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ASYMPTOTICAL BEHAVIOUR OF SOME NON-UNIFORM
MEASURES

by Maria José SERNÀ (1)

Communicated by J. DIAZ

Abstract. - We show the existence of the Shannön effect for some welUknown non-uniform
measures such as reguiar complexity, initial index and context-fiee cost. We also obtain the
asymptotical behaviour of the hardest finite languages for these measures.

Résumé. - On présente Yexistence de Veffet Shannon pour certaines mesures non uniformes
comme findex initial et le coût grammatical.

0. INTRODUCTION

An important characteristic in the study of non-uniform mesures is the
existence of the Shannon effect; namely that "âlmost ail problems of size n
lying in a gîven class have almost identical complexity, which is asymptotically
equal to the complexity of the hardest problem of size n" (the notion of the
Shannon effect was introduced in [Lu, 70]). There has béen a large number
of papers dealing with the Shannon effect for various complexity measures
in various models of computation [We, 87].

Recall that in 1958 O. B. Lupanov [Lu, 58] proved that every boolean
function ƒ of n variables has a boolean cost, denoted by c(/) , upper bounded
above by

r
n
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Previously, C. E. Shannon and J. Riordan [Ri, Sha, 42], shown in 1942
that the cardinality of the set

has an order of magnitude of 22*\ This resuit implies that the bound of
Lupanov's theorem is tigth.

We conclude that the asymptotical behaviour of circuit size is 2n/n.

Theorems of this kind have been proved for other non-uniform measures.
For instance, in the case of the boolean formula size, it has been proved
that; 2"/logn holds asymptotically [Lu, 62]; G. Goodrich, R. Ladner and
M. Fischer [Go, La, Fi, 77] proved the Shannon effect for some classes of
straight line programs Computing finite languages over an alphabet S of s
symbols, the cost of a program being defined as the number of instructions.

M. R. Kramer and J. Van Leeuwen [Kr, Le, 84] proved similar results for
the area measure of VLSL More exactly they gave an upper bound of 0 (2n)
and a lower bound of Q (2B) to the cost of a finite language.

Let us consider another approach to the description of finite languages.
Given an alphabet X, let us consider the language L c= S" in which all the
words have length n. We can describe L as a binary string of length s*. This
string codifies the characteristic function of L. Thus, the complexity of L
can be evaluated through the complexity of its associated string.

The first work in this direction was done by G. J. Chaitin [Ch, 66]. He
considered Turning machines as the computational model. Given a Turing
machine its cost is defined as the number of states. Chaitin proved that the
cost is asymptotically s7(fc — l)nlogs, where k is the number of tape symbols.

Similar work has been done by J. Berstel and S. Brelk [Be, Br, 87]. They
used word chains as the computational model, the complexity being defined
as the length of the chain. They proved that the cost of the hardest language
oscillâtes between sn/nlogs and sn/nlog3(s).

A lot of research in this field has taken place in Russia, see for example
[Ne, 65], [Ug, 76].

In this paper, we study non-uniform measures which have the Shannon
effect. Theorems about upper and lower bounds are proved for regular cost
[Er, Ze, 74], initial index [Ba, Di, Ga, 85] and context-free cost [Bu, Cu5 Ma,
Wo, 81].
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Let E be an alphabet. For a string wel*, let | w\ dénote its length. Let S"
dénote the set of ail words of length n, and let the term "finite language"
dénote a subset of Ln for some n > 0.

Throughout this paper, N dénotes the set of non-negative integers.

DÉFINITION 0.1: The notion "almost ail languages L <= E" have property
P" stands for the following asertion:

Card { L c X" | L has P }/Card (S") -> 1 as n -> oo.

DÉFINITION 0.2: Given a complexity measure a, we dénote by 5a(n) the
complexity of the hardest problem in 2", namely max {a (L) | L <=. Z"}.

DÉFINITION 0.3: We say that the Shannon effect holds for a complexity
measure a if a (L) ̂  Sa (n) — o (5a (n)) for almost ail L G En.

This définition is closed to the adopted in [We, 87]

1. REGULAR COMPLEXITY

We consider first a non-uniform measure obtained from regular expressions
over the basis { + , . } . This is a particular case of various types of measures
based on regular expressions, which were introduced by Ehrenfeucht and
Zeiger [Er, Ze, 74].

Let £ be a regular expression; let | | E | | dénote the number of operators
" + . " in £. Given a language L we define the regular cost of L by:

reg(L) = min{ || E|| |E is a regular expression such that L(£) — L}

In order to give the upper bound, we first examine some results for
languages with a bounded number of words.

LEMMA 1.1: Let k, qeN and Aczl,k with Card 01) ̂  q then,

If we limit the number of words of the language we obtain

LEMMA 1.2: Let n, keNwithO^k^n, L c Zw and B ^ Z* with Card(B)^q,
then
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284 M. J, SERNA

Proof: Let 2""fc = {x1> . . . , x t } , t = sn~k, L can be written as

L = R1.x1+ . . . +Rt.xt

with

Ri={weXk\wxieL} for i = l . . .t

Note that as Card(J3)g<?, the number of subsets of B is less than or equal
to 2q. By groupîng the terms with Rt f) B = Rj n B we have:

^ with

As JB( e B, then Card(l^) <̂gr aiid by lemma 1.1 we get

r e g ( B ; ) ^ f c . ^ - l for i = l . . . />

where i4l5 . . . s ̂ p is a partition of E""fc; then

Therefore

Using the last lemma, we can establish the promised upper bound.

THEOREM L I : Let E with Card (£)=5. For any e>0 , for all sufficiently
large n, and for any L <= S" we

log s

Proof: Let k, O^fe^n, and p, O^p^sk, be parameter to be specifièd later.

Consider a partition of E* into pairwise disjoint sets Pl9 . . . ,P r , r — [skjp\
each of cardinality less than or equal to p.

Then we have E"= £ Pf.S"-f t soL= £ LH(P r .2
n - k )

therefore:
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From lemma 1.2, by letting q ̂ p we have;

therefore

reg(L)£-(n-fc)+-(
P P

By letting fe = logsn and/>== —2 log n + n log s we have that for all sufficiently
large n:

log s

In the next lemma, we compute an upper bound for the number of regular
expressions with bounded cost. This result is needed to prove the desired
lower bound.

LEMMA 1. 3: For some constant c we have:

Card{£|£ is a regular expression with \\E\\^R}S(CS)R+1-

Proof: First we compute an upper bound for Card{£| | |£ | | = r}.
A regular expression of cost r can be represented as a binary tree with r

nodes and r+1 leaves. We can describe this tree by a string of length 2 r + 1 .
For these 2 r +1 positions we have:

positions to operators +•er)
two operators in r positions, 2r

s symbols in r+ 1 positions, sr+1

Therefore,

and the sum over all possible values of r give us:

where c is a positive constant.
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We can get an expression for the lower bound:

THEOREM 1.2: Let 2 with Card (S)=s. For any e>0 and for almost ail
L c I" we have reg(L)>(l — e) sn/\ogs.

Proof. We prove that the fraction of subsets L such that

sn

log s

approaches Oasn->oo.
From lemma 1.3, we have an upper bound for regular expression with

cost JR or less. We search for an R such that it is solution of the équation:

(2s(8s)* + 1)/2s"^2~Ss" for some 5>0

we obtain that

K ( l 8 ) . •log s

And from theorem 1.1 and theorem 1.2 we have:

THEOREM 1.3: Let S with Card (£)= s. The Shannon effect holds for the
measure reg, and STeg(n) is asymptotically equal to sn/\ogs.

Theorem 1.2 has pleasant conséquences. Recall the connection between
the size of the regular expressions and the area of VLSI given in [Fl, Ull , 82].
Let A (ri) be the area alotted to a circuit for a regular expression of length n;

THEOREM 1.4: There exist positive constants d, e and ƒ such that for every
regular expression of length n^2, we get A(ri)^dn — e fn—f

By considering theorem 1.2 and theorem 1.4 we obtain as corollary a
theorem given in [Kr, Le, 84].

THEOREM 1.5: Every boolean function of n variables can be computed by a
VLSI circuit with area O (2").

We can extend the regular complexity to regular expressions over other
bases, as in [Sto, 79]. For example to the bases: { + , . , P ï } or {+,,,— },
where — dénotes complémentation relative to X". The results obtained for
both are the same; namely that every regular expression can be computed
with sn/log s connectives.

This means that bounds for extended regular expressions are in some sense
independent of the basis.
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Remark: Intuitively regular expressions seem to be close to boolean formula
in the sense that in both measures the associated graph is a tree with
opérations at the nodes. It is somewhat surprising to obtain different bounds
and prove that the regular cost is asymptotically more expensive than the
formula size.

2. RATIONAL AND CONTEXT-FREE COMPLEXTIÏES

The second non-uniform measure which we consider is the initial index of
finite automata. This measure was introduced in [Ga, 83].

Let A be a finite automaton. By \\A\\ we mean the number of transitions
of A. Given a language L we define the initial index of L as:

a(L) = min{11A \| | A is a non-deterministic automaton with L(A) = L}.

To prove the upper bound, we first construct an automaton which has
one accepting state for each word in 2fc. This construction can be made
recursively from corresponding automaton for Lfc~1. Then we have:

LEMMA 2 .1 : There exist an NFA of complexity sk+1 which for each word
of E* has a definite accepting state,

Consider now a language with a limited number of words, then in the
following lemma, we dérive a cost's upper bound to the automaton which
recognizes any subset of this language.

LEMMA 2.2: Let A <= Efc with Card(^4) = g, there exist an NFA of complexity
less than or equal to sk+1+q29~1 wich for each subset of A has a definite
accepting state,

Proof: We consider the automaton of the figure.
This automaton is obtained from the automaton constructed in the previous

lemma. We add one state for each Aj9 subset of A, and ^-transitions to
connect each word of Ai with Ar

Then the cost of computing all subsets of A is:

1 for subsets of cardinality 1
2 for subsets of cardinality 2
. for subsets of cardinality .
. for subsets of cardinality .
. for subsets of cardinality .
q for subsets of cardinality q

vol. 23, n° 3, 1989
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Al A, Ar

and then less than or equal to:

q + 2
(;)•-

+ q

We shall use the above lemma to obtain the upper bound for the initial
index;

THEOREM 2 . 1 : Let E with Card (X) = s. For any e>0 , for ail sufficiently
large n, and for any L <= Z" we have:

nlogs
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Proof: Let fc> OrgJfc^n and/?, 0^p^sk, be parameters to be specified later.
Let It

n~k = {x1, . . . , x j , t = s"^\ Then L can be written as:

L = R1xi+ . . .

with

Ri = {weI,k\wxieL} for i= 1 t.

Consider a partition P l5 . . . , P r , of Z \ with r = [sfc//>]> and such that the
cardinality of every Pf is at most p.

We have Ri = R( O P± + • • . + ̂ ; Pi Pr
 a n d we can construct the automaton

of the figure.
By techniques used in lemma 2.2, we can construct an automaton which

has an accepting state for each subset of Pv We do this construction for
each P(. Notice that as the underlying automaton for Sfc is not replicated,
the total cost is bounded by r.p.l*'1*^*1.

In the next step we construct the sets Rt from de sets Rt C\ Pj constructed
precedently. This is done by adding X-transitions. Then the number of
^-transitions increase in at most r.sn~k.

Finally we need to connect the automaton constructed in the previous step
with the automaton for S""fc, described in lemma 2.1. Then we have:

a(L)^5* + 1 +(p+l)2*- + -+(s+ l ) s n - f e .
P P

Letting k = [2 logs n] and p = [(log s) (n — 4 logs n)]
we get a(L)^(\ +e) sn/nlogs for all n sufficiently large. •

To prove the lower bound, we must first compute an upper bound for the
number of automata with bounded cost.

LEMMA 2.3: There exists a positive constant c such that

Card{A\Aisan NFA with \\A\\^R}£(CR)R.

Proof: First we compute the number of automata with q states and |j A \\ = r.
We can describe an automaton of this type as a string of length 2r, which is
formed by r symbols of 2 and r states. Then we have that the total number
of such automatas is less than or equal to

; ) " •
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So the total number of automatas with cost r, is less than or equal to:
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It follows that (cR)R is an upper bound to the number of automata, with
\\A\\ZR. m

Using the same techniques developed in [Go, La, Fi, 77], and applying the
previous lemma, we prove the following result which give us the lower bound
to the initial index.

THEOREM 2.2: Let S with Card (X)=s. For any s>0 a(L)>(\— e) sn/n\ogs
for almost all L <= E".

From this last theorem it follows in a straightforward manner that:

THEOREM 2.3: Let S with Card (2)=s. The Shannon effect holds for the
measure a and Sa (n) is asymptotically equal to sn/n log s.

Let us turn into non-uniform measure based on context-free grammars.
Let G be a context-free grammar, and let ||G|| dénote the sum of the

lengths of all the right terms in the rules of G.
Given a language L we define the context-free cost of L as:

cf (L) = min{ || G|| | G is a context-free grammar such that L(G) = L}.

This measure was introduced in [Bu, Cu, Ma, Wo? 81].
Note from the définition it follows that for all languages L c I" we have

ö(L)^2cf(L). An easy way to dérive an upper bound for context-free cost
is to construct the grammar associated to the automaton given in theorem
2.1. Then we have:

THEOREM 2.4: Let E with Card (S)=s. For any e>0, for all suffïciently
large n, and for any L c= E" we have:

nlogs

The next lemma, give us an upper bound to the number of grammars with
bounded cost.

LEMMA 2.4: There exists a positive constant c such that Card({G|G is a
context-free grammar with || G || ̂ R }) ̂  (cR)R.

Proof; First we compute the number of grammars, with m productions
and q variables, which have size r. We describe these grammars by the
concaténation of all rigth rules. The total number of grammars is at most:

r)(m)(s+qy.
mj\qj
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Therefore an upper bound to the number of grammars with cost r and m
productions, is

and an upper bound to the number of grammars with || G|| = r, is

z ( r j(s + m)r2mg(3(s + r))r.

Therefore (cR)R is an upper bound to the number of grammars with

By the same considérations made in theorem 2.2, we can state the f ollowing
results:

THEOREM 2.5: Let E with Card (E) = s. For any £>0 and f or almost ail
L c= E" we have: cf (L)>(1 - E ) sn/n log s.

THEOREM 2.6: Let S wit/i Card (S) = s. The Shannon effect holds for the
measure cf and Scf(n) is asymptotically equal to sn/nlogs.

The relationship between initial index, context-free cost and circuit size has
been studied in [Ba, Di, Ga, 85]. In that paper it is proved that initial index
is less powerful than context-free cost, and that context-free cost is less
powerful than circuit size. Less powerful means that exist languages with
succint descriptions in one measure that blow up in the other. It is interesting
to note that regarding their Shannon's fonctions, all these measures are in
some sensé equivalent.

The existence of languages with cost near to optimal is established in the
following publications; for regular expressions in [Eh, Ze, 74]; for initial index
in [Ga, 83] and for context-free cost in [Go, La, Fi, 77].
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