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TTL: A FORMALISM TO DESCRIBE LOCAL AND GLOBAL
PROPERTIES OF DISTRIBUTED SYSTEMS (*)

by A. Masini (1) and A. MAGGIoLo-ScHETTINI (1)

Abstract. — In this paper we develop a logic formalism to describe and prove properties of finite-
state distributed systems. This formalism is based on a branching time approach and is called
Typed Temporal Logic (TTL). For a distributed system D, we give two TTL theories, LTT,, and
LGTT,, (Local Time Theory and Local and Global Time Theory of D, respectively). The theory
LTT,, allows specifying distributed systems by local axioms, namely by properties that hold with
respect to local observations of system parts. The theory LGTT,, has a mechanism to infer global
properties of the system D from local properties. For both the theories we show that theorem
proving is reducible to model checking.

Résumé. ~ Dans ce travail on développe un formalisme logique qui permet de formuler et de
prouver des propriétés de systémes répartis a états finis. Ce formalisme se base sur la notion de
« branching time » et s’appelle Typed Temporal Logic (TTL). Pour un systéme réparti D on
introduit deux théories de TTL, c’est-a-dire LTT,, et LGTT, (Local Time Theory et Local and
Global Time Theory of D, respectivement). La théorie LTT, permet de spécifier des systémes
répartis par des axiomes locaux, c’est-a-dire propriétés qui sont vraies par rapport a des observations
locales de parties de systemes. La théorie LTT, posséde un mécanisme pour déduire des propriétés
globales du systéme D a partir de propriétés locales. Pour les deux théories on prouve que la notion
de démontrabilité est réductible a la notion de vérité dans un modéle.

INTRODUCTION

In the last 10 years a number of temporal logics has been proposed with the
aim of modeling and specifying concurrent and distributed systems (see €. g.
Ben-Ari, Pnueli and Manna[2], Clarke, Grumberg and Kurshan [4], Kroger
[15], Manna and Wolper [18], Nguyen, Demers, Gries -and Owicki [20]).

Using temporal logics seems to be quite natural if one wants to describe
behaviors which are strictly time dependent. In particular, branching time
logics are preferable when one needs to deal with.alternative computation
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116 A. MASINI, A. MAGGIOLO-SCHETTINI

paths (see Ben-Ari, Pnueli and Manna[2], Danelutto and Masini[6],
Emerson[8], Emerson and Clarke[9], Emerson and Halpern[l11], Emerson
and Lei[12], Lamport [16]).

Moreover, it has been observed that considering a system as a whole and
the time expressed by the alternation of system global configurations is not
very satisfactory when reasoning on distributed systems (see Degano,
De Nicola and Montanari[7] for an approach based on rewriting systems,
and Clarke, Long and McMillan [5], Enjalbert and Michel[14], Lodaya and
Thiagarajan [17] for a temporal logic approach).

We can think of a distributed system as composed of a finite set of
interacting parts, where each part is partially independent from the others
and the only dependences between parts are given by interactions. This
concept of a distributed system naturally leads to considering each part as
having a local time. As a consequence of this point of view, we introduce a
pure typed temporal logic (TTL) and, by using TTL, for any distributed
system D, we develop a theory LTT,, (Local Time Theory of D), where each
type is related to the time of a part of the considered distributed system. For
each type a visibility function specifies which informations are accessible to
the correspondent part for its advancement. In LTT,, we define the concept
of local state, which consists of the inner state of a part p plus portions of
the inner states of the other parts which are visible by p. The theory LTT,
has a set of local well formed formulas, called unitary local formulas, as
axioms. Such axioms specify, for each local state, the set of possible next
time local states (with respect to local times). In this way distributed systems
are formalized only by local properties (local axioms) that the single parts
must enjoy, without any global assumption.

In order to prove global properties of the whole system D, we define
another theory of TTL called LGTT,, (Local and Global Time Theory of D)
that is a conservative extension of LTT},. The theory LGTT,, has a new type
related to the global time of the system. In a way similar to the one followed
for LTT,, the concepts of global states and unitary global formulas are
defined (unitary global formulas specify, for each global state, the possible
next time global states). The idea of LGTT), is that unitary global formulas
are obtained from unitary local formulas. To this aim LGTT,, is equipped
with a set of multityped inference rules,

In order to show that LTT, and LGTT, are good formalizations of
distributed systems with respect to provability of properties, we define two
finite models, # ), for LTT,, and #; for LGTT,,. Provability in the theories
LTT, and LGTT,, is shown to be reducible to model checking in 4#,, and
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 117

H 5, respectively. As model checking in # |, and #°}, can be done in #-time
(see Danelutto and Masini [6]) we have 2-time decision algorithms for prova-
bility in LTT, and LGTT,. (As regards temporal model checking and decision
problem see e.g. Ben-Ari, Pnueli and Manna[2], Clarke, Emerson and
Sistla [3], Clarke, Grumberg and Kurshan [4], Clarke, Long and McMillan [5],
Danelutto and Masini[6], Emerson and Halpern[10], Emerson and Lei[12],
Emerson and Sistla [13]).

An early version of the theory LTT,, has been defined in Masini[19].

The paper is organized as follows: in section 1 we give the concepts of
distributed system, visibility and decomposition; in section2 we define the
formal system TTL giving its syntax and its semantics; in section3 we give
the theory LTT,; in section4 we give the theory LGTT); in appendix we
prove some model properties for LTT, and LGTT),.

1. DISTRIBUTED SYSTEMS

In this section we introduce a concept of distributed system inspired by
Wedde’s Interaction Systems (see[21]). Our intuition is that a distributed
system consists of a finite set of spatially distributed parts which may interact.
There is no centralized control. Each part consists of a finite set of activity
phases, and, at a certain time, a part may be in one and one only of its
phases, called current phase. A part passes from one phase to another
following an internal program, and compatibly with interactions with other
parts. More precisely, a distributed system (or briefly a system) is a
quintuple D={ 4, P, B, M, R, where:

A={ay, ..., am} is a finite nonempty set of activity phases (briefly phases),

P={p,, ..., p} is a partition of 4 with each p called part,

B={bm, e bpn} is such that each b, is a directed graph {(p,=)
where - Sp X p—id(p) and for each aep there exists a’#a s.t.a — a'; this
graph (or program) gives the allowed internal behavior of the part, such that
if a is the current phase of part p and p leavesa, then p may enter only a
phase a’ with a — a’ being an arc of the graph,

Mc A?—id(A) is a symmetric relation between phases such that VpeP
(p>—id(p))c M and if aep and a'ep’ with (g, a’)e M a cannot be current
phase of p if 4’ is current phase of p’, and symmetrically, and moreover if
a,d €M, acp, dep’, p#p’, ais the current phase of p whereas a’ is not the
current phase of p’, then p’ cannot enter 4’ while p has not left a (mutual
exclusion),
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118 A. MASINI, A. MAGGIOLO-SCHETTINI

Rc A% — U p?, is a symmetric relation between phases such that for aep,
peP

a'ep’ and (a, a)e R: (i) if a, @’ are current phases of p and p’, respectively, p
leaves a iff p’ leaves o', (ii) if a is the current phase of p then p cannot leave

phase a until p’ has not entered phase ¢’ and symmetrically (synchronization
relation).

The synchronization relation considered here corresponds to a synchronous
“send/receive”’. Excluding arcs a — a from behaviours of parts is due to the
fact that we want that a change of phase corresponds to each arc of the
graph.

We shall call 2 the class of Distributed Systems.

1.1. Example: In the figure 1 we show a graphic representation of a
distributed system. Single pointed arrows give programs of parts. Undirected
arcs between phases give the relation M, double undirected arcs between
phases give the relation R. Mutual exclusions between phases of the same
part are not shown. H

- G- —0 O

Figure 1.

As a distributed system is supposed to be without a centralized control,
each part must have no knowledge of other parts but for what is needed for
possible interactions.

We introduce now the concepts of visibility and decompositions. Given a
system D, for each phase a of a part p of D the visibility function gives the
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 119

set of parts which have knowledge of a, in the sense that such parts know
whether part p is currently in phase a or not.

1.2. DeriNiTiON (Visibility): For D={ A, P, B, M, R)e 9, the function
Vp: A - 2F such that, for pe P and ae€ A4, pe V} (a) iff either

(i) aep
or

(i1) 3d'(a, a)eR\UM and a'ep
is called visibility function. W

In ¥, we shall omit the subscript D when the considered system is clear
from the context.

1.3. Example: For the system in figure 1 we have: V(f)={p,, ps, P4} as
phase f belongs to p, and is in a relation (M or R) with the parts p; and p,,
V(i)={ps} as phase i is in no relation with phases of other parts. M

A decomposition of a system D with respect to a part p of D gives a
system consisting of p itself together with portions of other parts p’ containing
phases a such that pe V(a) plus “slack phases” * ., namely phases that stand
for all possible phases aep’ such that p¢ V'(a’). As we do not want that a
part has knowledge of programs of the interacting parts, we assume that in
the decomposition of D for p#p’ the behaviours allow all the possible
transitions between phases (but the ones from phases to themselves).

1.4. DerFINITION (Decomposition): For D={ A4, P, B, M, RY>e 9, we call
decomposition of D the function Decp:P— 2 such that, for peP,
Dec, (p)=(4’, P', B', M’', R" ) with:

P’={p}U{ﬁ':p'eP—{p}A§'={a’:a’ep'/\peV(a’)}U{*p,}},

A= U p,
p'eP
M= U (p?id(p)U{(ay, ay):(ay, a3)e M, aep},

p'eP
R'={(a;, a;):(a;, a})€R, a;ep},
Bl:{bp}U{b’:b,=<p,,p,2-id(p)> and pleP:_{p}}

where *, denotes the slack phase of part p.
The system Decy, (p) is called subsystem of D. Given a part p and

Dec,(p)=(4', P', B, M', R")

vol. 26, n°® 2, 1992



120 A. MASINI, A. MAGGIOLO-SCHETTINI

with Decp(p). A we denote A’, with Dec, (p). P we denote P, etc. In Dec,
-we shall omit the subscript D when the considered system is clear from the
context. W

1.5. Example: Let us consider the system of figure 1. Figure 2 shows the
subsystem Dec(p;). B

Figure 2

1.6. DermTion: Given D={ 4, P, B, M, R), a subset SS4 is called a
global configuration of D iff

1. Va,d'eS (a,a)¢ M,

2. VpeP|lpNS|=1.

If D is a subsystem of D', namely D belongs to the image of Dec,,, the
global configurations of D are called local configurations. M

1.7. Example: The sets {a, e, m, i}, {b, f, o, I} are global configurations
of the system in figure 1, whereas {b, f o} is not a global configration as it
does not contain any phase of part p,. H

2. THE SYSTEM TTL

In this section we introduce a typed pure logic called Typed Temporal
Logic (TTL). The idea of TTL is that of giving a typization of propositional
symbols plus an observation function in order to build and derive typed well
formed formulas.
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We assume the knowledge of some branching time logic. For its simplicity
we use the Unified system of Branching time(UB) described by Ben-Ari,
Pnueli and Manna in [2] (see also Emerson and Sistia[13]).

The language of UB contains the usual propositional connectives >, A,
v, 71, and temporal quantifiers AX, EX, AG, EG, AF, EF. The time is
assumed to be discrete. If o is a formula of UB, we have the following
informal meanings of temporal quantifiers: 4X o stands for “« is true in each
next time”, EX o for “o is true in some next time”, AGa for “a is true in
each state of every possible future”, EG o for “a is true in each state of some
possible future”, AFa for “a is true in some state of every possible future”,
EF« for “a is true in some state of some possible future”.

2.1. Syntax of TTL

Well formed formulas (wff)

Given TYP={¢,, ..., 1,}, a set of types, PROP={a,, ..., a,}, a set of
propositional symbols, 71, >, connectives, EX, EF, EG, temporal quantifiers,
O:PROP — 2™" an observation function, for each type t the set of well
formed formulas (wff) of type ¢ or wff; is defined as follows:

aewff, <

(i) ae PROP, 1€ O (o) (o is said to be an afomic wff,)
or

(i) xe{ 1B, B>y, EXB, EFB, EGB|B, yewff,}.
We shall use the following abbreviations:

anPB for (@), avP for TasP, 4Xa for TEX 1o, AFa for
T1EG 1o, AGao for TTEF .

Logical axioms and inference rules
For each type ¢ all UB axioms and inference rules are logical axioms and
inference rules of type t.

For example if teTYP, o, Bewff,, then AG(>B)>(AGa>AGP) is a
logical axiom of type ¢.

Mathematical axioms

For each type ¢ it is possible to add to TTL a set ¥, of wff, as axioms,
called mathematical axioms of typet.

Each ¥={¥,, ..., ¥,} defines a theory of TTL with ¥ as set of
mathematical axioms.
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122 A. MASINI, A. MAGGIOLO-SCHETTINI

A theory of TTL without mathematical axioms is called a pure calculus of
TTL.

TTL theorems

f¥Y={¥,,...,¥, }and te{s, ..., 1,}, we shall write ¥ha to mean

that o is a wff of type ¢ and a syntactic consequence of the formulas in ‘P,.
If ¥ is empty (i.e. each P, is empty) a is called theorem w.r.t. type t of TTL.
If T is a theory of TTL with ¥ as a set of mathematical axioms we shall use
also the notation T!: o as equivalent to W }; o; in this case we say that o is a

theorem w.r.t. type t of the theory 7. W
It is important to point out that 7 in the notation F cannot be omitted.
t

Actually, as we shall see in the next section, it will be possible to have two

different types ' and ¢, an n-tuple ¥ = {‘I’,l, Cees ‘P,"} of (consistent) mathe-

matical axioms and a wff a (of type ¢ and type ') s.t. Wta and ¥}«
t' t

(possibly also ‘Pt o).

2.2. Semantics of TTL
We call interpretation for TTL the n-tuple:

M= M,y . M

where for te{t,, ..., t,}, #,={ W, N, P, with:
W, a denumerable set whose elements are called worlds of type ¢,
N, S W? a successor relation of type f,

P, a function mapping the worlds of W, into sets of propositional symbols
of type t, i.e. P,: W, — 2FR% where PROP,={a:1€ 0 () }.
For each we W,, the sequence f,,={w; };<, with wo=w, ¥ j=0 (w;, w;,,)€N,
is said to be a w-path of type ¢.

Each #,, called a t-subinterpretation of ., defines an interpretation for
the sublogic of TTL obtained by considering only wif ot type t, W

2.3. DeFiNiTION: Let 4 ={ M,,, ..., M, ) be an interpretation, ¢ be a type,
M,={ W, N, P,>, we W, and a a wif of type . We say that « is true w.r.z.
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 123
type t at win #, and we write /4, wt: a, iff:
o is atomic and o e P,(w)
or a= 1P and not ., wI:B
ora=f>y and .4, wt:B:»ﬂ, wi:y
or a=FEXp and 3w’ (N,(w, w') and A, w’i:B)
ora=EGPand I f, VW (Wef, =4, w’l:ﬁ)
or a=FEFf and 3 f, 3w (W ef, and A, W"fﬁ Given a theory T of TTL

an interpretation # is a model iff for each teTYP and aewff,
TI-oc:VweW,/%,wt:a. ||
4

We shall write .#, w’?oc instead of not ./, w'l:oc.

2.4. DerFmiTiON: Let re TYP and ae wff,, a is said to be:

satisfiable w.r.t. type t if there is an interpretation .# and a world we W,s. t.
A, WEa,
t

true w.r.t. type t in an interpretation # if Ywe W, 4, Wt:oc (we shall
write A i:oc),

false w.r.t. type t in an interpretation 4 if Vwe W, /4, Wlfoc (we shall
write A f‘a),

valid w.r.t. type t if o is true w.r.t. type ¢ in each model .# (we shall write
Fa),
t

contradictory w.r.t. type t if o is false w.r.t. type ¢ in each model .Z. W

Each interpretation .# is a model of the pure calculus TTL as each
t-subinterpretation .#, of .# is a model of UB (see Ben-Ari, Pnueli and
Manna [2]).

Note that it is possible to have .# t: o and A lF TJafor t#1t" (an example of
this will be seen in 3.20).
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124 A. MASINI, A. MAGGIOLO-SCHETTINI

3. THEORIES OF TTL FOR DISTRIBUTED SYSTEMS WITH LOCAL TIMES

In the following we are interested to use TTL to formalize distributed
systems. To this aim, for each distributed system De 2 we add a (finite) set
¥, of suitable mathematical axioms to the pure calculus TTL. We shall call
LTT, (Local Time Theory of D) the resulting theory, which represents the
TTL formalization of the system D.

In order to obtain LTT, we must first give the TTL syntax for the

system D, namely we must give a specific set of types and propositional
symbols plus a specific observation function.

3.1. Syntax of LTT,

Given D={ A, P, B, M, R )€ 9, the syntax of LTT,, is the one given in
2.1 for TTL with a specific set of types TYP={1,:pe P}, a set of proposi-
tional symbols PROP= |J Dec(p). 4, and an observation function O, such

peP
that:

O, (@)=V(a) for aed
O,(x,)={p":p'eP, p#p’, *,eDec(p’). A} for *,ePROP-4,

where V is the visibility function of 1.2. W

We can observe that to each part p of D we associate a type ¢, and
consequently a set of well formed formulas wff, . Such formulas express
properties of the subsystem Dec (p), namely properties which are local proper-
ties of the system D.

3.2. Example: Let us consider the system D of example 1.1. To each part
we associate a type, namely TYP={1,, t,,, t,., £, }. For each type te TYP
we have a rule to build the set wff,; for example the following ones are wff

of type ¢,
a=AG(and),p=bre>AX(T1b="Tle) and y=AG(*,,ACAg)

as for each propositional symbol x in o, B, v we have that ¢, €O, (x). The
formula ¢ A f> EXb is not a wif of type ¢, because ¢, ¢ 0, (f). B

The rest of this section is devoted to give a proof system to establish which
of the wff, are theorems w.r.t. type ¢, i.e. which of the local properties given
by wff are really enjoyed by the subsystem Dec(p). We start with giving a
formahzatlon of the concept of local configuration.
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3.3. DerNiTioN: Given De 9, for pe P, let { iy s a,.k} be a local configur-
ation of Dec(p); the wif, a; A ... Aa, is called local state (of typet,). With
LS, we denote the set of local states of type z,, M

Given a local state S=a; A ... Aa, with abuse of notation we shall write
aeS(a¢S) to say that ae{aq,,, ..., a, }(@¢{ay, ..., a,}).
In order to completely formalize local configurations we state properties

of local states.

3.4. Axioms of Existence and Maximality of local states

Given De @, for each te TYP let LS,={S;, ..., S,} be the set of all the
local states of type t. We assume the following existence axiom:

Ex, AG(S,v ... VS).

For each Se€ LS, and for each propositional symbol ae wff, if a¢ S we assume
the following maximality axiom:

max, [S, a]. AG(S A a).

With Max, we denote the set of all the maximality axioms of type . W

3.5. Derinimion: For De @, te TYP and Ne{AX, EX, 114X, T1EX}, each
wif, of the kind S> NS’ where S, S"€LS,, is called unitary local formula (of
type #). With ULF, we denote the set of unitary local formulas of type . W

3.6. Example: With reference to the system of examples 1.1 and 1.5, the
following ones are unitary local formulas of type ¢, :

breng>EX(cAdA*,,),
a/\e/\*”DAX(a/\d/\*ps), cAdAgDEX(bAdA*,,).

As we shall see, not all of these wff,m are theorems (i.e. not all of these
wjf,p1 correspond to an effective one step behaviour of the system). The
formula bAeng>EXc is not a unitary local formula of type z,, as the
formula c is not a unitary local state. W

The idea of unitary local formulas is that of formalizing the one step
behaviours of the subsystems of D resulting by the decomposition function
Dec. To give a precise notion of such one step behaviours we equip the logic
with a set of axioms called Unitary Local Axioms. Each of these axioms has
the form S EXS' or S EXS'.
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126 A. MASINI, A. MAGGIOLO-SCHETTINI

A formula S EXS’ with §#S’ is a unitary local axiom if and only if the
changes respect the behaviour graph of the interested parts and agree with
the relations M and R. A formula S>EXS is a unitary local axiom if and
only if there is no S’ # S such that S> FXS’ is a unitary local axiom. Finally,
a formula S> T1EXS’ is a unitary local axiom if and only if S EXS’ is not
an axiom.

More precisely, we have the following definition.

3.7. DeriNiTioN: For De % and 1,e TYP (the type associated to partp), a
unitary local formula ueULF,p is a unitary local axiom (of type t,) iff:

(@) u=S>EXS’ and one of the two following conditions is satisfied:
1. (1) S#S5,

(ii) for each p’eDec(p).P, if a,, a,ep’, a;+#a,, a,€S, a,eS’, then
(a,, ay)eb’, where b’ is the behavior graph of p’,

(iii) if a, e p}, a,€p), Py #p5, pi, pr€Dec(p). P and (a,, a,)eDec(p). M,
then a,eS=a, ¢S,

(iv) if (a4, a,)eDec(p).R, a,, a,€ S, then a, ¢S <a, ¢S,

(v) if (ay, a,)eDec(p).R, a, €S, a,¢ S, then a, €S,

2. S=S" and for any other S #S the pair S, S” does not verify 1.

(b) u=S> T1EXS’ and conditions 1 and 2 for u'= S> EXS’ are not satisfied.
We call ULA,, the set of unitary local axioms of type z,. B

3.8. Example: Let us consider the system in figure 3.

imh=*

Figure 3

Let us consider the local states of type #,, anfAh, *, Agam, cAgAn,
bAfAn; the unitary local formulas of type ¢,, anfAhDEX (%, AgAm),
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 127

anfAahoEXcAgnan are local axioms of type ¢, , whereas

p2’

anfAahoEXanfAan

is not aULA, as condition 1-iv of definition 3.7 is not satisfied. W

3.9. Example: The system in figure 4 shows a situation in which we have an
axiom of the kind S EX S, namely aAnb>EXanb. W

_

Figure 4

3.10. DerFmniTioN: We call Local Time Theory of a system D, or LTT, the
theory of TTL with the syntax given by 3.1 and, for each type te TYP, Ex,,
Max, and ULA, as mathematical axioms. We call local theorems the theorems
of LTT,. M

We have seen that, for a system D and each type z,, the set wff,p corresponds
to the set of temporal formulas relative to the subsystem Dec (p); this means
that the well formed formulas of type ¢, do not refer to a global concept of
time but to a local one, i.e. to the time of the subsystem Dec (p). Therefore,
we have a way to deal with local times, and this justifies the choice of the
name LTT), for the theory.

3.11. Remark (On completeness of LTT,) : Completeness of LTT, (in the
sense of completeness theorem) follows immediately from the completeness
of UB; in fact, for each 1, TYP we have a theory of UB obtained by adding
a finite set of axioms, namely maximality, existence and unitary local axioms,
toUB. N

Now we have to show that the proposed theories LTT,, are adequate for
the formalization of distributed systems without any assumption of global
time. The first step in showing such an adequacy consists in proving that,
for a system D, LTT), is a consistent theory. By classical results on temporal
logics, it is sufficient to exhibit a model for LTT),,.
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3.12. DerINITION (Syntactic interpretation): Let De % and let LTT,, be the
corresponding theory with TYP={r, ..., t,,}. We call syntactic interpre-
tation for LTT, the structure #,={H#,, ..., #, ) with for teTYP,
#,={ WH,, NH,, PH, ), where:

WH, is LS,, the set of local states of type ¢,

(S, SYe NH,<>(S> EXS)eULA,,

PH,: WH, — 2°*°F with o€ PH,(S) =o€ S for Se WH,, ®

The syntactic interpretation J#,, is our candidate to be a model for LTT,,.

3.13. Tueorem: For each De D the syntactic interpretation H# [, is a model
for LTT),

Proof: 1t is sufficient to show that, for each type te TYP and for each
mathematical axiom o of type ¢, #p I: o. We have four cases:

1. «ae ULA, and aa=S> EX S'; then 57, I: a by construction;
2. aeULA, and =8> T EX S’
LTTDI;oc < LTTDIZ‘S:EXS' < (S, S)¢NH,
< (VS"(S, S")eNH, = %D,S"lf—lS’) <> ,}i”leSD—'IEXS';

3. ais Ex,, i.e. a=AG(S,; Vv ...V Sy; then
Jfbfoc = VSeSeWH,(JfD,Sl:Slv...vS,()
< VSeWH, (JKD,SI:SI or...orfD,SI:Sk),

that holds by construction;
4. o is max,[S, a], i.e. a=AGT1(SAa);
HpEAG (Sha)=V S e WH, # ), S’l:ﬁ (S A a); we have two cases:
t

(i) S=S, then s, S |t=ﬁ a(as a¢ S) and therefore s, S t:ﬂ (Sra),
(i) S#S', then #p, S’ F:—1 S and therefore #), S’ F:ﬁ (SAa). N1
From this theorem we have immediately the following corollary.

3.14. CoRrOLLARY: For each D€ D the theory LITy, is consistent. M

Now we can show that the syntactic interpretations is not merely a model
but the most general model.
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3.15. Tueorem: For each De@D, #y is the most general model, i.e. for
te TYP, aewif, and for each model M, H# I: o implies M E a.
t

Proof: See appendix. H

This theorem has some interesting consequences.

3.16 CoroLLARY: For each De @, te TYP and aewff,, LTT,, I; o iff #pEa.
t

Proof: From the completeness of LTT, we have LTT,F o iff Fa, and
t t
therefore the thesis follows immediately from theorem 3.15. W

This result states that the problem of theorem proving in LTT, can be
reduced to model checking on the model 5. Now it is already known that
the formal system UB is decidable, but this result is of purely theoretical
interest as the complexity of such a decision procedure belongs to &xp-time.
Now we can use a result of Danelutto and Masini [6], adapting it to the
typed case.

3.17. ProrosiTiON: For each De 9, te TYP and ae wif,, the model checking
procedure is in P-time, more precisely the procedure to check # l:: o is bounded

byO(#ax(#LS)*. N

By showing that theorem proving is reducible to model checking we have
given an alternative decision procedure for LTT,, which, moreover, is in
P-time.

3.18. CoROLLARY: For each D€, there is a polynomial-time bounded decision
algorithm for LTT,,. W

The last result for LTT, is given by the following proposition.

3.19. ProrosiTioN: For each De D, te TYP and acwif, at least one of the
Sfollowing assertions is true:

1. LTT, I; a,

2. LTIT, I: —1q,

3. there is a local state SeLS, s.t. LIT,+ S>a.
t

Proof: The proof follows immediately from the equivalence of truth in the
syntactic model 5, and provability in LTT,,. In 4, one of the following
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facts holds:
1. ois true w.r.t. ¢, i.e. #pEa, and therefore LTT, F o,
t t
2. ais false w.r.t. ¢, i.e. # pE 0, and therefore LTT,F— o,
t t

3. ais satisfiable w.r.t. ¢, i.e. there is a local state Ss.t. #), SF o, then
t

there is a local state S's.t. #,F S>a, and therefore there is a local state
Ss.t. LTTpFSoa. H
t

This proposition guarantees that our formalization is good, i.e. for each
type ¢ and for each assertion o formalizable within our system we can always
decide whether with respect to ¢ is valid or its negated is valid or there is a
local state S such that Soa is valid.

3.20. Example: Let us consider the system D in figure 5.

/a0
!
j
NG

1 l:,2

)

f

®4——+—O
o

G

o

Figure 5

Using 3.7 to build the set of unitary local axioms of type #, and t,, we
obtain the syntactic model # ,={ # tpy? %’,pz> with Jf,pl, Jf,pz as in figure 6.

For example in Jf,pl we have the arc (and, ba :tnm)eNH,p1 because:
(i) andand b *,, are local states of type 2, ,

(ii) (a, b) is an arc of b, eDecp(p,).B and (d, *,,) is an arc of
b,,eDec,(p,). B,

(iii) (a, d)ye Decp (p;)- R.

Now, by 3.7, we have that LTT, F and>EXb A *

py

and therefore, by

P2’

3.12, that (and, ba *pz)eNHtm.
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a rd and
b "*pz *PlA f ot d
"Ad\‘ "X W8
c"d an *pz ang
Htpl }{‘Pz

Figure 6

Using corollary 3.16 we have:
@) LTTDtI- andosAX (M a="d),
Py

@) LTT, '}::. anT1doAXa,
(i) LTT, 'tl —andoAXd,

@iv) LTT, ‘:1 CAADEF(bA *,).

From the previous facts we obtain # “;1 AG AF (a A d) and therefore by

corollary 3.16 LTT,, + AG AF(a A d). Now we can observe that
!pl
Hp E 1 AG AF(and) (or equivalently ¢, F EFEG— (a A d)),
U2 'pa

i.e. LTT, F —1 AG AF (a A d), that is we have exhibited a wff a=AG AF(a A d)
ol
2

such that a is a local theorem w.r.t. type ¢, and its negated — o is a local
theorem w.r.t. type 7,,. W

3.21. Example (About the meaning of relations R and M): Let us consider a
system D. The following ones are local theorems of LTT):

1. for each pair (a, &'ye R with aep and a'ep’,
@) LTT,Fanad 24X (a="14d),
lp'
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(i) LTTDJ‘ an—a>AXa,
»
@iii) LTT, t}- anaoAXda,
"

2. for each (a, a")e M with aep and o’ ep’,
@) LTTD‘I- AG—i(ana),
p

(ii) LTTDII-—I ana>AXa.
p

The proof of 1 is given by inspection of the syntactic model Ho, To prove
1(1) let us consider a generic world S of %,p s.t.a,a'eS (i.e. H, Stl= and)
P

and the set of all the worlds S’ s.t. (S, §)eNH,, (i.e. LTTDtI— S>> FEXS"). By
p
3.7, for such an S’, we have that a¢ S’ iff a'¢S", i.e. #, SEa="14d. In
p
such a way we have shown that for each word S,

H,SFana>AX(Ta="14d),ie #pFanad>AX(Ma="14d)
tp tp

and, by corollary 3.16, LTT,F and’ 24X a=—"1d/, that is our thesis.
tp

The proofs of 1 (ii) and 1 (iii) are analogous. To prove 2(i) it is sufficient to

observe that there is no local state S of type ¢, such that g, a’€ S, i.e. for

each world S, 57, S!: =1 (aAa’), and therefore #,F AG (ana’). The proof
P tp

of 2 (ii) is analogous to the proof of 2(i). M

Note that our formalization does not depend on any assumption on real
time, including an assumption of existence of clocks. Our idea is that the
time flow of each subsystem D’ is given by the execution of phase transitions
in the parts of D’. If D’ is in the current local configuration C, every parallel
execution of a nonempty set of possible phase transitions of D' with respect
to C gives a next time local configuration. In other words, the time flow for
the subsystem D’ is given by the changes of its local configurations. Such a
point of view agrees with the rules given to obtain the set of local axioms of
the kind S EXS” with S#S’. A problem arises from the fact that we admit
the existence of axioms of the kind S> EXS, i.e. we admit that there may
be no change in the current local state but the time runs. In order to clarify
this point we state the following proposition.

3.22. PropoSITION: For each type t and for each local state S of type t

LTT,+ SSEXS = LTT,tS>A4XS.
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Proof: It follows immediately from definition of ULA, If
LTT, F SoEXS, then for each other S’ not LTT, l;S > EX S’; this implies
t

that in ##, there is one and only one arc (S, S)eNH, and then
LTT,+S>A4XS. B
t

Using the previous proposition we can easily show that

LTT,+SSEXS < LTT,HS5AGS.

Therefore, we may conclude that the time flow of a subsystem of a
distributed system 1is given by the observable changes in its local
configurations; moreover, if no changes are possible from a given local
configuration C, then it is assumed that time runs whereas the subsystem is
blocked in C.

4. THEORIES OF TTL FOR DISTRIBUTED SYSTEMS WITH LOCAL AND GLOBAL
TIMES

Consider the system D in figure 7 and assume that a is the current phase
of part p,.

Figure 7

It is easy to see that there is only one global configuration containing
phase a, namely {aq, ¢, f, h} that is a deadlock global configuration, i.e. the
system may only remain forever in it. As a consequence we have that the
following assertion is true: if part p, is in the current phase a then p, will
remain in a forever (i.e. a is a deadlock phase for p,). On the other hand,
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we have LTT, + a> EF— a, namely w.r.t. LTT, a is not a deadlock phase

tpy
for p,. This is due to the fact that our formalization exploits only partial
(local) knowledge of the system. Now one may ask whether it is possible to
compose the local theorems of LTT, in order to establish that, globally,
phase a is a deadlock phase for part p,.

The general question is: “‘given De9, is it possible to extend LTT,, in
order to formalize the local behavior as well as the global one, and moreover
to obtain the global behavior by composition of the local ones?”’. This section
is devoted to give a positive answer to the question. As a result, for a system
D we shall have a new theory called LGTT,, (Local and Global Time Theory
of D) which is a conservative extension of LTT,, namely which contains
LTT,, plus a set of inference rules to compose local theorems in order to
obtain global ones.

Before introducing LGTT,, we want to make clear our idea of the time
flow for an entire system. As each subsystem is itself a distributed system,
we simply extend our point of view of time flow for subsystems to the whole
system, namely we assume that the (global) time flow of a system is given
by the observable changes in its global configurations. If no changes are
possible from a given global configuration C the (global) time runs indefi-
nitely whereas the system is blocked in C.

In the rest of this section we assume that the considered system D is a
quintuple ( 4, P, B, M, R).

4.1. Syntax of LGTT,

It is the syntax given in 2.1 for TTL with the following specific set of
types:

TYP={1,:peP}U{G},

where the types r# G are called local types and G is a distinguished type
called global type, the following set of propositional symbols: '

Prop= U Dec,(p). 4

peP
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and observation function O,g:

OLG(a)soL(a)U{G} for aeAd
O,6(%,)=0,(x,)  for x,ePROP-4,

where O, is the observation function for LTT,. R

All the features of LTT), are carried on to LGTT), i.e. LGTT), restricted
to the local types coincides with LTT,, namely, for each type ¢+#G,
LTT, }t-oc iff LGTT, It—oc. Moreover LGTT), is endowed with new mathe-
matical axioms and inference rules.

Following the approach of section 3, to type G we associate a set of wff
of type G, called global states, that correspond to global configurations.

4.2. DEFINITION (Global States): Given De 9, let {q;, ..., a; } be a global
configuration. The wff; a;, A ... Ag; is called a global state. We call GS the
set of all global states in LGTT,. ®&

Related to the concept of global state is the notion of projection.
4.3. DerFINITION: Given De 9, let Z=a,; A ... Aa, be a global state and let

t be a local type; with =, [X] (projection of T w.r.t. type f) we denote the local
state S of type ¢ where for each q;eX if 1€ Oy (a)) theng;eS. B

As done for the local case, we add a set of axioms to formalize the
properties enjoyed by global states.

4.4. Axioms of existence and maximality of global states

For De9 let GS={%,, ..., Z,} be the set of all global states.
We have the following existence axioms:

Ex;. AG(E,v...VE).

For each £eGS and for each propositional symbol aewff;, if a¢X we
assume the following maximality axiom:

max;[Z, a]. AG (Z ra).

With Max; we denote the set of all the maximality axioms of type G. W

In section 3, for each distributed system D we have introduced a set of
formulas called Unitary Local Formulas; a particular subset of them has
been taken as proper axioms of the theory LTT,. We have shown that these
local axioms are a sufficient base to formalize distributed systems from a
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local point of view. The question is whether there is a global correspondent
of unitary local axioms, i.e. a set of global formulas that may be chosen as
an adequate base for the global formalization of distributed systems. In [6]
Danelutto and Masini show how to build such a set of global formulas but
in a framework without any assumption of local times. Now the question is
whether such formulas may be obtained by composition of local formulas.
In a logical formal system a basic mechanism to compose formulas to obtain
other formulas is that of inference rules. In our specific case we have to
introduce some multityped inference rules (i.e. inference rules over formulas
of differents types) of the kind:

LGTT, | B,.. .LGTT, -,

LGTT, (I;cx
where the B,, ..., B, are local formulas. The intended meaning of such an
inference rule is that the global formula o is obtained by composition of the
local formulas 8,, ..., B,- We will show that, for our aims, it is sufficient to

restrict the multityped inference rules to unitary formulas.

4.5. DerFINITION: Let Ne{AX, EX, 1 AX, EX}; given De 9, each wif,
of the kind o> NX' ,with Z, ' e GS, is called unitary global formula. We call
UGF the set of unitary giobal formulas. W

4.6. DermiTiON: The function A : GS x GS — 2TYP defined as
A, 2)={t,:1,eTYP-{G}, 3d", a"s.t. a, a"ep, A €X,
a’e¥, d#a" and 1,€0p;(a’)\U O (a)}

is called type difference function of X and X'. W

Let us discuss the meaning of the type difference function; let us take two
global states Z=Z A Y, X'=Z' A Y, where ae Z and @' € Z’ implies that a#a’;
the extremal cases are given by Z=2Z'=, (i.e. 2=2%'), and Y=, (i.e. all
the atomic formulas in Z are different from the atomic formulas in £'). Note
that Z and Z' must have the same number of atomic formulas. Let us
consider an atomic formula ae Z, by definition of global state in Z’ there is
another atomic formula a’ s.t. a, a’ belong to the same part p. In such a case
we assert that the type #, belong to A(Z, Z’) as part p is interested into the
difference between Z and Z’. Now let us consider an atomic formula b€ Y,
s.t. b belongs to part g; in such a case we have that part ¢ is not directly
interested into the difference between X and Z' (b belongs to both X and L’).
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We would expect that type ¢, does not belong to A(Z, Z'), but, also in this
case, we admit that type ¢, belongs to A(X, ¥') if there is at least an atomic
formula ¢ in Z or Z' s.t. t,€ Op(c), i.e. in the case that part g is indirectly
interested into the difference between Z and Z'. Note that if Z=2%') ie.
Z=27'=, we have that A(Z, Z')=(F as there is no difference between
¥ and Z'.

The following example shows the construction of A in a concrete case.

4.7. Example: Let us suppose we have the system in figure 8.

o
[ ]
[ K¢ -0 w0 O

C

N

Figure 8

Let T=ancangamnag and Z'=badArhArmngq be two global states; by
applying the previous definition we have A(Z, )= {1,, 1,,, t,,, 1,, }; = and
%' have a subformula in common, i.e. Y=m A g, and two subformulas which
are different, i.,e. Z=aAncAgin X and Z'=bAadah in Z'. With respect to
the subformulas Z and Z' we have:

(i) a, bep, =1, eA(Z, X'),
(ii) ¢, dep,=1t,,eA(Z, T),
(i) g, heps=1,,€A(Z, ).

By definition we have also that type ¢,, belongs to A(Z, ') even though
part p, remains in the same phase m w.r.t. the global states £ and X'. This
happens because ¢,, € 016(g) U O (h), i.e. part p, is indirectly interested in
the difference between Z and Z'. On the other hand type ¢,, does not belong

to A(Z, ') as part ps; cannot observe any phase in the subformulas Z
and Z'. W

We give now the inference rules to compose local behaviours.
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4.8. Inference rules

Given De 2, let £ and X’ be two global states with £#3%’; the following
are inference rules of the theory LGTT);:

Rule XG1:

Vt, Va (1,6 TYP, aeZ, aep:LGTTDlF n,p[Z]:AXa)
p

LGTT, E IoEXZ.
Rule XG2:
Vi, (1,eA(Z,2) = LGTT, ll; n, [Z]>EXm, [X)
LGTT, E IoEX Y
Rule NXG1:

31,3a(t,eTYP, a€X, aep, LGTTDlHr,p[Z]DﬂAXa)
P

LGTT, 2> 1 EX T

Rule NXG2:

3¢, (1,€A(Z, Z)LGTT, Fm,, (21> 1 EXw, [£)
$

LGTTD(F;ZD " EXY

4.9. DeriniTion: We call Local and Global Time Theory of a system D, or
LGTT,, the theory of TTL with the syntax given by 4.1, which is a
conservative extension of LGTT, (namely such that for each type t#G
LTT, t a iff LGTT,, }: o), with the axions Ex; and Max,; and the inference

rules XG1, XG2, NXG1, NXG2. We call global theorems the theorems of
LGTT,, that hold w.rt. type G. H

Before showing that rules XG1, XG2, NXG1 and NXG2 are all what we
need to infer global properties, we want to give some intuition on them. We
shall consider only XG1 an XG2 as rules NXG1 and NXG2 assert simply
that a wff; > 1 EX X’ is a global theorem iff we cannot infer X2 EX ¥’
by applying rules XG1 and XG2. By rule XG1 we infer global theorems of
the kind LGTTDEEDEX . As we want to stick to our idea of time flow,
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we expect that LGTTDEE:»EX 2:>LGTTDEEDAX Z, namely we expect
that LGTTDI(-;ZDEX X iff, for each part p, if a is the current phase of p

w.r.t. £ then p must remain forever in a.

4.10. Example: Let us consider the system in figure 9.

Figure 9

Let Z=b, Ab, Aby Ab, be a global state; in order to prove

LGTT,} Z=EX %,

we have to show that for each type ¢, (1 <i<4) we have

LGTT, IF T, [E]>AXa
"

with a€Z, i.e. that LGTT,, tl- *,_ Ab;Ab;, 1D AXb; (sum and substraction
P

are made modulo 4). The proof of these theorems is easily done by inspection
on the syntactic model #,. W

Rule XG2 allows us to prove global theorems of the kind
LGTTDIC-;ZDEX Y’ with £#£%'. The idea is that to prove such global

theorems we have to check for local theorems w.r.t. the set of types in
A(Z, ). Such an approach is coherent with our idea that time flow is
modelled by the observable changes in global configurations. The problem is
to understand why we can limit ourselves to checking local theorems with
types in the set A (Z, X’). Let us take as an example the system in figure 10.

Let us suppose that we want to prove that Z>EX X’ is a global theorem
with Z=aancafahand Z'=bAdAfAh. In this case
AE, ZY={t,,, tp,, Lpy }-

p1> "pP2° "P3
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o by

e

P, P

Figure 10

The following unitary formulas are unitary local axioms:
l. ancoEX(bA *,,) w.r.t. type t,,
2. ancn x,, DEX(%, AndA *,) wrttypet,,
3. *%, AfARSEX(dAfAR) Wr.t. type t,..
By rule XG2 we obtain LGTT,, (I; ancAfAhDEX(bAdAfAHR). Note that

type ¢,,¢ A(Z, X') and therefore we do not have to prove anything about
local formulas of type z,,. W

From the above example we see that rule XG2 cannot be extended to
include parts which are not in A (Z, X). Actually, T, [Z]oEX T, [Z'] where
T, [Z]=fAh and T, [Z1=fAh, is not a local theorem (it holds
LGTT, :I; fAaho>AX— k). This agrees with the fact that considering local

4

theorems w.r.t. type 7,, would lead to force a dependency between parts p,
and p, which does not exist.

With giving the inference rules we have completed the definition of the
formal system LGTT,. Let us now prove consistency and completeness of
such rules. The first theorem we prove is about consistency.

We can now prove that rules XG1, XG2, NXG1 and NXG2 offer a complete
base to decide about provability of each global formula (obviously expressible
in UB). We proceed in a way strongly similar to the one followed for the
theories LTT),. First of all we show that it is possible to associate to each
theory LGTT, a finite Kripke model. Such a model will be a pair
Hp = Hp, Hs), with #, the syntactic model seen for LTT, and #; a
Kripke model for the global part of LGTT,. We shall see that the model
H# ¢ is built by using only formulas derivable by means of the inference rules
XG1, XG2, NXG1 and NXG2. Successively, we shall show that each global
formula o is provable in LGTT),, iff o is true in 25 ; in this way we shall
obtain the completeness of rules XG1, XG2, NXG1, NXG2 in order to decide
provability of global formulas.
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4.11. Remark (On completeness of LGTTp): For local formulas see
remark 3.11 on completeness of LTT,. For global formulas the question
seems to be more complicated as such formulas are obtained by means of
new inference rules (XG1, XG2, NXG1 and NXG2) which are not present in
UB. But this is not a real difficulty. Actually, let us call Z the set of unitary
global formulas obtained by application of rules XG1, XG2, NXG1 and
NXG2 and consider the theory LGTT* (D) that is identical to LGTT, for
the local types and that has not the rules XG1, XG2, NXG1 and NXG2 but
has directly the set & as axioms for the global part. In this theory all and
only all the theorems of LGTT, can be proved; moreover LGTT* (D) is
complete and this is sufficient to establish the completeness of LGTT,. M

Now we extend the concept of syntactic interpretation given for LTT, in
order to consider also global formulas.

4.12. DEeFINITION (Syntactic interpretation): Let De @ and let LGTT,, be the
corresponding theory with TYP={1,, ..., ,, G}. We call syntactic interpret-
ation for LGTT, the structure #p ={ #p, #; », where #, is the syntactic
model of LTT, and

H o= WHg, NH;, PH; ),

where:
WH, is GS, the set of global states,

(%, Z)eNH; = (LGTT,FEEXE),

PH;: WHg — 2%*°F with ae PH; (2)<>0€eX, forZe WH,. B
About #; we have the following result.

4.13. TaeoreM: For each De 9 the syntactic interpretation #'5 is a model
for LGTT,,

Proof: The proof for the local fragment of LGTT,, is the same given for
theorem 3.13. Let us now examine the global fragment. The proof related
to the axioms Ex; and Max, is analogous to the one given in 3.13 for the
corresponding local axioms; we have only to examine the inference rule XG1,
XG2, NXG1 and NXG2 and prove that these rules preserve truth in the
syntactic interpretation 5.

Rule XG1: We have to prove that

(V1,Va(t,eTYP, acX, acp=>H#} Fn,[Z]> 4Xa) = Hy FISEXX.
p p
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It holds that

(Vt,Va(1,eTYP, aeX, acp=>H#} t= m, [Z]1> AX a))
p

= (Vt,Va(t,eTYP, a€ZX, aep)
(LGTT Dtl- m,[Z]> AXa)) (bydefinition of #° EY)
{4

= LGTTDZZDEXZ = H} |t= ZoEX X (byrule XG1).
14
Rule XG2: We have to prove that
Vi, (,eARE, 2) = (HpFm, [Z]> EXw, [T7])
14
= HHEISEXY, with Z#X"
p
It holds that
Vi,eAE, Z)(H5 ': T, [Z]2> EXn,, [Z7])
p
= (Vi,eAZ, X) (LGTTDtlL n,, [Z]> EXn, [Z7]))
14
= LGTTDEE:EXE’ = Hp lt= IoFEX Y.
p
Rule NXG1: We have to prove that
(3t,3a(1,eTYP, aeX, aep, #} ': n, [Z]>71 EX )
14
= Hy EZD_I EXX.
It holds that
(3t,3a(t,eTYP, acZandaep, #} E: m, [Z]>71 AX a)
p
= (3t,3a(t,eTYP, a€Z, aep, LGTTDtI- n,p[Z]:)—l AX a))
14

= LGTT,tEomEXE = #FEToEXE
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Rule NXG2: We have to prove that

B, (t,eAE, ), #3 k m, [E]>71 EXw, [2])
P

= %’;EZD—lEXZ’, with Z#£%".

It holds that

(3t,(t,eAE, X)), #p ko, [Z]>7 EXm [2))
i 4
= (31,eA(E, ) (LGTT,t m, [Z]=71 EX, [£)
14

= LGTTDSZDﬁEXZ’ = %;EZD—IEXZ'. |

Consistency of LGTT),, follows immediately.

4.14. CorROLLARY: For each De D the theory LGTTy, is consistent. W
We can also show that s} is the most general model of LGTT,,.

4.15. THEOREM: For each De 9D, H#; is the most general model, i.e. for
te TYP U {G}, aewff, and for each model M, #}; ko implies M Fa.

Proof: See in the appendix. W

Now we obtain all the results seen for the theory LTT,, also for LGTT,,.
We may give such results only for the global formulas as for the local ones
the results of section 3 remain obviously valid.

4.16. CoroLLARY: For each De2, for each oewffg LGTTD(F;oc iff
HiEa. B

G

4.17. ProposITION: For each wffgo the model checking procedure is in P-
time, more precisely the procedure to check whether #j Ecx is bounded by
O(#ax (#GS)*). A
4.18. CoOROLLARY: There is a P-time bounded decision algorithm for
LGIT,. R

The last result for LGTT,, is given by the following proposition (whose
proof is similar to that of proposition 3.19).
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4.19. ProrosiTioN: For each o€ wff; at least one of the following assertions is
true:

1. LGTT, I(-; o,
2. LGTT, E—I o,
3. there is global state Ze GS s.t. LGTT,, E oo B

By the proposition we have proved that our compositional approach is
good.

5. CONCLUSIONS

We have shown that temporal logics are adequate to describe distributed
systems on condition that a suitable typization of formulas is introduced.
Actually, a distributed system can be formalized by means of typed formulas
describing local properties. Global properties of the system can be obtained
by using inference rules which relate local and global formulas. For the
theories LTT,, and LGTT, that we have introduced, we have proved the
equivalence of theorem proving and model checking in the finite models £,
and #, respectively. Therefore the theories LTT,, and LGTT, are decidable
in #-time by model checking in 2#,, and #}.

On the case of the work that has been done a specification and verification
methodology could be developed. Stepwise definition of distributed systems
and system reconfiguration (i. e. adding and deleting parts) could actually be
done by changing only local axioms and redemonstrating local properties of
parts involved in the change.
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APPENDIX

MODEL PROPERTIES

‘We assume to have a system D= {4, P, B, M, R>e 9 and, correspond-
ingly, to have the theory LGTT,, with TYP= {¢,, ..., t,, G} as set of types.
For the sake of simplicity we shall call states of type t both local states
(where t#G) and global states (where 1=G). A state will be denoted by the
greek letter Q, possibly indexed.

Al. LeMMA: For each pair of states Q, Q' of type t, if Q#Q' then
LGTT, l; AG (QAQ).

Proof: Let us take Q'=a, A ... A a, with Q#Q'; without loss of general-
ity, we can assume that a, ¢Q, and then, by axiom max,[Q, q,] and using
UB axioms and inference rules, we have:

LTTDI:AG—I QAra) = LTTDi;—l QA ay)
= LTTDI:—I(QAal)v .. v (QAa)

= LTTDI;—I(Q/\aI/\...Aa,,) = LTT,tAG(QAQ). N
t

A2. Lemma: Let M= M, ..., M, M) be a model of LGTT, and let
te TYP; then for each world w in M, there is one and only one state Q of type
ts.t. M, w F: Q. We will denote such unique state with Q..

Proof: Let w be a world of .#,; by the axiom Ex, AG(Q, v ... v Q,) we
have that #, w it= Q; v ... v Q) and therefore at least one of the Q,. . .Q

B m>

say €;, must hold in w. Lemma Al ensures that Q; is the unique state that
holdsinw. W

In the following definition we adapt the well know notion of zigzag
connection between Kripke models to our case of typed branching temporal
logic (with next time operators) (see van Benthem [1]).

A3. DEFINITION: Let

M= My, oy Mo, M) and M= M, . M, M,

t1°

with #,= ( N,, W,, P,» and ;= {N,, W;, P, ) for te TYP, be two models
of LGTT,; the tuple (C,, ..., C,, Cs) is a zigzag comnection between
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AMand ' iff for each type te TYP we have:
W) CeW,x W,
@) if (w, w)eC, and (w, v)e N, then 3v" s.t. (W', v')e N; and (v, v")e C,,
(ii1) if (w, w")e C, and (W', v')e N; then v s.t. (W, v)eN, and (v, v")e C,,
(@iv) if (w, w')e C, then w and w' verify the same atomic formulas. W
From this definition the next proposition follows immediately.

A4. ProrosITION: Let ‘
M= <.//l,1, ey My, Mgy and M'= (./fl;l, v My, My,

with #,= {N,, W,, P,) and M,= { N,, W}, P, for te TYP, be two models
of LGTTy; let {C,,, ..., C,, Cg) be a zigzag connection between .# and
', then for each type te TYP:

(i) if (w, w)e C, and b,,= {w;},,, then
3b,, = {(Wi}i<os:t. Vi (w, w)eC,
(i) if (w, w)e C, and b,, = {w}, ., then
3b,={w}icost. Vi(w,w)eC, N
AS. ProrposiTION: Let
M= My oy Moy My and M= M, L M, M,

with #,= (N, W,, P,) and M,= { N;, W}, P, ) for te TYP, be two models
of LGTT, and let (C,,, ..., C,, C;) be a zigzag connection between .4
and /', then for each type te TYP, each wff, a, and each (w, w')eC, we
have that /4, w It= oM, w ?t= o.

Proof: The proof is done by structural induction on formulas:

1. if o is atomic, then #, w I: AP I'= o by definition of zigzag
connection;

2. if a=f>vy, then

M, wEBSY
<> (byinduction hypothesis on fand y) (A4, w lt= B=M,w Ft= v)

= (M, WEBS ML WEY) < MW ERDY,
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3. if o= f, then

M WEDR o MEP

<> (byinduction hypothesison B) .#’, w’ bf B = A, W it=“1 B;

4. if a= EX, then
M, wI:EXB < Aw'(w, w')eNH M4, w”t‘=B
< (by induction hypothesis on )

and by definition of zigzag connection)
dw" (W', w)YeNH M', w" I:B < M, w'i:EXB;

5. if a=EF, then
‘//l,wi:EFB < 3bw3w"ebw//l,w”l‘=l3

<> (by induction hypothesis on  and by proposition A4)
b, Aw"eb,, A, w* I: B <= ', w I:EFB;

6. if o= FEGp, then
./ll,wF:EGB < Elwaw"e_bwjl,w”P:B

<> (by induction hypothesis on B and by proposition A4)
ib,Vw"eb, M, w" i:B <« M, w’I:EGB. |

Now we will prove that each model of LGTT,, is zigzag connected-with
the syntatic model .

AS. ProposITION: Let M= M, ..., M,, Mg) be a model of LGTT), then
there is a zigzag connection { C,, ..., C,, Cg ) between M and #y; .

Proof: Let us fix a type ¢ and the corresponding z-models

M={N, W, P> and #,={WH, NH, PH,>.

For each type ¢ we define C,= W, x WH, as the set of pairs (w, Q) s.t. Q=Q, .
(see lemma A2). We have to verify that the relation C, satisfies the condition
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(i), ..., (iv) of definition A3. We have:

(ii) let us suppose (w, Q)e C, and (w, w')e N, and let us take Q'=Q_,.; in
order to prove that (Q, Q')e NH, let us suppose (2, Q)¢ NH,, this implies
that Q> EX'Q' is not a theorem w.r.t. type ¢ and therefore Q>—1 EXQ' is a
theorem w.r.t. type t; now, as wl:Q, we have that for each w' (w, w)eN,

implies that w'F— ', that is a contradiction; moreover (W', Q") e C, by our
A :
definition of C,;

(iii) let us suppose (w, Q)€ C, and (Q, Q) e NH,; by definition of syntactic
model we have that Q> EXQ’ is a theorem w.r.t. type ¢ and therefore
w #: QoFEXQ'; as w t: Q there exists a world w' s.t. (w, w')e N, and w' I:Q’ ie.

3w’ s.t. (w, w)€eN, and (w, Q)eC,;
@iv) let (w, Q)e C, we have to prove that wka iff Ql:a for each atomic
t

formula a of type t; we have two exhaustive cases: 1. aeQ and 2. a¢Q; if
case 1 holds then obviously Q tt= a, and therefore as w t: Q also w tl= a; if case 2

holds then Qbfa; now we have the axiom AG—1(Q A a), and therefore

wEAG— (Q A @) and, as wF Q, we have wkfa. [ |
t t

Now we have all the tools to prove the following theorem.

A7. THEOREM: For each De D, #'}, is the most general model, i.e. for te TYP,
ae wff, and for each model M, #'}, i:cx implies M t: o.

Proof: With respect to the type ¢ let #,={W,N,P,> and
#,= ( HS,, HN,, HP, ) be the component of .# and #} respectively.

Let us suppose that #p Fa; we want to prove that /4 l!: o; to do this let
t
us prove that for a generic we W, we have #, wEa. Let we W,; using the
t

zigzag connection C, defined in proposition A6, we have that (w, Q,)eC,
(where Q,eWH,) and, by proposition A5, we have that for each
wif,B A, wk B>y, ka: B. Now, by the hypothesis that # 3 l:a, we have

that 575, Q,, F1= o and therefore #, wka. W
t
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