence: B x=x B and by Theorem 5.2 on¢ has x=f§ which implies B=p, _, =x.
If x € pp_i E g, one has:

Pr—1=0x* oE X E g

As |x|+|gi-1]<|g| and |2g.-,|=|gc|. we get: p,_y x=xp,-, and again
X=Pr-1-

Continuation of the proof: As Theorem 5.2 and k-overlapping Lemma
imply that the largest bordet of g, (w; g, [=1 is g; (w; g)! 12, the expression
of 6; follows immediately, as well as the equation: p;=...=p,_, and the
expressions of 0, . . .,0,_;. Assume now that 6, > 1, with m’ #m. The reason-
1ng above applies, hence Do =Pi—1=p,. From 0,_, =2 T=2k=0" we get

=j'. Finally, g;=g,,. 0,y = &n - P, implies g,, =g, and m=m'.

We can now draw a scheme that generalizes the derivation of G, and G,
in the previous sections. We define some multivariate generating functions.
Y o (t1, oo St tinys ... 1) counts

H, ,={g.p:|8:€G, p;€P, g S pi» 8- P.:EB,~Bisy ).
And ¢, 441 (g, .. ot tigys - - o, 1) COUNLS
L= {gi~pi|giEGis Pi€P, g S Pu 8i-Pi€ By }

One has: {; ;=@; ;= @; j+y. Then:
K
Gi(ty, ..., 5)= Z i (g, - '5tk)+f({(pigj}l§j§k—1)‘
i=1

For any k, counting {g;wg;} and applying Theorem 5.1 yields k functional
equations. These equations involve: 2k unknown, but dependent, functions
(@i, x+ Disizk+1 and (U ) <<, One can derive (9; 441)1<izk+1 from these
equations and hence: ¥, =@, ,— @; .+, Finally, we get G,,,. We can also
relate these notations to the ones in the sections above. Notably:

04,1 (t1,1)=G, (15 1,).
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6. ASYMPTOTICS ON k-BORDERED WORDS

6.1 Asymptotic order

The equations derived in the previous sections are rather involved, and
cannot be solved explicitly. To derive asymptotics on the coefficients, we
study the singularities of the generating functions and use the Darboux
Theorem [Dar78)]. Examples of this approach are developed in [Ste84].

THeOoREM 6.1 (Darboux Theorem). Let f(z) be some complex function,
analytic for | z| < p, with a single singularity, z=p, on its circle of convergence.
If it can be continued as:

f(Z)=g(2)-<1— g)_s+h(z>

where g and h are analytic and s ranges in #—{0, =1, =2, ... }, then:

=[z" =p~" 8—1@ 1
fi=l2"1f(2y=p " "n F(s)<1+0<n>)‘

; has a unique singularity around z= -L Moreover,
—qz q

each B, (z) is the product of W (z) by a, possibly intricate, generating function
analytic around z=1/g (precisely, for |z|<1/¢*). This can be seen in
Equation(2) and is precised notably in (3).

In our case, W (z)=

THEOREM 6.2: Let B, (z)=) bkz" be the generating function of the k-
bordered words. Then:
by~oy g™

where: o, =G, (1/¢%, . . ., 1/g%).

Moreover,
1 1
e (10e()

Proof: We know that: W (z)= S(z)+ B, (z). Thus, S and B, are both defined
at least for |z|<1/q. Hence S(z?) is analytic for |z|<1/ \/q—, notably around
z=1/g. We may apply the Darboux theorem to equation (2). More generally,
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the definition of G, implies:
B, (2)=G, (2%, ...,2%). W(2).

A priori, G, (z, . . .,z) is analytic around z= 1/¢2. It allows for the application
of the Darboux theorem with s=1 and g(2)=G,(z%, . . .,z%).

To prove the second assertion, we just remark that the smallest word in
B,_, is d, ae A. It is associated to words a*.w.d* in B,, and 1 word out of
g%~ has this type.

6.2 Numerical Computation

Note that S(1/¢?) can be numerically computed from the sum in Theo-
rem 3.2,

1 (—yg ™
S@)=1+=+q(g—1 —
@=1+ 2@ D 2 T =P

The different values of a, for g=2, 3, 10 are given in Table I.

TABLE 1
q oy
2...... 0.732,2
3.0 0.443,0
10...... 0.110,0

Note that the convergence to 1/q is fast. As a matter of fact, |s(w)|=1
for one word out of ¢: whenever some character is a prefix and a suffix.
Moreover, |s(w) | =2 is associated to the configuration: ab<w, ab < w, a#b.

1\2 g—1 1
q(q—l).<~) = = (—)
q ' q
Now, Theorem 4.1 yields a closed formula for G, (x,z). Nevertheless, it
converges quite slowly for smallg. As a matter of fact, the first term is:
W (2)[S(zx)—1] that counts words sws, s#¢&. Now, for |s|=1 and w=s,

sws ¢ G,. This yields a (relative) error 1/g on the first term, which is also the
more important. Hence, it appears more efficient to compute o, from a

The contribution is
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truncation of the entire series G, (x, 2), i.e.

G, (x.y)=
QkX*Z+ (G (q — 1)kX k%2 + QR k2%kX — QkX)kZk*2 +
(= q*x+ gHk2%(q— D)kxdkk3 + qaok2%(q — 1) kxk k2 + @Rk 3kX)kzk k3 +
(—a*(q— 1)kxkk2 — 2k 2kX + Rk 2%(q ~ 1)*(qkx2 — 1)kx kx4 +
QR 3k(q — 1)kx*%3 + qk3%(q — 1)kx%k%2 + qk*k4%kX)*kz*k %4 +

(— Q**3%kX — K 2kX + K3k (q — D)k(qk %2 — 1)kxkokd + qkokdk(g— 1)kx0k*3 + qakSkx +
QRokdk(q — 1)kxkk2)kzk %5+ 0 (2% *6);

11
Gz(q—z, q—2>= 1/q#*3 + 1/q#%4 +2/q#k6 —2/qu*8 — 3/q** 10+ 2/qa*11+0 (1/qr*12);

which yields the table:

TABLE II
q Ay
2. ..., 0.209
3.0, 0.051,8
10. ... .. 0.001,1

For k=3, one can derive closed formulae similar to (3). Nevertheless, a
truncated development of G, provides again a good numerical approximation.
It is derived by a word enumeration based on Theorem 5. 1. Typically, words
g.=s.(as)? "1 are counted by G, (x,z2* ' ). A bound is available for other
words g;.p%:s(as), a#¢ occur 2~ ! times, while some u satisfying use,
usase P, occurs 272 times. Hence, the contribution is upper bounded by

1 1
Fﬁ_j‘_‘o ?

and this approximation seems good enough.

7. CONCLUSION

In this paper, we have considered the k-bordered words. In an algebraic
part, we use general results in combinatorics on words to define a unique
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representation of k-bordered words. In particular, we introduce and character-
ize minimal k-bordered words. Then, we show how these constructions
translate into functional equations satisfied by the associated generating
functions. Finally, we show that these equations need not to be solved (the
solutions are intricate) and get directly asymptotic estimates on the number
of k-bordered words. We prove that there are o, g" k-bordered words, or
equivalently, that the density of the family of k-bordered words is always
non-zero. The constant o, can be computed for any k from the functional
equation, and is explicitly given, for various g, when k=1, 2. Such methods
also apply to other combinatorial problems on words.
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APPENDIX

Proof of 2-factorization Lemma: 1-factorization lemma implies s € z. If
s=z, the non-overlapping property proved in 3.1 shows that aez* and the
minimality constraint on g, implies a=g¢, hence z=s=as. Now, the case
as < z < sas also implies an overlap for s. Finally, if s © z = as, the minimal-
ity constraint on g, implies as¢z*. Hence, depending whether z* < sas or
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sas < 72, there exists a factorization
as=uvz, Z= v, with uSs or sSu.

Again, u < s implies s=v u=tv', v" < v, which contradicts 0-minimality. Simi-
larly, v = s implies s=u"v=1t', ' < u which yields the same contradiction.
Then: u=bs and v=ds. Hence: sas=s.vuv=s.dsbsds=sds.b.sds which con-
tradicts the minimality assumption.

Proof of Proposition 4.1: We have already proved (i). Let h,=s5"d's". If
h, is not minimal, define g, =sas, g, <h, and g, < h,. If | s|#|s'|, the largest

of the two overlaps with himself, a contradiction. Again,

sas<sa's <> as<a's = as<d

when a#4’. Similarly, sa < a’ and we note: a' = asb= csa. Now, first:
|sb|<|sa| < sbcSsa <« sbca or b=a

If sb S a, we can factorize: a=dsb and we have: asb=csa=cs.dsb=csd . sb.

Hence:
{sdga} {sdsgasgsas}
= = d
ds<a sds<sa<sas

From this contradiction, it follows that:

a.

b=a.

Second, if |b|2]sal, then b=wsa and h,=sa’s=saswsas and we apply the
Lemma of 2-factorization. Now, let b, be in B,, not necessarily in H,. Then:

bi=s.ws=s.(a's)P= 5. (as)* if a'se(as)*
1 s.(as(usas)™)?=sas.xsas  otherwise

In the second case, b,=sasxsas. Applying 2-factorization Lemma yields
xsas=(usas)™.
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