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TTL: A FORMALISM TO DESCRIBE LOCAL AND GLOBAL
PROPERTIES OF DISTRIBUTED SYSTEMS (*)

by A. MASINI (1) and A. MAGGIOLO-SCHETTINI (1)

Abstract. - In this paper we develop a logic formalism to describe and prove properties offinite-
state distributed Systems. This formalism is based on a branching time approach and is called
Typed Temporal Logic (TTL). For a distributed System D, we give two TTL théories, LTTÖ and
LGTTÖ (Local Time Theory and Local and Global Time Theory of Z), respectively). The theory
LTTjr, allows specifying distributed Systems by local axioms, namely by properties that hold with
respect to local observations of System parts. The theory LGTTD has a mechanism to infer global
properties of the system D from local properties. For both the théories we show that theorem
proving is reducible to model checking.

Résumé. - Dans ce travail on développe un formalisme logique qui permet de formuler et de
prouver des propriétés de systèmes répartis à états finis. Ce formalisme se base sur la notion de
« branching time » et s'appelle Typed Temporal Logic (TTL). Pour un système réparti D on
introduit deux théories de TTL, c'est-à-dire LTT^ et LGTTD {Local Time Theory et Local and
Global Time Theory of D, respectivement). La théorie LTTD permet de spécifier des systèmes
répartis par des axiomes locaux, c'est-à-dire propriétés qui sont vraies par rapport à des observations
locales de parties de systèmes. La théorie LTTD possède un mécanisme pour déduire des propriétés
globales du système D à partir de propriétés locales. Pour les deux théories on prouve que la notion
de dèmontrabilité est réductible à la notion de vérité dans un modèle.

INTRODUCTION

In the last 10 years a number of temporal logies has been proposed with the
aim of modeling and specifying concurrent and distributed Systems {see e. g.
Ben-Ari, Pnueli and Manna [2], Clarke, Grumberg and Kurshan [4], Kroger
[15], Manna and Wolper [18], Nguyen, Demers, Gries and Owicki[20]).

Using temporal logies seems to be quite natural if one wants to describe
behaviors which are strictly time dependent. In particular, branching time
logies are préférable when one needs to deal with alternative computation
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116 A. MASINI, A. MAGGIOLO-SCHETTINI

paths (see Ben-Ari, Pnueli and Manna [2], Danelutto and Masini [6],
Emerson [8], Emerson and Clarke[9], Emerson and Halpern[ll], Emerson
and Lei [12], Lamport [16]).

Moreover, it has been observed that considering a System as a whole and
the time expressed by the alternation of System global configurations is not
very satisfactory when reasoning on distributed Systems (see Degano,
De Nicola and Montanari [7] for an approach based on rewriting Systems,
and Clarke, Long and McMillan [5], Enjalbert and Michel [14], Lodaya and
Thiagarajan [17] for a temporal logic approach).

We can think of a distributed System as composed of a fînite set of
interacting parts, where each part is partially independent from the others
and the only dependences between parts are given by interactions. This
concept of a distributed System naturally leads to considering each part as
having a local time. As a conséquence of this point of view, we introducé a
pure typed temporal logic (TTL) and, by using TTL, for any distributed
System D, we develop a theory LTTD (Local Time Theory of D\ where each
type is related to the time of a part of the considered distributed System. For
each type a visibility function spécifies which informations are accessible to
the correspondent part for its advancement. In LTT^ we define the concept
of local state, which consists of the inner state of a part p plus portions of
the inner states of the other parts which are visible by p. The theory LTTD

has a set of local well formed formulas, called unitary local formulas, as
axioms. Such axioms specify, for each local state, the set of possible next
time local states (with respect to local times). In this way distributed Systems
are formalized only by local properties (local axioms) that the single parts
must enjoy, without any global assumption.

In order to prove global properties of the whole System D, we define
another theory of TTL called LGTT^ (Local and Global Time Theory of D)
that is a conservative extension of LTTD. The theory LGTTD has a new type
related to the global time of the System. In a way similar to the one followed
for LTTD5 the concepts of global states and unitary global formulas are
defîned (unitary global formulas specify, for each global state, the possible
next time global states). The idea of LGTTD is that unitary global formulas
are obtained from unitary local formulas. To this aim LGTTD is equipped
with a set of multityped inference rules,

In order to show that LTT^ and LGTTD are good formalizations of
distributed Systems with respect to provability of properties, we define two
fînite models, Jt?D for LTTD and 2%l for LGTT^. Provability in the théories
LTTD and LGTTD is shown to be reducible to model checking in M*D and
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 117

^f ,̂ respectively. As model checking in ffljy and 3^$ can be done in
{see Danelutto and Masini [6]) we have ^-time décision algorithms for prova-
bility in LTT^ and LGTTÖ. (As regards temporal model checking and décision
problem see e. g. Ben-Ari, Pnueli and Manna [2], Clarke, Emerson and
Sistla[3], Clarke, Grumberg and Kurshan[4], Clarke, Long and McMillan[5],
Danelutto and Masini [6], Emerson and Halpern[10], Emerson and Lei [12],
Emerson and Sistlafl3]).

An early version of the theory LTTD has been defined in Masini [19].
The paper is organized as foliows: in section 1 we give the concepts of

distributed system, visibility and décomposition; in section 2 we define the
formai system TTL giving its syntax and its semantics; in section 3 we give
the theory LTTD; in section 4 we give the theory LGTT ;̂ in appendix we
prove some model properties for LTTD and LGTT .̂

1. DISTRIBUTED SYSTEMS

In this section we introducé a concept of distributed system inspired by
Wedde's Interaction Systems (^^[21]). Our intuition is that a distributed
system consists of a finite set of spatially distributed parts which may interact.
There is no centralized control. Each part consists of a finite set of activity
phases, and, at a certain time, a part may be in one and one only of its
phases, called ouvrent phase. A part passes from one phase to another
following an internai program, and compatibly with interactions with other
parts. More precisely, a distributed system (or briefly a system) is a
quintuple D = (A, P, B, M, R >, where:

A = {ax, . . ., am} is a fmite nonempty set of activity phases (briefly phases),
P={/71 ? . . . , /? I I}isa partition of A with each p called part,
B={bpi, ...,bPn} is such that each bp is a directed graph </?,-»>

where-^ Zpxp — id(p) and for each aep there exists a'^a s.tfl-^fl'; this
graph (or program) gives the allowed internai behavior of the part, such that
if a is the current phase of part p and p leavesa, then p may enter only a
phase a' with a^a' being an arc of the graph,

M^A2~id(A) is a symmetrie relation between phases such that V/?eP
(p2 — id (p)) g M and if aep and a'ep' with (a, a) e M a cannot be current
phase of p if a' is current phase of p\ and symmetrically, and moreover if
a, a' s M, aep, a ep', p^p', a is the current phase of p whereas a' is not the
current phase of p', then p' cannot enter a' while p has not left a (mutual
exclusion),
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118 A. MASINI, A. MAGGIOLO-SCHETTINI

R<=:A2— U p2, is a symmetrie relation between phases such that for aep,
peP

a'ep' and (a, a')eR: (i) if a, a are current phases of p and/?', respectively, p
leaves a iff p' leaves a\ (ii) if a is the current phase of p then p cannot leave
phase a until p' has not entered phase a' and symmetrically {synchronization
relation).

The synchronization relation considered hère corresponds to a synchronous
"send/receive". Excluding arcs a-+a from behaviours of parts is due to the
fact that we want that a change of phase corresponds to each arc of the
graph.

We shall call & the class of Distributed Systems.

1.1. Example: In the figure 1 we show a graphie représentation of a
distributed System. Single pointed arrows give programs of parts. Undirected
arcs between phases give the relation M, double undirected arcs between
phases give the relation R. Mutual exclusions between phases of the same
part are not shown. •

Figure 1.

As a distributed System is supposed to be without a centralized control,
each part rnust have no knowledge of other parts but for what is needed for
possible interactions.

We introducé now the concepts of visibility and décompositions. Given a
System D, for each phase a of a part p of D the visibility function gives the
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 119

set of parts which have knowledge of a, in the sensé that such parts know
whether part p is currently in phase a or not.

1.2. DÉFINITION (Visibility): For D = (A, P, By M, R}e@, the function
VD : A -> 2P such that, for p e P and a e A, p e VD (a) iff either

(i) aep
or

(ii) 3a'(a, ö ' )e i?UM and a'e/?
is called visibility function. •

In VD we shall omit the subscript D when the considered System is clear
from the context.

1.3. Example: For the system in figure 1 we have: V{f)— {p2, p^ P4.} as
phase ƒ belongs to p2 and is in a relation (M or R) with the parts p3 and /?4,
V(i)={p3} as phase i is in no relation with phases of other parts. •

A décomposition of a System D with respect to a part p oî D gives a
system consisting of p itself together with portions of other parts p' containing
phases a such that p G V(a) plus "slack phases" *^, namely phases that stand
for ail possible phases aep' such that p$ V(af). As we do not want that a
part has knowledge of programs of the interacting parts, we assume that in
the décomposition of D for p^p' the behaviours allow all the possible
transitions between phases (but the ones from phases to themselves).

1.4. DÉFINITION {Décomposition): For D = (A, P, B, M, R}e@, we call
décomposition of D the function Dec^ : P -> 2 such that, for p e P,
DecD {p) - < A\ P\ B\ M', R! > with:

^'= U p',
p'eP'

'= U {p'2-id(p'))U{(al9a2):(aua2)€M9a1€p}i

P'eP'

R'={(au a2):(a1, a2)eR, a^p},

where * p dénotes the slack phase of part/».

The System DecD(/?) is called subsystem of D. Given a part p and

p) = (A'9 F, F, AT, R'}

vol. 26, n° 2, 1992



120 A. MASINI, A. MAGGIOLO-SCHETTINI

with DecDO). A we dénote A\ with DecD(/?). P we dénote P', etc. In DecD

we shall omit the subscript D when the considered System is clear from the
context. •

1.5. Example: Let us consider the System of figure 1. Figure 2 shows the
subsystem Dec (p^. •

Figure 2

1.6. DÉFINITION: Given D=(A, P, B, M, R), a subset S^A is called a
global configuration of D iff

1. Va, a'eS(a, a')$M,

2. \ \

If D is a subsystem of D', namely D belongs to the image of Dec^, the
global configurations of D are called local configurations. M

1.7. Example: The sets {a, e, m, i), {b,f o, 1} are global configurations
of the system in figure 1, whereas {b, f o) is not a global configration as it
does not contain any phase of part p3. M

2. THE SYSTEM TTL

In this section we introducé a typed pure logic called Typed Temporal
Logic (TTL). The idea of TTL is that of giving a typization of propositional
symbols plus an observation function in order to build and dérive typed well
formed formulas.
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We assume the knowledge of some branching time logic. For its simplicity
we use the Unifïed system of Branching time (UB) described by Ben-Ari,
Pnueli and Manna in [2] (see also Emerson and Sistla [13]).

The language of UB contains the usual propositional connectives =>, A ,
v, —i, and temporal quantifiers AX, EX, AG, EG, AF, EF. The time is
assumed to be discrete. If a is a formula of UB, we have the following
informai meanings of temporal quantifiers: AXa stands for "a is true in each
next time", EXÖL for "a is true in some next time", AG a for "a is true in
each state of every possible future", EGOL for "a is true in each state of some
possible future", AF a for "a is true in some state of every possible future",
EFOL for "a is true in some state of some possible future".

2.1. Syntaxof TTL

Well formed formulas (wff)

Given TYP={fl9 . . . , * „ } , a set of types, PROP={a l5 . . ., an}, a set of
propositional symbols, "!,=>, connectives, EX, EF, EG, temporal quantifiers,
O : PROP -> 2TYP, an observation function, for each type t the set of well
formed formulas (wff) of type t or wfff is defïned as follows:

a G wff( o

(i) a e PROP, teO(a) (a is said to be an atomic wffr)
or

(ii) ae{ n (3, p^Y, EX% EF$, EG$\ p, yewffj.
We shall use the following abbreviations:
EXAP for —i(oc=)—ip), otvp for ~!a=>p, AXa for lEXia, AFa for

, AGa for

Logica! axioms and inference rules

For each type t all UB axioms and inference rules are logica! axioms and
inference rules of type t.

For example if re TYP, a, Pewfft, then AG(a=>$)zi(AGa=>AG$) is a
logical axiom of type t.

Mathematica! axioms

For each type t it is possible to add to TTL a set *Ff of wfff as axioms,
called mathematica! axioms of type t,

Each x¥={x¥n, ...,*¥tn} defines a theory of TTL with *¥ as set of
mathematical axioms.
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122 A. MASINI, A. MAGGIOLO-SCHETTINI

A theory of TTL without mathematical axioms is called a pure calculus of
TTL.

TTL theorems

If*¥={xPtl, . . ., ¥,n} and te{tu . . ., tn}, we shall write f h a to mean

that a is a wff of type / and a syntactic conséquence of the formulas in ¥ r.
If *F is empty (i.e. each x¥t is empty) a is called theorem w.r.t. type t of TTL.
If T is a theory of TTL with *F as a set of mathematical axioms we shall use
also the notation Th aas equivalent to T h a; in this case we say that a is a

theorem w.r.t. type t of the theory T. M

It is important to point out that t in the notation h cannot be omitted.

Actually, as we shall see in the next section, it will be possible to have two
different types t' and t", an «-tuplexP= {*Ftl, . . ., Tt|i} of (consistent) mathe-
matical axioms and a wff a (of type /' and type t") s . t .¥ha and *F£ot

(possibly also *F h ~~|<x).

2 .2. Semantics of TTL

We call interprétation for TTL the «-tuple:

where for te{tu . . . , * „ } , Jtt= < Wv Nt9 Pt> with:

Wt a denumerable set whose éléments are called worlds of type t,

Nt<= Wf a successor relation of type /,

Pt a function mapping the worlds of Wt into sets of propositional symbois
of type t, i. e. Pt:Wt^> 2PROP' where PROPf = {a : te O (a)}.
For each we Wv the séquence/w={wJ-}J-<(D with wo = w, V/^0 (w ,̂ ^.+ 1)eA^t

is said to be a w-path of type ?.

Each ^ f , called a t-subinterpretation of ^ , defmes an interprétation for
the sublogic of TTL obtained by considering only wff ot type t, •

2.3. DÉFINITION: L e t ^ = < ^ f l , . . ., dtt^) be an interprétation, t be a type,
Mf = < W ,̂ iVt, Pr ), we PFr and a a wff of type t. We say that a is true w.r.t.
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 123

type t at w in Ji, and we write M^ w\= a, iff:
t

a is atomic and aePt (w)

or a= ~lp and not Ji, wf=p

or a = P=3y and M^ wt=P=> JP y ^ P ,

or a = EX$ and 3w'(Nt(w, w')

or oc = £Gp and 3/WVw'(w1 e fw=>Jl, w'hp)

or o^EFp and 3/W3 w'(w'e fw and UT, w'N|3. Given a theory r of TTL

an interprétation J is a model iff for each / G TYP and a e wfff
f ^ 5 wha. •

We shall write ^#, w'̂ a instead of not Jt, w'Na.

2.4. DÉFINITION: Let /G TYP and aewff,, a is said to be:

satisjïable w.r.t. type t if there is an interprétation Ji and a world we Wts. t.

w.r.?. type t in an interprétation M if VVVGW,^ , PFNa (we shall

write

false w.r.t. type t in an interprétation M if V'weWt*Jf, Wfa (we shall

write f)

valid w.r.t. type ? if a is true w.r.t. type t in each model Ji (we shall write

fa),
contradictory w.r.t. type ^ if a is false w.r.t. type t in each model Ji. M

Each interprétation M is a model of the pure calculus TTL as each
/-subinterpretation Mt of M is a model of UB (see Ben-Ari, Pnueli and
Manna [2]).

Note that it is possible to have JiVv* and M V ~l a for t / f (an example of
t tr

this will be seen in 3.20).
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124 A. MASINI, A. MAGGIOLO-SCHETTINI

3. THEORIES OF TTL FOR DISTRIBUTED SYSTEMS WITH LOCAL TIMES

In the following we are interested to use TTL to formalize distributed
Systems. To this aim, for each distributed System De@ we add a (finite) set
^n of suitable mathematical axioms to the pure calculus TTL. We shall call
LTT^ (Local Time Theory of D) the resulting theory, which represents the
TTL formalization of the System D,

In order to obtain LTT^ we must first give the TTL syntax for the
System D, namely we must give a spécifie set of types and propositional
symbols plus a spécifie observation function.

3.1. Syntax of LTTD

Given D=(A, P, B, M, R)e@, the syntax of LTTD is the one given in
2.1 for TTL with a spécifie set of types TYP={tp:peP}, a set of proposi-
tional symbols PROP^ U T)ec(p).A, and an observation function OL such

peP

that:

OL(a)=V(a) for aeA

OL(*p)={p':p'eP,p*p'9 *peDec(p').A} for *pePROP-^5

where V is the visibility function of 1.2. •
We can observe that to each part p of D we associate a type tp and

consequently a set of well formed formulas wfft . Such formulas express
properties of the subsystem Dec (p), namely properties which are local proper-
ties of the System D.

3.2. Example: Let us consider the System D of example 1.1. To each part
we associate a type, namely TYP = {tP1, tp2, tp3, tP4}. For each type reTYP
we have a rule to build the set wff,; for example the following ones are wff
of type tpi :

and y =

as for each propositional symbol x in a, p, y we have that tpieOL(x), The
formula c Af^EXb is not a wff of type tpi because tpi $ OL (ƒ). •

The rest of this section is devoted to give a proof System to establish which
of the wfff are theorems w.r.t. type /, L e. which of the local properties given
by wfft are really enjoyed by the subsystem Dec(p). We start with giving a
formalization of the concept of local configuration.
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3.3 . DÉFINITION: Given D e @3 for p eP, let { aiv . . ., aik} be a local configur-
ation of Dec O); the wff, aiy A . . . A aik is called local state (of type tp). With
LSt we dénote the set of local states of type tp. •

Given a local state S = atl A . . . A aik, with abuse of notation we shall write
aeS(a$S) to say that ae{ah, . . ., aik}(a£{ah, . . ., aik}).

In order to completely formalize local configurations we state properties
of local states.

3.4. Axioms of Existence and Maximality of local states

Given De9, for each teTYV let LSt={Su . . ., Sn} be the set of all the
local states of type /. We assume the following existence axiom:

Ext< AGföiV . . . vSn).

For each SeLSt and for each propositional symbol aewff, if a$S we assume
the following maximality axiom:

maxt [5, a]. AG "| (5 A Û).

With Max, we dénote the set of all the maximality axioms of type t. •

3.5. DÉFINITION: For D e ^ , te TYP and Ne{AX, EX, ~1AX, 1EX}, each
wfft of the kind S=>NS' where S, S'eLSt, is called unitary local formula (of
type t). With ULFf we dénote the set of unitary local formulas of type t. M

3.6. Example: With référence to the system of examples 1.1 and 1.5, the
following ones are unitary local formulas of type tpi :

aAe A *P3^>AX(aAdA * ), c A d A g^> EX {b A d A

As we shall see, not all of these wfff̂  are theorems (i. e. not all of these
wfft correspond to an effective one step behaviour of the system). The
formula b A e Ag=>EXc is not a unitary local formula of type tpi as the
formula c is not a unitary local state. •

The idea of unitary local formulas is that of formalizing the one step
behaviours of the subsystems of D resulting by the décomposition function
Dec. To give a précise notion of such one step behaviours we equip the logic
with a set of axioms called Unitary Local Axioms. Each of these axioms has
the form S^EXS' or S=> ~}EXS'.

vol. 26, n° 2, 1992



126 A. MASINI, A. MAGGIOLO-SCHETTINI

A formula SZDEXS' with S^S' is a unitary local axiom if and only if the
changes respect the behaviour graph of the interested parts and agrée with
the relations M and R. A formula S^>EXS is a unitary local axiom if and
only if there is no S' =£S such that S=>EXS' is a unitary local axiom. Finally,
a formula S=> 1EXS' is a unitary local axiom if and only if S^EXS' is not
an axiom.

More precisely, we have the following définition.

3.7. DÉFINITION: For De® and tpeTYP (the type associated to part/?), a
unitary local formula weULF, is a unitary local axiom (of type tp) iff:

(a) u=S=>EXS' and one of the two following conditions is satisfied:

1- (i) S*ST9

(ii) for each p' e Dec (p). P, if au a2ep\ ax^a2i a1eS, a2eS\ then
(au a2)eb', where b' is the behavior graph of p\

(iii) if a^ep\, a2ep'2, p\ ïp'2, p'u pf
2eDec(p).P and (au a2)eDec(p).M,

then a1eS=>a2^Sf,

(iv) if (au a2) e Dec (p). R, au a2eS, then ax$S' oa2$S\

(v) if (au a2) e Dec (p) .R, axe S, a2 $ S, then ax e S',

2. 5=- S' and for any other S" # S the pair S, S" does not verify 1.

(b) u = S=> ~1EXS' and conditions 1 and 2 for «' = S=>EXS' are not satisfied.

We call ULAf the set of unitary local axioms of type tp. M

3.8. Example: Let us consider the System in figure 3.

Let us consider the local states of type tP2 a A/A h, *P1AgAm, CAgAn,
n; the unitary local formulas of type iP2 aA/AH^EX (*P1AgAtn),
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TTL: A FORMALISM FOR DISTRIBUTED SYSTEMS 127

a A ƒ A h :=> EX c A g AH are local axioms of type tP2, whereas

a A ƒ A h => EX a A ƒ A n

is not aULA, as condition 1-iv of définition 3.7 is not satisfied. •

3.9. Example: The System in figure 4 shows a situation in which we have an
axiom of the kind S^>EXS, namely Û A ^ EX a A6 . •

Figure 4

3.10. DÉFINITION: We call Local Time Theory of a System Z>, or LTTD, the
theory of TTL with the syntax given by 3.1 and, for each type teTYP, Ex,,
Max, and ULAt as mathematical axioms. We call local theorems the theorems
ofLTTD. •

We have seen that, for a System D and each type tp9 the set wff, corresponds
to the set of temporal formulas relative to the subsystem Dec(/?); this means
that the well formed formulas of type tp do not refer to a global concept of
time but to a local one, Le. to the time of the subsystem Dec(/?). Therefore,
we have a way to deal with local times, and this justifies the choice of the
name LTTD for the theory.

3.11. Remark {On completeness of LTT^) : Completeness of LTTD (in the
sense of completeness theorem) follows immediately from the completeness
of UB; in fact, for each /peTYP we have a theory of UB obtained by adding
a finite set of axioms, namely maximality, existence and unitary local axioms,
to UB. M

Now we have to show that the proposed théories LTTD are adequate for
the formalization of distributed Systems without any assumption of global
time. The first step in showing such an adequacy consists in proving that,
for a System Z>, UTTD is a consistent theory. By classical results on temporal
logies, it is sufficient to exhibit a model for
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3.12. DÉFINITION (Syntactic interprétation): Let De@ and let LTTB be the
corresponding theory with TYP={r l 5 . . . , * „ } . We call syntactic interpré-
tation for LTT^ the structure JtrD = (Jt?tl, ...9tftn) with for ?eTYP,
#et = < WHt9 NHt, PHt >, where:

WHt is LSt, the set of local states of type t9

(S, S') G NHt <̂> (5 => £X S') 6 ULA,,

Pi/ t : Pra; -> 2PROP with a e PHt (S) o a e S for Se ^7ff. •

The syntactic interprétation j ^ D is our candidate to be a model for

3.13. THEOREM: For each De S) the syntactic interprétation J^D is a model
for

Proof: It is suffîcient to show that, for each type *eTYP and for each
mathematical axiom a of type t, J^D N a. We have four cases:

1. a e UL At and a = S => EX S' ; then J^D N a by construction ;

2. t ;

h a o LTTD \f S => £XS' o (S, 5") ̂  NHt

o (V S" (S, S") e NHt => jeD, S" 1= -i S')

3. a is Ext, Le. OL = AG(SX v . . . vSJ ; then

. . . v5ft)

JPD9 S N S t or. . . or J ^ , S \= Sk\

that holds by construction;

4. a is maxf [5, a], z.e. OL=AG~I (SAO);

2tfD N AG-i (S A a) o V 5" e J^ft JTJ,, S' 1= ~i (5 A a); we have two cases:

(i) S= 5", then Jf^, S' N —i a (as a <£ S) and therefore Jf D, 5" h —i (S A a),

(ii) S^S', then Jf^, S" h —i S and therefore Jf^, S" h -i (S A a). •

From this theorem we have immediately the following corollary.

3.14. COROLLARY: For each De S) the theory LTTD is consistent, •
Now we can show that the syntactic interprétations is not merely a model

but the most gênerai model.
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3.15. THEOREM: For each De@, J^D is the most gênerai model, i.e. for
f e TYP, ocewfff and for each model Jt, J^D \= oc implies JtVtt.

t

Proof: See appendix. •

This theorem has some interesting conséquences.

3.16 COROLLARY: For each De@, *eTYP and otewfff, LTTD h a iff J^D \= a.

Proof: From the completeness of LTTÖ we have LTT^ h a iff N a, and

therefore the thesis follows immediately from theorem 3.15. •

This result states that the problem of theorem proving in LTT^ can be
reduced to model checking on the model J^D. Now it is already known that
the formai system UB is decidable, but this result is of purely theoretical
interest as the complexity of such a décision procedure belongs to S'xp-time.
Now we can use a result of Danelutto and Masini [6], adapting it to the
typed case.

3.17. PROPOSITION: For each DsB, te TYP and ocewfft, the model checking
procedure is in ̂ -time, more precisely the procedure to check J^D ¥ a is bounded

byO(#ax(#LSt)
3). •

By showing that theorem proving is reducible to model checking we have
given an alternative décision procedure for LTT^, which, moreover, is in
^-time.

3.18. COROLLARY: For each De<3, there is a polynomial-time bounded décision
algorithmfor LTTP. •

The last result for LTTD is given by the following proposition.

3.19. PROPOSITION: For each De@, te TYP and aewfff at least one of the
following assertions is true:

1. LTT^ha,

2. ^ ,

3. there is a local state SeLSt s. t. LTTB Y

Proof: The proof foilows immediately from the équivalence of truth in the
syntactic model JfD and provability in LTTÖ. In JfD one of the following
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facts holds:

1. a is true w.r.t. t, i. e. J^D h a, and therefore LTTD h oc,

2. oc is false w.r.t. t, i.e. 3^Dh—i a, and therefore L T T D ,

3. a is satisfïable w.r.t. /, Le. there is a local state S s.t. 3^DJ Sf=oc, then

there is a local state S s. t. 34?D\=S^OL, and therefore there is a local state
S s. t. LTTxjhS^oc. H

This proposition guarantees that our formalization is good, Le. for each
type t and for each assertion oc formalizable within our System we can aiways
décide whether with respect to t is valid or its negated is valid or there is a
local state S such that S=>a is valid.

3.20. Example: Let us consider the System D in figure 5.

Figure 5

Using 3.7 to build the set of unitary local axioms of type tpi and tP2 we
obtain the syntactic model M?

D= < jtft , jPtp > with jfft , J4?tp as in figure 6.

For example in jf?t we have the arc (aAd, Z>A *P2)eNHt because:

(i) a Ad and b A *P2 are local states of type tpi,

(ii) (Û, 6) is an arc of bpieDçcD(pi).B and (d, *P2) is an arc of

(iii) (^

Now, by 3.7, we have that LTTD h aAd^EXbA *P2, and therefore, by

3.12, that (a A d9 b A *P2)eNHtpi.
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"e A d

1P\

Figure 6

/
*n

 A f

f <«-

a A g

Vd

lP2

Using corollary 3.16 we have:

(i) LTTD h aAd

(ii) LTTj) 1-flA

(iii) LTTÖ h

(iv) LTTD h 2

From the previous facts we obtain ^ D 1= AG AF {a Ad) and therefore by

corollary 3.16 LTTD h AGAF(aAd). Now we can observe that
'PI

J^D N —ï AGAF(aAd) (or equivalently ^ D N EFEG—\ (a Ad)),

i. e. h —i AG AF(a A d), that is we have exhibited a wff a = 4̂G AF(a A d)

such that a is a local theorem w.r.t type tPl and its negated n a i s a local
theorem w.r.t. type tpr •

3.21. Example {About the meaning of relations R and M): Let us consider a
System D. The foilowing ones are local theorems of LTTD:

L for each pair (a, a')eR with aep and a' ep'.

(i) ^ h a A fl'
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(ii) L T T p h û A n a'=>AXa,
tP'

(iii)

2. for each (a, a') e M with a ep and a'ep',
(i) UITDVAG-\{aAa'\

(ii) LTTB H f l A a ' ^ ^^—i a.
h

The proof of 1 is given by inspection of the syntactic model 3ft . To prove
1 (i) let us consider a generic world S of Jf t s. t. a, a' e S (i. e. 2tf, S h a A a')

and the set of all the worlds S' s.t. (S, S')eNHtp (Le. LTT^h S^EXST). By

3.7, for such an S', we have that a$S iff a' £ S', i. e. ^f, 5" 1= —i a = —i a'. In

such a way we have shown that for each word S,

Le. 3#?
DtaAa'=>AX(-ia = -i a')
h

and, by corollary 3.16, L,TTD\-aAa'=>AX^\ a = —\ a', that is our thesis.

The proofs of 1 (ii) and 1 (iii) are analogous. To prove 2(i) it is suffîcient to
observe that there is no local state S of type tp such that a, a' e S, i. e. for
each world S, 2tf,SN —i (aACL\ and therefore #et MGn(aAa ' ) . The proof

tP
 p tp

of 2 (ii) is analogous to the proof of 2 (i). •
Note that our formalization does not depend on any assumption on real

time, including an assumption of existence of clocks. Our idea is that the
time flow of each subsystem D' is given by the exécution of phase transitions
in the parts of D\ If D' is in the current local configuration C, every parallel
exécution of a nonempty set of possible phase transitions of D' with respect
to C gives a next time local configuration. In other words, the time flow for
the subsystem D' is given by the changes of its local configurations. Such a
point of view agrées with the rules given to obtain the set of local axioms of
the kind S^>EXS' with S^S'. A problem arises from the fact that we admit
the existence of axioms of the kind S^>EXS, Le. we admit that there may
be no change in the current local state but the time runs. In order to clarify
this point we state the following proposition.

3.22. PROPOSITION: For each type t and for each local state S of type t

LTTD h S^EXS => LTTD h S=>AXS.
t
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Proof: It follows immediately from définition of ULA,. If
V S^EXS, then for each other S' not LTT^ \~S^EXS'; this implies

that in $fx there is one and only one are (S, S) e NHt, and then
~S^>AXS. m

Using the previous proposition we can easily show that

LTTn h S^EXS o

Therefore, we may conclude that the time flow of a subsystem of a
distributed system is given by the observable changes in its local
configurations; moreover, if no changes are possible from a given local
configuration C, then it is assumed that time runs whereas the subsystem is
blocked in C.

4. THEORIES OF TTL FOR DISTRIBUTED SYSTEMS WITH LOCAL AND GLOBAL
TIMES

Consider the system D in figure 7 and assume that a is the current phase
of part px.

Figure 7

It is easy to see that there is only one global configuration containing
phase a, namely { a, c, ƒ, h} that is a deadlock global configuration, L e. the
system may only remain forever in it. As a conséquence we have that the
following assertion is true: if part px is in the current phase a then px will
remain in a forever (Le. a is a deadlock phase forpx). On the other hand,
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we have LTT^ h aziEF^ a, namely w.r.t. LTTD a is not a deadlock phase

for px. This is due to the fact that our formalization exploits only partial
(local) knowledge of the System. Now one may ask whether it is possible to
compose the local theorems of LTT^ in order to establish that, globally,
phase a is a deadlock phase for part px,

The gênerai question is: "given Z)e§, is it possible to extend LTT^ in
order to formalize the local behavior as well as the global one, and moreover
to obtain the global behavior by composition of the local ones?". This section
is devoted to give a positive answer to the question. As a resuit, for a System
D we shall have a new theory called LGTTD (Local and Global Time Theory
of D) which is a conservative extension of LTT ,̂ namely which contains
LTTD plus a set of inference rules to compose local theorems in order to
obtain global ones.

Before introducing LGTTD we want to make clear our idea of the time
flow for an entire System. As each subsystem is itself a distributed System,
we simply extend our point of view of time flow for subsystems to the whole
System, namely we assume that the (global) time flow of a System is given
by the observable changes in its global configurations. If no changes are
possible from a given global configuration C the (global) time runs indefi-
nitely whereas the System is blocked in C.

In the rest of this section we assume that the considered System D is a
quintuple < A, P, B, M, R >.

4.1. Syntax of LGTT^

It is the syntax given in 2.1 for TTL with the following spécifie set of
types:

TYP={tp:peP}\j{G}9

where the types t^G are called local types and G is a distinguished type
called global type, the following set of propositional symbols:

Prop= U
peP
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and observation function O
LG:

OLG(a) = OL(a)[j{G} for as A

LG(*p) = OL(*p) for

where OL is the observation function for LTT .̂ •
All the features of LTT^ are carried on to LGTTD, i. e. LGTTD restricted

to the local types coïncides with LTT ,̂ namely, for each type t ^ G,
LTTD h a iff LGTT^ h a. Moreover LGTTD is endowed with new mathe-

matical axioms and inference rules.
Foliowing the approach of section 3, to type G we associate a set of wff

of type G, called global states, that correspond to global configurations.

4.2. DÉFINITION (Global States): Given De Q), let {aiv . . . j û j b e a global
configuration. The wffG atl A . . . A ain is called a global state. We call GS the
set of all global states in LGTTÖ. •"

Related to the concept of global state is the notion of projection.

4.3. DÉFINITION: Given De<3, let Z = al A . . . /\an be a global state and let
t be a local type; with nt\L] (projection of E w.r.t. type t) we dénote the local
state S of type / where for each a} e Z if / G OLG (a^) then ajsS. M

As done for the local case, we add a set of axioms to formalize the
properties enjoyed by global states.

4.4. Axioms of existence and maximality of global states

For D e 9 let GS= { Z ls . . ., S„} be the set of all global states.
We have the following existence axioms'.

ExG ^ ( E l V . . . v E J .

For each Ze GS and for each propositional symbol <zewffG, if ÛE£E we
assume the following maximality axiom:

maxG[S, d\. AG^i (EAÜ).

With MaxG we dénote the set of all the maximality axioms of type G. •
In section 3, for each distributed system D we have introduced a set of

formulas called Unitary Local Formulas; a particular subset of them has
been taken as proper axioms of the theory LTTD. We have shown that these
local axioms are a sufficient base to formalize distributed Systems from a
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local point of view. The question is whether there is a global correspondent
of unitary local axioms, i. e, a set of global formulas that may be chosen as
an adequate base for the global formalization of distributed Systems. In [6]
Danelutto and Masini show how to build such a set of global formulas but
in a framework without any assumption of local times. Now the question is
whether such formulas may be obtained by composition of local formulas.
In a logical formai System a basic mechanism to compose formulas to obtain
other formulas is that of inference rules. In our spécifie case we have to
introducé some multityped inference rules (i. e, inference rules over formulas
of différents types) of the kind:

LGTT I )hp 1 . . .LGTTDhp r

LGTTD h a
G

where the (3i5 . . ., pn are local formulas. The intended meaning of such an
inference rule is that the global formula a is obtained by composition of the
local formulas Pl5 . . ., |3n. We will show that, for our aims, it is sufficient to
restrict the multityped inference rules to unitary formulas.

4.5. DÉFINITION: Let Ne{AX, EX, ~i AX, —i EX}; given De@, each wffG
of the kind Z=3 7VZ',with Z, Z'eGS, is called unitary global formula, We call
UGF the set of unitary global formulas. •

4.6. DÉFINITION: The function A : GS x GS -+ 2TYP defïned as

AÇL,?,')={tp:tpeTYP-{G},3a\a"s.La', a"ep,a'e?:,

a"eZ', a Va" and tpeOLG(a')\J OLG(a")}

is called type différence function of E and Z'. •

Let us discuss the meaning of the type différence function; let us take two
global states S = Z A Y, Z' = Z' A Y, where aeZ and deZ' implies that a^a';
the extremal cases are given by Z=Z' = 0, (i.e. £ = £'), and 7 = 0 , {i.e. ail
the atomic formulas in Z are different from the atomic formulas in S'). Note
that Z and Z' must have the same number of atomic formulas. Let us
consider an atomic formula aeZ, by définition of global state in Z' there is
another atomic formula a' s. t. a, a' belong to the same part p. In such a case
we assert that the type tp belong to A (S, E') as part p is interested into the
différence between Z and Z'. Now let us consider an atomic formula be Y,
s. t. b belongs to part q; in such a case we have that part q is not directly
interested into the différence between Z and Z' (b belongs to both Z and Z').
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We would expect that type tq does not belong to A (E, S'), but, also in this
case, we admit that type tq belongs to A (E, E') if there is at least an atomic
formula c in Z or Z' s.t. tqe0LG(c), i.e. in the case that part q is indirectly
interested into the différence between Z and Z'. Note that if E = S', i.e.
Z=Z' = 09 we have that A (E, E') = 0 as there is no différence between
E and E'.

The following example shows the construction of A in a concrete case.

4.7. Example: Let us suppose we have the system in figure 8.

Let 2, = aACAg/\mAq and E' = Z> Ad A h Am Aq be two global states; by
applying the previous définition we have A (E, E') = {tpi, tP2, tP3> tP4}; E and
E' have a subformula in common, L e. Y=mA q, and two subformulas which
are different, i.e. Z—ctACAg in E and IL' = b Ad Ah in E'. With respect to
the subformulas Z and Z' we have:

(i) a9bep1=>tP1BA(L9l,
r)9

(ii) c9 dep2 => tP2

(iii) g, heps=>tp3

By définition we have also that type tPA belongs to A (E, Z') even though
part pi remains in the same phase m w.r.t. the global states E and E'. This
happens because tP4 e OLG (g) U OLG (h), i. e. part p4 is indirectly interested in
the différence between Z and Z'. On the other hand type tps does not belong
to A (E, E') as part p5 cannot observe any phase in the subformulas Z
and Z'. •

We give now the inference rules to compose local behaviours.
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4 .8. Inference rules

Given De@, let S and S' be two global states with S^X'; the following
are inference rules of the theory LGTT^:

Rule XG1:

Vf, Va OpeTYP, ae l , ae/^LGTT^h n^Pl

Rule XG2:

V tp (/, e A (E, E') => LGTTfi h jt [E] z> £ I i [E'])

G

Rule NXG1:

3 /p 3 a (ip € TYP, a e S, a ep, LGTTÖ h nt [S]

Rule NXG2:

3 tp (tp e A ÇL, E') LGTTD h 7t [L]

4.9 . DÉFINITION: We call Local and Global Time Theory of a System D, or
LGTT^, the theory of TTL with the syntax given by 4 . 1 , which is a
conservative extension of LGTTD (namely such that for each type / / G
LTTj, h a iff LGTTD1- a), with the axions ExG and MaxG and the inference

rules XG\, XG2, NXGl, NXG2. We call global theorems the theorems of
LGTTD that hold w.r.t. type G. •

Before showing that rules XGl, XG2, NXGl and NXG2 are ail what we
need to infer global properties, we want to give some intuition on them. We
shall consider only XGl an XG2 as rules NXGl and NXG2 assert simply
that a wffG Z=> —i EX Z' is a global theorem iff we cannot infer HZDEXH'

by applying rules XGl and XG2. By rule XGl we infer global theorems of

the kind LGTT^h X=>£r E. As we want to stick to our idea of time ftow,
G
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we expect that LGTTDh E => £X E =>LGTTD h X^AXI,, namely we expect

that LGTTD h E => EX E iff, for each part p, if a is the current phase of p
G

w.r.t. E then p must remain forever in a.

4.10. Example: Let us consider the System in figure 9.

Figure 9

Let E = bx A b2 A b3 A 64 be a global state; in order to prove

we have to show that for each type tp.(l ^ /

LGTTD\rnt

we have

with a e E, i.e. that LGTTD h *p._1 i (sum and substraction

are made modulo 4). The proof of these theorems is easily done by inspection
on the syntactic model #?D, •

Rule XG2 allows us to prove global theorems of the kind
LGTT^hS^EZ E', with E^E' . The idea is that to prove such global

G

theorems we have to check for local theorems w.r.t. the set of types in
À (E, X'). Such an approach is coherent with our idea that time flow is
modelled by the observable changes in global configurations. The problem is
to understand why we can limit ourselves to checking local theorems with
types in the set A (S, S'). Let us take as an example the System in figure 10.

Let us suppose that we want to prove that T,=>EX S' is a global theorem
with E = a A c A ƒ A h and E' = b A d A ƒ A h. In this case
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.0
-9 ^ I # = z =% n

0 0 0

The following unitary formulas are unitary local axioms:

1. aAc=>EX(bA *P2) w.r.t. type tpi,

2. UACA *p^EX(*plAdA *P3) w.r.t type tp2,

3. *P2AfAhr>EX(dAfAh) w.r.t. type fP3.

By rule XG2 we obtain LGTTDha A C A / A A:=>£X(Z> A^ /A/AA) . Note that
G

type fp4£A(2, £') and therefore we do not have to prove anything about
local formulas of type tp^. •

From the above example we see that rule XG2 cannot be extended to
include parts which are not in A (S, £')• Actually, nt \L]^>EXnt [£'] where
nt PI =fA h a n d nt P I =fA K is not a local theorem (it holds
LGTTD h /AÎIZDAX—] h). This agrées with the fact that considering local

theorems w.r.t. type tp^ would lead to force a dependency between parts /?4

and p2 which does not exist.

With giving the inference rules we have completed the définition of the
formai System LGTTD. Let us now prove consistency and completeness of
such rules. The first theorem we prove is about consistency.

We can now prove that rules XG\, XG2, NXGl and NXG2 offer a complete
base to décide about provability of each global formula (obviously expressible
in UB). We proceed in a way strongly similar to the one folio wed for the
théories LTTO. First of ail we show that it is possible to associate to each
theory LGTT^ a finite Kripke model. Such a model will be a pair
^D

 ==< <^D> <^G>>
 W l t n

 ^D
 t n e syntactic model seen for LTTD and f̂G a

Kripke model for the global part of LGTTD. We shall see that the model
ffîG is built by using only formulas derivable by means of the inference rules
XG\, XG2, NXGl and NXG2. Successively, we shall show that each global
formula a is provable in LGTTD iff a is true in 3^$ ; in this way we shall
obtain the completeness of rules XGl, XG2, NXGl, NXG2 in order to décide
provability of global formulas.
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4.11. Remark (On completeness of LGTTp): For local formulas see
remark 3.11 on completeness of LTTÖ. For global formulas the question
seems to be more complicated as such formulas are obtained by means of
new inference rules (XGl, XG2, NXGl and NXG2) which are not present in
UB. But this is not a real difficulty. Actually, let us call 9C the set of unitary
global formulas obtained by application of rules XGl, XG2, NXGl and
NXG2 and consider the theory LGTT* (D) that is identical to LGTTD for
the local types and that has not the rules XGl, XG2, NXGl and NXG2 but
has directly the set % as axioms for the global part. In this theory ail and
only all the theorems of LGTTD can be proved; moreover LGTT*(Z>) is
complete and this is sufficient to establish the completeness of LGTTp. •

Now we extend the concept of syntactic interprétation given for LTT^ in
order to consider also global formulas.

4.12. DÉFINITION (Syntactic interprétation): Let De@ and let LGTTD be the
corresponding theory with TYP= { tx, . . ., tn> G }. We call syntactic interprét-
ation for LGTTp the structure JP£ = < Jf D, J^G >, where JfD is the syntactic
model of LTTD and

where:
WHG is GS, the set of global states,

(L9I,')eNHG o

PHG : WHG -> 2PROP with a G PHG Ç£) O a e S, for Z G WHG.

About Jfp we have the following resuit.

4.13. THEOREM: For each De@ the syntactic interprétation J^p is a model
for LGTTD.

Proof: The proof for the local fragment of LGTTÖ is the same given for
theorem 3.13. Let us now examine the global fragment. The proof related
to the axioms ExG and MaxG is analogous to the one given in 3.13 for the
corresponding local axioms; we have only to examine the inference rule XGl,
XG2, NXGl and NXG2 and prove that these rules preserve truth in the
syntactic interprétation 3tf$.

Rule XGl: We have to prove that

(VtpVa(tpeTYP, aeS , aep=>3tf+ \= nt \L]z>AXa)) => &l V
1P
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It holds that

3P£ h ntp[L]=>AXa))

(LGTTD h jctp [S] =3 AXa)) (by définition of JT+)

LGTTÖ h E =>EX S => J^ + t= S iD £X Z (by mie XGÏ).
G tp

Rule XG2: We have to prove that

', with

It holds that

(V tp e A (S, Z') (LGTTD h n [I] = £JT«, [E']))

Rule NXG1: We have to prove that

(3tp3a(tpeTYP9 aeZ, aep, tf+¥ ntp[L]=>-i EXà)

It holds that

(3tp3a(tpeTYP, a e S and aep, j f £ h 7cf [E]=>

=> (3 rp 3 a (?p G TYP, ûeS , f l e/>, LGTTÖ h nt [S]

LGTTD h S D n £ I i : => jf + h
G G
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Rule NXG2: We have to prove that

(3 tp (tp e A (Z, S'), # ï N ntp [E] =>~i £XTU,P [£'])

=> ^ N E =>~i £ X 2 ' , with
G

It holds that

(3 tp e A (S, E') (LGTTfl h n, [L]=- . £ Z T I [E']))[

Consistency of LGTTD follows immediately.

4.14. COROLLARY: For each De@ the theory LGTTjp is consistent.

We can also show that J^^ is the most gênerai model of LGTTD.

4.15. THEOREM: For each De S), ffl$ is the most gênerai model, i. e. for
t e TYP U {G}, a e wfft and for each model Jl, ffi^ V a implies M V a.

Proof: See in the appendix. •

Now we obtain all the results seen for the theory LTT^ also for LGTTD.
We may give such results only for the global formulas as for the local ones
the results of section 3 remain obviously valid.

4.16. COROLLARY: For each DeS>, for each aewffG LGTT^hoc iff

4.17. PROPOSITION: For each wffGa the model checking procedure is in SP-
time, more precisely the procedure to check whether 3^$ N a is bounded by

G

O(#ax (#GS)3). m

4.18. COROLLARY: There is a 0>-time bounded décision algorithm for
LGTTV •

The last result for LGTT^ is given by the following proposition (whose
proof is similar to that of proposition 3.19).
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4.19. PROPOSITION: For each aewffG at least one of the following assertions is
true:

1. LGTTD h a,
G

2. LGTTD h - i a,
G

3. there is global state Ze GS s. t. LGTT^ FS^a . •
G

By the proposition we have proved that our compositional approach is
good.

5. CONCLUSIONS

We have shown that temporal logies are adequate to describe distributed
Systems on condition that a suitable typization of formulas is introduced.
Actually, a distributed System can be formalized by means of typed formulas
describing local properties. Global properties of the System can be obtained
by using inference rules which relate local and global formulas. For the
théories LTTD and LGTTD that we have introduced, we have proved the
équivalence of theorem proving and model checking in the finite models fflD

and 3^n, respectively. Therefore the théories LTT^ and LGTTp are decidable
in ^-time by model checking in fflD and ffl^.

On the case of the work that has been done a spécification and vérification
methodology could be developed. Stepwise définition of distributed Systems
and System reconfiguration (/. e. adding and deleting parts) could actually be
done by changing only local axioms and redemonstrating local properties of
parts involved in the change.
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APPENDIX

MODEL PROPERTIES

We assume to have a System D= (A, P, B, M, R}e@ and, correspond-
ingly, to have the theory LGTTD with TYP= {tu ...9tn,G} as set of types.
For the sake of simplicity we shall call states of type t both local states
(where t^G) and global states (where t=G). A state will be denoted by the
greek letter Q, possibly indexed.

Al . LEMMA: For each pair of states Q, Q' of type /, if Q # Q ' then
LGTTDh AG-i ( Q A Q 7 ) .

Proof: Let us take Qr = a1 A . . . A an with Q ^ Q ' ; without loss of general-
ity, we can assume that a ^ Q , and then, by axiom maxf[Q, a j and using
UB axioms and inference rules, we have:

UITD h AG-i (Q A flj => • LTTD h ~i (Q A ax)

=> LTTD h —i (Q A a j v . . . v - i (O A an)

^ LTTD h - i (Q A ax A . . . A an) => LTTD h AG~i (Q A Q')* •
t

A2. LEMMA: Let Jl= {Jitv . . ., J(tn9 ^G) be a mode! ofLGTTD and let
te TYP; then for each world w in Jix there is one and only one state Q of type
t s. t, M> w £ Q. We will dénote such unique state with Qw.

Proof: Let w be a world of M„ by the axiom E x ^ G ^ v . . . v Qm) we
have that Ji, w Y (Q.x v . . . v Qm) and therefore at least one of the Q j . . . Qm,

say Qp must hold in w. Lemma Al ensures that Qj is the unique state that
holds in w. •

In the following définition we adapt the well know notion of zigzag
connection between Kripke models to our case of typed branching temporal
logic (with next time operators) (see van Benthem [1]).

A3. DÉFINITION: Let

...3Jttn, J?G) and M'= {Jf[v . . ., Jt't, M'G\

with Jtt= (Nt, Wt9 Pt} and JK't= (N'tJ Wt9 P't > for ?eTYP, be two models
of LGTTD; the tuple <C t i , . . ., Ctn, CG} is a zigzag connection between
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Jï&nà M' iff for each type te TYP we have:

(i)Ct£WtxWt,
(ii) if (w9 w)eCt and (w, v)eNt then 3v s.t. (w\ v)eN't and (v, v)eC„
(iii) if (w9 w')eCt and (v/, z>')6JVJ then 31> s. t. (w, u)GiVt and (v9 v)eCt,

(iv) if (w, w')e Q then w and w' verify the same atomic formulas. •

From this définition the next proposition follows immediately.

A4. PROPOSITION: Let

. . ., Jitn, JtG) and Ji'

with Mt= (Nt, W„ Pt) and M\= (N'„ Wu P't) for te TYP, be two models
of LGTT^; let < C t l , . . ., Ctn, CG> be a zigzag connection between Jt and
M\ then for each type /eTYP:

(i) if (w, w')eCt and bw= {wt}i<(ù then

3 ^ W ' ^ {">;}*<„ s.t. Vi (

(ii) if (w, w')eC t and éw,= {w[}i<(D then

3 6 w = ' W £ < œ s. t. VÏ (Wj,

A5. PROPOSITION: Le?

...,Jttn9 JtG) and Jt'=

with uff,= <7Vt5 PFfJ P t> and Jt[= (Nf
t, Wt, P't)for / eTYP, be two models

of LGTT^ and let < Cf l9 . . ., C,B, C G ) be a zigzag connection between ^
and M', then for each type ?eTYP, each wfft a, and each (w, w')eCt we
have that Jty w \=<xoJ!f\ w' N a.

t t

Proof: The proof is done by structural induction on formulas:

1. if a is atomic, then M, wV<xoJÉ\ w'Va by définition of zigzag

connection;

2. if a = P => y, then

(by induction hypothesis on P and y) {M9 w 1= P => M9 w N y)
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3 . if ot= —i P, then

M, wV—i (3 o Jtify

(by induction hypothesis on §)Jt\ w' $ p o M\ w' N

4. if a = EX$, then

Jl9w¥EX$ o 3w"(w, w")eNHJ?, w" h

o (by induction hypothesis on P)

and by définition of zigzag connection)

t\ wA h p o

5. if a = £Fp, then

o 3bw3w"ebw M, w" h p

(by induction hypothesis on P and by proposition A4)

3bw3w*ebw, J?\ wA 1= p <s> uT's w'
t

6. if a = EG$, then

(by induction hypothesis on p and by proposition A4)

Now we will prove that each model of LGTTÖ is zigzag conneeted with
the syntatic model ^^.

A5. PROPOSITION: Let UT = < M%v ..., Jttn, JtG) be a model of LGTT^ then
there is a zigzag connection < C t l , . . ., Cfn, CG > between M and Jf^.

Proof: Let us fix a type t and the corresponding /-models

Jlt= < Nt, Wt9 Pt > and Jtrt= < WHt, NHtt PHt > .

For each type t we define Ct^Wt* WHt as the set of pairs (w, Q) s. t. Q = Qw

{see lemma A2). We have to verify that the relation Ct satisfies the condition
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(ii), . . ., (iv) of définition A3. We have:
(ii) let us suppose (w, Q)eCt and (w, w')eNt and let us take Q' = QW, ; in

order to prove that (Q, Q')eNHt let us suppose (Q, Q!)$NHV this implies
that Q=>EX£lf is not a theorem w.r. t. type / and therefore Q=3—i EXQ' is a
theorem w.r. t. type t; now, as whQ, we have that for each w' (w, w')eNt

implies that w'N—i Q', that is a contradiction; moreover (w\ Q')eCf by our

définition of Ct\
(iii) let us suppose (w, Q)eCf and (Q, Q')eNHt; by définition of syntactic

model we have that Q^EXÜ! is a theorem w.r. t. type t and therefore
w \=£l^EXQ'; as w N O there exists a world w' s.t. (w, w')eNt and w' N Q' z. e.

3w' s.t. (w, w')eNt and (w, Q')eC(;
(iv) let (w, Q) e Ct we have to prove that w N a iff Q1= a for each atomic

formula a of type t\ we have two exhaustive cases: l. aeQ and 2. a£Q; if
case 1 holds then obviously Qta, and therefore as w N Q also wl=«; if case 2

holds then Q^a; now we have the axiom AG~\ (Q A à), and therefore
t

w f= ^4G~i (Q A a) and, as w \= Q, we have w $ a. •

Now we have all the tools to prove the following theorem.

A7. THEOREM: For each De@, Jf^ is the most gênerai model, i. e. for feTYP,
aewfft and for each model Jl> &Q ¥ a implies MV&.

Proof: With respect to the type t let Jtt= < Wt9 Nt9 Pt) and
Jf (= < /f5f> ^A t̂s /fPf > be the component of ^T and ^ respectively.

Let us suppose that Jf £ N a; we want to prove that J?\=a; to do this let

us prove that for a generic weWt we have Ji, wl=a. Let we Wt; using the

zigzag connection Ct defined in proposition A6, we have that (w, Qw) e Ct

(where Qwe WHt) and, by proposition A5, we have that for each
wfft p Ji.wV p < > ^ , Qw N p. Now, by the hypothesis that Jt?£ N a, we have

that Jf S, Qwta and therefore I
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