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ENUMERATION OF BORDERED WORDS
LE LANGAGE DE LA VACHE-QUI-RIT (*) (*)

by M. RÉGNIER (2)

Communicated by Jean BERSTEL

Abstract. - We consider hère the family of bordered words on a q-ary alphabet, î. e. the words
bwb. We also consider the k-bordered words. We enumerate such words, using gênerating functions
and combinatorics on words, and dérive asymptotic estimâtes by the Darboux method. In particular,
we prove that the density of k-bordered words is <xk, a fc#0.

Résumé. - Nous considérons la famille des mots avec bord (i. e. de la forme bwb) sur un alphabet
à q lettres, et plus généralement des mots à k bords imbriqués. Nous énumérons ces mots à l'aide
de fonctions génératrices et de combinatoire des mots, et obtenons des résultats asymptotiques par
la méthode de Darboux. En particulier nous prouvons que la densité des mots à k bords est un
nombre oefc non nul.

1. INTRODUCTION

This note is devoted to bordered words on a q-ary alphabets, which are
to be counted. A 1-bordered word w is defined as a word: bw'b where b and
w' are in ^4*, and è, the border, is non empty. For example, w= 101.1.101.
One can defîne recursively the set Bk+1 of the fc+ 1-bordered words: w is in
Bk+l if w is in Bu and if its largest border is in Bk. For example, w is in B2

as è=101 is in Bx. To count the words in sets Bk, we make use of the
associated generating functions Bk(z). The scheme is the following: we first
establish functional équations satisfîed by the series Bk (z). To do so, we need
a unique représentation of the words in Bk. Hence, we defîne a notion of k~
minimality. This part makes use of gênerai theorems in combinatorics on

(*) Received March 1990, final version October 199L
C1) This subtitle refers to the famous Rabier's commercial drawing: a cow with two identical ©

"Vache-Qui-Rit" boxes as ear-rings. Inside each cheese box, a cow with two earrings...
This work was partially supported by the ESPRIT II Basic Research Actions Program of the

EC under contract No. 3075 (project ALCOM).
(2) I.N.R.I.A., 78153 Le Chesnay, France.
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304 M. RÉGNIER

words. To get asyrnptotics for the coefficients* we do not need to solve the
functional équations. We study the singuiarities of Bk{z)9 that appear to be
polar singularitïes. Then one can apply the Darboux theorem, and prove that
the number of fc-bordered words of length«, b% satisfies b*~tx,k-.q

n, where ak

is computable, with any given précision, from the funetîonal équation*
First, we list söiïie gênerai theorems in eombinatorics to be used in the

following sections. Then, we introducé our techniques on tbe set Bt. In the
following Section, we consider the more gênerai and întricate case of the set
B2. Finally, we extend these methods and results to the gênerai case of sets
Bk. In the last section, we deal with the asymptotics of &* and numerical
computations.

1. k MINIMALITY

The aim of this section is- to détermine a unique représentation of k-
bordered words> We first state our définition.

DÉFINITION 1; Let A be a q-ury alphabet. A word WBA+ is a X-borâered
word ifthere exist two words bsA* and xeA* such that:

w~bxb.

Wken, b ïs a border of w.
A word weA* is a k-bordered word, k^2, if it is a l-bordered word and if

îts largest border is a {k— lybordered word.
One notes Bk the set of k-bordered words and S=A* — B1~BQ the set of

unbôrdered words.
Remarks:
(i) The empty word and the words of length 1 are in 5,
(ii) This définition does not allow overlaps. Accordingly, 0101 is a side of

01010101 but 010101 is not.

Example: w—1011101 is a l-bordered word on a binary alphabet. The
words bx - 1 and b2 = 101 are both borders of w.

We see on this example that a word in B1 (more generally in Bk) rnay have
several borders. In order to enumerate Gk, we need a unique représentation of
words in Bk. This problem of deciding a unique représentation is fairly gênerai
în eombinatorics on words, Some interesting examples can be ibund ïn [CF,
Dar78, Odl85] and [Lot83, ch.5]. Hence, we define below a k-nûnimatity
notion in Bk, te. a subset Gk of Bk_1 such that any fe-bordered word may

Informatique théorique et Applications/Theoretical Infonnatïcs and Applications



ENUMERATION OF BORDERED WORDS 305

be written, in a unique manner:

which yields the functional équation on the corresponding generating
fonctions:

Bk(z) = Gk(z
2)W(z). (1)

Thus, the problem reduces to the enumeration of A:-minimal words.

DÉFINITION 2: A bordered word x is said to be k-minimal if:
(i) xeBk

(ii) w-<x, w £ x? weBkow — x

This subset of Bk is noted Gk + i.

Example: x= 1001001 eBv As 1001 g x and 1001 -<jt, x$G2, but 1001 eG2.
Remark: A word in Gk has no side in Bk-1.

THEOREM 2.1: Any k-bordered word bk in Bk can be written^ in a single way,
as:

withgkeGk.

Proof: From Définition 2, any word x in Bk_x contains exactly one side
in Gk. Hence, if k*§:2, let bk„x be the largest border of bk and choose gk as
its only side in Gk. Now, remark that the smallest border of a word is always
in S=B0 and choose g0 as its only side in its subset GA.

Our aim is now to enumerate the set Gk. To do so, we need some
characterizations of the words gk. For a sake of clarity, we first consider the
case of 1-bordered words and 2-bordered words.

3.1 BORDERED WORDS

We show here that G1 = S—{Z} = B0 — {E}, and then dérive the generating
functions Bx (z) and S(z), We need some basic results from combinatorics
on words.

DÉFINITION 3: Two words u and v are said to be conjugate if there exist
words a, eeA* such that: u = ae, v—ea.

vol. 26, n" 4, Ï992



306 M. RÉGNIER

From the Defect Theorem [Lot83, ch. 1], one easily deduces the conjugacy
theorem in [Lot83, ch. 1]:

THEOREM 3.1: Two words u and veA* are conjugale if f there exists some
zeA* such that.

zu—vz.

This equality holds iff there exist a, e e A* such that:

ƒ v ~ ea, u = ae
\ zee(ae)*

The proof is given in [Lot83]. Now, we prove:

LEMMA 3 .1 : The set of O-minimal words is:

Moreover, a word in S cannot overlap with himself

Proof: Let s be in 5, and not O-minimal. Let w be a word in S satisfying
and w ^ . Then, s=wu = vw. From conjugacy theorem, this would

imply: s = ea.e,(ae)*, which is not in S. Hence, any word in S is O-minimal.
Similarly, a word in S cannot overlap with himself, as it would also imply:
s—wu — vw.

As a corollary of Lemma 3.1, we get the functional équation:

(2)

We use the methods developed in [GJ83] and [Fla84]. The concaténation
s.w' of two different words translates into the product of the generating
functions counting these words. The répétition of the word s is taken into
account by squaringz in the corresponding generating function S. Moreover,
we have exactly qn words of lengthn. Thus:

As: Bx(z) + S(z)= W(z), Proposition 3.1 follows.

Informatique théorique et Applications/Theoretical Informaties and Applications



ENUMERATION OF BORDERED WORDS 307

THEOREM 3.2: The series B1 and S satisfy the functional équations:

s 2-S(z2)

1-qz

l-qz\_L-qz*

which yields:
oo j

S(z)-(l+qz) = q(q-l) £ (-l)Vi+1 Y\ W(z2).
j=0 i=0

Remark: Such an approach where combinatorial constructions translate
into functional properties of generating functions is quite powerfuL A gênerai
framework can be found in [Fla84]. An example, related to the analysis of
the Knuth-Morris-Pratt algorithm, can be found in [Rég89].

4 .2 BORDERED WORDS

In this section, we generalize the scheme of the previous section. Our
characterization of G2 will rely on the Lemmas of 1-factorization and 2-
factorization.

LEMMA 4.1 (1-factorization lemma): Let xez*, zeP, be a word in A*.
Then, if a word se S is a right {resp. left) factor of x, then s is a right {resp.
left) factor of z.

Proof: If s $ 2, then there exists a g z (or z = Pa), a^£ such that: .s=a.zm,
^ ' l . Thus: 5=a.(pa)m"1 p.a is not in S.

LEMMA 4 .2 (2-factorization lemma): Let g2
 = sas be a word in G2> and

x=wsasez*, with zsP. Then:

Example: Let us show what happens for a word in Bu but not in G2>
such as: 1.0100101. We have: s=\ and as=Q100\QleP. Let w = 00. Then

00101.00101 and z = 00101; hère z^as and sas $ z.

vol. 26, n0 4, 1992



308 M. RÉGNIER

PROPOSITION 4.1: Let Yix be the subset of Bx:

Hx = {sas; se S, aseP}.

Then:
(i) G2cz Hx<= Bx

(ii) Any bxeBx can be written:

bx=s{as)m

bx~ sas. {usas)m, usas e P

where s and a are defined by: g (bx) = sas, and m ̂  1.

Proof: (i) From Proposition 3.1, one can write g2 = sas. If as$P, the 1-
factorization Lemma implies: g2 = s (as)m, and g2 is not minimal.

(ii) The proof of (ii) is deferred to the Appendix. It uses the 0-minîmality
and 2-factorization lemma, whose proof is also in Appendix. Note that the
second form implies that bx is in B2y as sas .usas is.

We can turn now to the study of the generating function of 2-bordered
words. We prove:

PROPOSITION 4.2: Let G2(x,z) — £ ^ s t z^ a s ! be the bivarîate generat-
$2 —sas e Gi

ing function of the set G2. It satisfïes the functional équation:

[S{zx)-\-G2{zx,z2)].W{z)=zG2(x,z) + G2{x,z2y (3)

Proof: We deflne a 3-variate generating function associated to H1 — G2:

(Vï(y 7 A = V v' s I 7-J as I f\ usas I 1 1
\\>\A,,L, lJ Z^i lsaseG2 ^usaseP

We shall write two équations in q> and G2 and eliminate (p from them. We
have:

From Proposition 4.1, this is also:

y1 ( y1 x^*'zm'as' + y y x's^z^as'zm^usash
02 e ^2 n» ̂  1 usas e P m ̂  1

= X G2(x,zm)+ X (p(^z;2
m).

Informatique théorique et Applications/Theoretical Informaties and AppKcations
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Hence:

[S(zx)-l]W(z)= X G2{x,zm)+ Y <P0wm) (4)

To get the équation (5), we consider the words g2 wg2 — sas. w, sase B2. From
the 2-factorization lemma, we get:

Hence:

G2(xt,zt) W{f)- £ G2(x,z/m) + I (p(^*, O- (5)

Eliminating <p from (4) and (5) yields G2.
Finally, unwinding (3), we get a closed formula for G2.

THEOREM 4 .1 : The bivariate generating function of the set G2 is:

m=0 n=0

9(n) zs defïnedyfor a binary décomposition n^^^i^1 as:

i

0(«)= n ^(z2>)-

5. PROPERTIES OF Jt-BORDERED WORDS

In this section, we extend the scheme of Section 4 to the genera! case of
fc-bordered words. We first study the set Gk, and prove a fc-factorization
Lemma. Then, we associate to Gk a fc-variate generating function
^fc(^) • • >)h)' We prove that Gk(tk,.. ., t±) and Gk(z) satisfy équations simi-
lar to (2) and (3).

We fïrst dérive some properties of Gfc.

vol 26, n° 4, 1992



310 M. RÉGNIER

THEOREM 5.1: Let gk be in Gk, It can be factorized as:

gk=gk-i'P*k-£= * • • =gi-P$= • * • =gx-p\l

wit h g{ e Gt, pt e P. Moreover, this décomposition satisfîes either one of the two
cases:

(i) V ï : 9É = 1 andgi^Pi.

(ii) 3! m such that gm g pm andgm.pmeGp rn+\ ̂ j<k- 1.

Then:

Pm=Pj=Pj+i= • • • =Pk-l

Examples:

k = 2 : g2 = s. as, s e S, as e P.

k=3:g3 = s(as)3 or sas.usas. We can rewrite:

f sas. (as)2 — s. (as)3

\ sas. usas = s. (asusas).

k = 4:g4"s(as)7 or s (as)3. ws (as)3 or sasusas.wsasusas or sas. (usas)3 or
.s.(amsas)3. We can rewrite, for example:

s. (asusas)3 = sas. (usas. asusas. asusas) = sasusas. asasusasusas

We have: gx-Pi^B2-B3 and g2.p2, g3.p3eB3.

Proof: As gkeBk_t9 its largest border b satisfîes:

Thus, there exists a séquence: gk-u gk-2> • • ->

Informatique théorique et Applications/Theoretical Informaties and Applications
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and we get the factorization. We then rely upon the overlapping lemma:

LEMMA 5.1 (A;-overlapping theorem): Let gk be a word in Gk and xez*,
zeP a word in L* such that:

Then: z = wgkor ze{pu. . . ,/>*_!}.

Our proof will make use of the following theorem, also a conséquence of
[Lot83, ch. 1].

THEOREM 5.2: Two words x, yeA + commute iff they are power of the same
word. More precisely, the set of words commuting with a word xeA+ is a
monoid generaled by a single primitive word.

Proof of Lemma 5.1; We know from the non-overlapping property and 1-
factorization lemma that the property holds true for gx in Gx. Assume now
that it holds true for Gl9 . . >,Gk^1. If z^wgk, then z cz gk and gk = ez.z

p with
ez ü z and p^ 1. Noticing that:

gk.z = ez.z
p+1=y'.ez.z

p=y.gk,

we restrict the problem to x = z. As non-overlapping property implies gx ^ x,
we may define z5 1 <*i^k~ 1 by:

If i<k~ 1, we deduce from our équation:

* E g k => gk = e.xp, eax

gi gi+1gk k i a<x.

Moreover, we have

p^l ( a s x s g f t . j and m ^ l (asg£+1 ^ gk_1=>2\gi+1\^\gk\).

Then:

« e x , x ^ xa or xa=oix with | ot | = | a\ and a-<x.

Hence:

xa = ax

or, from Theorem 5.2: a = z and gk~gi-xp = gi.p
Q

i
i
y hence: x=pt.

vol. 26, n° 4, 1992



312 M. RÈGNÎËR

j if i=k- 1, we may provê x=pk.x. ï( pk-i Ê x g gk, thé two equa*
tions ygk^gkx and gk

i=gk-1pî-x imply that:

Hence: p x = x p and by Théorem 5.2 onê has x = p which implies (3 —pk^ ! — x.
If x g />fc_ i £ f̂c5 oüe has:

As fx| + |f t_ii<|ft | and l ^ ^ | = |£fc|, we gêt: ̂ - i ^ ^ x ^ . ! and again

Continuation of the proof: As Theoïrêm 5.2 and fe-overlappitig Lemma
imply that the lafgêst border öigt (wtg^, / S 1 is gt(w(g$il~ 1)/2]> the êxptessiön
of 9£ föllows iïîimédiâtêly, as wêll as thè équation: pj— . . -—pu^i &nd the
expfessiöfis of 6 ,̂ , , ft, @k_ t. Assume now that 0^,> 1 > with m'j^m. The reasôiï-
iiig above appÜes, hence Pm'-Pk-i-Pm- From 6k_1=

s2fc"-/==2fe"-/"> wé get
J-f- Fi*ially5 ^ - ^ . ^ ^ ^ . j ^ m implies gm~gm> and m^= w'.

We caft ÏÏÖW draw a scheme that genëfâlizès the dérivation of Ox and Gz

iîi thê previöus isêCtiöns. Wé dêfiiié some multîvariate getiêratittg functions,

Arid t | ) u + ! (/l5 , . ., tît îl+15..^ f») Counts

Orie hast ^ j ^ ^ / ^ c p ^ j + i , Then:

Föf any k, cöüiiting { gt wgt} and applying Théöfem 5.1 yields k functiönal
équations. These équations itivolve: 2k üükiiowti, büt dèpeüdént^ functiötis
(^i,*+i)isis*+i a i i d (^Oiiisik* Öne caii dérive (<Piift+i)isiéfc+i ^ r o m tHese
équations and hencé: tyi.k = <Pi,k*~$i,k+i'' Fitially, wé get Gk+V We can alsö
relate these ïiottóoiis to thé ones in the sections above. Notably:

Informatique théorique et Applicatioris/Thëorêticai Inforniatics and Applications
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6. ASYMPTOTICS ON fc-BORDERED WORDS

6 .1 Asymptotic order

The équations derived in the previous sections are rather involved, and
cannot be solved explicitly. To dérive asymptotics on the coefficients, we
study the singularities of the generating functions and use the Darboux
Theorem [Dar78]. Examples of this approach are developed in [Ste84].

THEOREM 6.1 (Darboux Theorem); Let f(z) be some complex function,
analytic for | z | < p, with a single singularity, z— p, on its circle of convergence,
Ifit can be continuée as:

where g and h are analytic and s ranges in M — {0, — 1, — 2, . , . }, then:

In our case, W{z) ~ has a unique singularity around z = ~~. Moreover>
l-qz q

each Bk(z) is the product of W{z) by a, possibly intricate, generating function
analytic around z=l/q (precisely, for |z |gl /#2) , This can be seen in
Equation (2) and is precised notably in (3).

THEOREM 6.2: Let Bk(z) — ̂ b^zn be the generating function of the k-
n

bordered words. Then:

where: <xk = G

Moreover,

Proof: We know that: W(z) == S(z) + Bx (z), Thus, S and Bx are both defmed
at least for | z | < l / ^ . Hence S(z2) is analytic for \z\<l//q9 notably around
z = l/q. We may apply the Darboux theorem to équation (2). More generally,

vol. 26, n° 4, 1992



314 M. RÉGNIER

the définition of Gk implies:

= Gk(z
2,...,z2).W(z).

A priori, Gk(z, . . . ,z) is analytic around z~ l/#2. It allows for the application
of the Darboux theorem with s— 1 and g(z) = Gk(z

2, . . .,z2).

To prove the second assertion, we just remark that the smallest word in
Bk_t is et, as A. It is associated to words et .w.ct in Bk, and 1 word out of
22*"1 has this type.

6.2 Numerîcal Compilation

Note that S(l/q2) can be numerically computed from the sum in Theo-
rem 3.2.

()

q

The different values of ax for q = 2, 3, 10 are given in Table I.

TABLE I

q

2
3

10

ai

0.732,2
0.443,0
0.110,0

Note that the convergence to l/q is fast. As a matter of fact, | J (W) | = 1

for one word out of q: whenever some character is a prefix and a suffix.
Moreover, | s(w) \ = 2 is associated to the configuration: ab<w, ab^w,

The contribution is

Nows Theorem 4.1 yields a closed formula for G2(x,z). Nevertheless, it
converges quite slowly for small#. As a matter of fact, the first term is:
W(z)[S(zx)~ 1] that counts words sws, s^e. Now, for \s\ = l and w = s,
sws$G2. This yields a (relative) error \/q on the first term, which is also the
more important. Hence, it appears more efficient to compute ot2 from a

Informatique théorique et Applications/Theoretical Informaties and Applications
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truncation of the entire series G2(x,z), i.e.

315

(-q*(q-l)*x**2-2*q**2*x + q**2*(q-l)*(q**2-l)*x**4 +

q**4*(q-l)*x**2)*z

G2( —, — j=l/q**3+l/q**4-h2/q**6-2/q**8-3/q**10 + 2/q**ll

which yields the table:

TABLE II

q

2
3

10

<*2

0.209
0.051,8
0,001,1

For A:g: 3, one can dérive closed formulae similar to (3). Nevertheless, a
truncated development of Gk provides again a good numerical approximation.
It is derived by a word enumeration based on Theorem 5.1. Typically, words
gk = s.(as)2k~l are counted by G2(x,z2k~x~1). A bound is available for other
words gi.pfy'.sias), a^e occur 2k~1 times, while some u satisfying
usas e P, occurs 2k~2 times. Hence, the contribution is upper bounded by

1

- \ 7
and this approximation seems good enough.

7. CONCLUSION

In this paper, we have considered the A>bordered words. In an algebraic
part, we use gênerai results in combinatorics on words to define a unique

vol. 26, n° 4, 1992



316 M. RÉGNIER

représentation of £>bordered words. In particular, we introducé and character-
ize minimal &-bordered words. Then, we show how these constructions
translate into functional équations satisfied by the associated generating
functions. Finally, we show that these équations need not to be solved (the
solutions are intricate) and get directly asymptotic estimâtes on the number
of A>bordered words. We prove that there are akq

n A>bordered words, or
equivalently, that the density of the family of £>bordered words is always
non-zero. The constant afc can be computed for any k from the functional
équation, and is explicitly given, for various q, when k — 1, 2. Such methods
also apply to other combinatorial problems on words.
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APPENDIX

Proof of 2-factorization Lemma: 1-factorization lemma implies s<=z. If
s — z^ the non-overlapping property proved in 3.1 shows that aez* and the
minimality constraint on g2 implies a = 8, hence z — s-as. Now, the case
as a z a sas also implies an overlap for s. Finally, if s a z <= as, the rninirnal-
ity constraint on g2 implies as£z*. Hence, depending whether z2 a sas or
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sas <= z1, there exists a factorization

as = vz, z~ uv, with u £ s or s ü u,

Again, u cz s implies s = v u= tv\ v <= v, which contradicts O-minimality. Simi-
larly, v <= s implies s^ufv = tu, u au which yields the same contradiction.
Then; u = bs and v = ds. Hence: sas = s .vuv — s. dsbsds— sds .b. sds which con-
tradicts the minimality assumption.

Proof of Proposition 4 .1 ; We have already proved (i). Let h^s'ds'. If
hx is not minimal, defîne gx —sas, gxOi1 andgx g h1. If | s | # | s ' |, the largest

of the two overiaps with himself, a contradiction. Again,

sas~<sa's o as-<a's => as-<a!

when a ̂  a'. Similarly, sa g a' and we note: a' — asb~csa. Now, first:

| sb | ̂  | sa | o sb <^sa o sb ^ a or 6 = a.

If sZ> g a, we can factorize: a — dsb and we have: asb = csa = es. dsb = csd. sb.
Hence:

sds Ç; as Ç: sas
J sds~<sa~<sas

From this contradiction, it follows that:

Second, if | 6 | ^ | j a | , then fe^w^a and hx = sa's = saswsas and we apply the
Lemma of 2-factorization. Now, let bx be in Bu not necessarily in H^ Then:

s. (as (usas)m)q = sas. xsas otherwise

In the second case, bi=sasxsas. Applying 2-factorization Lemma yields
xsas = {usas)m.
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