
INFORMATIQUE THÉORIQUE ET APPLICATIONS

S. VENKATASUBRAMANIAN

KAMALA KRITHIVASAN

C. PANDU RANGAN
Algorithms for weighted graph problems on the
modified cellular graph automaton
Informatique théorique et applications, tome 23, no 3 (1989),
p. 251-279
<http://www.numdam.org/item?id=ITA_1989__23_3_251_0>

© AFCET, 1989, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1989__23_3_251_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 23, n° 3, 1989, p. 251 à 279)

ALGORITHMS FOR WEIGHTED GRAPH PROBLEMS ON THE
MODIFIED CELLULAR GRAPH AUTOMATON (*)

by S. VENKATASUBRAMANIAN (1), KAMALA KRITHIVASAN (*)

and C. PANDU RANGAN (*)

Communicated by J. BERSTEL

Abstract. - A Modified Cellular Graph Automaton (MCGA) is formulated and algorithms for
solving weighted graph problems viz., minimum weight spanning tree construction (based on
KruskaVs [5] sequential algorithm) and single source shortest paths (based on Dijkstra's [6]
sequential algorithm) are described on it. The original Cellular Graph Automaton (CGA) of Wu
and Rosenfeld [3, 4] is modified by the introduction of a second type of Finite State Automaton
(FSA) on the edges of the input d-graph. The équivalence of the MCGA to the CGA with respect
to the acceptance of graph languages is shown. The memory size of the FSA in our MCGA is
made proportional to the area (i. e., the total number ofnodes) of the input graph, as suggested by
Wu and Rosenfeld [3, 4]. It is shown how the above two modifications to the original CGA
facilitâtes construction of simpler and faster algorithms for solving weighted graph problems.

Résumé. - On définit la notion d'automate cellulaire modifié pour graphes (ACMG) et on décrit,
dans ce cadre, des algorithmes pour des graphes pondérés, comme le problème de Varbre recouvrant
minimal, ou le problème des plus courts chemins à partir d'une origine commune.La modification
par rapport à V automate cellulaire original de Wu et Rosenfeld consiste en Y introduction d'un
deuxième type d'automates finis qui est associé aux arêtes du graphe.

1. INTRODUCTION

Von Neumann's book on Theory of Self-Reproducing Automata was the
pioneering work on cellular automata. A. R. Smith [1] studied in detail the
acceptance powers of the one-dimensional cellular automata and itérative
automata. The itérative automaton is slightly different from the cellular
automaton in the sensé that the input string is fed into the automaton from
one end of the chain of finite state automata. The cellular graph automata

(*) Received January 1987, revised September 1988.
C) Department of Computer Science and Engineering, Indian Institute of Technology, Madras

600036, India. Net Address: — uunet! shakti! shiva! rangan

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 89/03 251 29/S4.90/© Gauthier-Villars

2 5 2 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

of Wu and Rosenfeld [3] (CGA, hereafter) incorporâtes the input pattern
into the initial configuration of the underlying graph.

The CGA, which is more gênerai than the 1-D cellular automata or 2-D
cellular arrays, was first studied by Rosentiehl [2] under the term "intelligent
graphs", apparently because the network of finite state automata (FSA,
hereafter) can measure the properties concerning its own underlying structure.
He presented algorithms to find Eulerian paths, spanning trees and Hamil-
tonian cycles on this "intelligent graph" where all nodes have fixed degree.
Wu and Rosenfeld [3] introduced special kind of single degree nodes that
are always in "quiescent" state, thus enabling a node to have degree less
than the maximum possible number for that FSA. The graph obtained after
the introduction of such single degree nodes is called a d-graph, where each
node has à arcs emanating from it and each arc end at a node is given a
distinct number between 1 and à. Such rf-graphs have also been studied by
Mylopoulos [8], as mentioned in Wu and Rosenfeld [3]. The two papers on
cellular Graph Automata by Wu and Rosenfeld [3, 4] give a fairly comprehen-
sive treatment of the CGA which can accept various kinds of graph structures
of bounded degree and also measure their various graph properties viz.,
radius, area, centre, cut-nodes, blocks, etc. Their formalism of having only
single type of FSA at all the nodes of the input d-graph was not found to be
particularly suitable for solving problems related to digraphs, weighted graphs
etc., where the edges also bear some special properties e. g., direction, weights,
labels, etc. It was found that algorithms on this CGA for solving problems
like finding fundamental cutsets, rooted acyclic graph récognition, minimum
weight spanning tree construction, single source shortest paths, etc., become
unduly complicated and inefficient This has led us to propose a slight
modification to their original CGA, which is the introduction of a second
type of FSA on the edges of the input rf-graph. These edge automata take
care of the special properties viz., direction of digraph edges, costs of the
weighted edges, etc., so that the algorithms become simpler and f aster. We
have also açhieved improvement in the time complexities of the algorithms
by making the memory size of the FSA proportional to the area (i. e., the
total number of nodes) of the input graph. This was actually suggested by
Wu and Rosenfeld themselves as a case for further research, and accordingly
we observe its effect of speeding up the algorithms.

We first define our modified CGA in the next section. Section 3 establishes
the équivalence (w. r. t. acceptance power) of CGA and MCGA. In section 4,
we give details of certain high level descriptions of actions that are frequently
used in our algorithms. In section 5, we present the actual algorithms on

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 3

our modified cellular graph automaton for solving various weighted graph
problems.

2. DEFINITION OF THE MODIFIED CELLULAR GRAPH AUTOMATON

2.1. Graphs

2 . 1 . 1 . A gênerai graph

A graph in the context of our discussions is described by a five tuple
(JV, A, fN9 fE, g) where:

TV is a finite non-empty set of the nodes of the graph;
A is a collection of pairs of distinct éléments of JV, called the set of arcs or

edges;

fN : N -> LN is a function that maps each node in N to a label in LN;

fE: A-+ LE is & function that maps each are in A to an edge label in LE;

giNxN^Z is the neighbourhood ordering function that defines the
ordering of the immédiate neighbours of a node. That is, if g (n, m) = i9 then
we say that m is the ï-th neighbour of n. "g" is a partial function because it
is not defined for all the éléments of NxN. Note that "g" is defined for
only those pairs where the second component node is a neighbour of the
first component node. LN and LE are finite non-empty label sets.

2.1.2. d-bounded graph

A d-bounded graph is a graph in which the degree of every node is bounded
by the integer "d". In our context, d is a constant and it is independent of
the total number of nodes in the graph. For example, figure 1 a illustrâtes a
4-bounded graph.

2.1.3. d-graph

To any d-bounded graph, we can add suitable number of dummy nodes
and introducé new edges between the nodes of the graph that have degree
less than "d". We introducé the edges in such a way that each non-dummy
node has degree d. Since the dummy nodes introduced have all degree one, g
may be extended for the dummy nodes as follows: g (x, m) = 1 where x is a
dummy node and m is adjacent to x,

Now the resulting graph will have nodes with degree d or one. We recall
once again that only the newly introduced nodes (dummy nodes) have degree
1 and all of them have a reserved label #. The label # is not used for any

vol. 23, n° 3, 1989

2 5 4 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

other node that has degree d. We will call the resulting graph as a d-uniform
graph or a d-graph in short.

(Fig. 1 b illustrâtes the resulting 4-uniform graph of the 4-bounded graph
given in fig. 1 a.)

2.1.4. Underlying graph

The d-bounded graph obtained after the deletion of all the vertices labeled
in a d-graph F is also referred to as the underlying graph U(F).

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 5

2.2. Modified ceUular d-graph automaton

2.2.1. Informai description
2.2.1.1. General description

Our modified cellular graph automaton, which is working on a d-graph,
will have only two kinds of finite state automata (FSA), with one kind of
FSA placed at every vertex of the input graph and the other kind on every
edge. We shall dénote by MNA the FSA that is placed on the vertices and by
MEA the FSA placed on the edges. In the earlier models, the automaton
placed at a vertex can "know" the state of the automaton placed on each of
its neighbouring nodes. But, in our model, we use an edge automaton to
pass "information" between the two node automata placed on the end
vertices. We represent a typical state of the edge automaton as a 3-tuple
where the second and last component dénote the states of the node automata
placed at the end vertices of the given edge and the first one is related to the
edge itself. We shall now turn to the informai description of how the node
automata and the edge automata actually work.

2.2.1.2. Node automaton

A node automaton's next state is dependent upon its current state and the
states of the d edge automata that are placed on the d edges incident on the
node. Recall that a typical state of an edge automaton is a 3 tuple; the first
one pertains to the information related to the edges and the second and third
components are the states of the end vertices. Therefore, the current node's
state may occur as the second or third component in the state of an edge
automaton. If the current node's state occurs as the second component then
its neighbour's state will occur as the third component and vice versa. Thus,
we see that at any given node if we want to access the state of a neighbouring
node, then we must look at the second or third component of the state of
the corresponding edge automaton depending upon the given node's state
occurring as third or second component of the state of the edge automaton.
Observe that the "g" function provides an order to the neighbours of a node
and that every (non-dummy) node has d neighbours. Also note that g is not
symmetrie, Le. g(n,m) = i need not imply that g(m,ri) = l We specify that
the ï-th neighbour's state occurs in the corresponding edge automaton's state
as fe-th component (fe = 2 or 3) by the pair (i,k). For any given node, the
séquence (l , ^) , (2,fc2), . . ., {d9kd) defines a "neighbourhood state position
vector" or in short a "neighbourhood vector". The neighbourhood vectors
do not change and are determined once for all by the input d-graph.

vol. 23, n° 3, 1989

2 5 6 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C PANDURANGAN

Let u and v be adjacent nodes in the d-graph. Fix u. NOW V might be the
z-th neighbour of u and u might be the 7-th neighbour of v. We may
incorporate this mutual order in the neighbourhood vector of u by replacing
the pair (i,kt) by (i,fej,j). Such a séquence of triplets are called mutual
neighbourhood vector of u. In fact, the first component of the tuple in the
above définitions can be dropped as they are implied by the order of tuples
in the vector. Henceforth, we will assume that the neighbourhood vectors
have the form (2, 3)d and mutual neighbourhood vectors to have a form
((2, 3) x Zd)

d, where Zd is the set (1,2, . . ., d).

2 .2.1.3. Edge automaton

We shall now see what is actually involved in the transition of an edge
automaton. Recall that a second kind of FSA is placed on each of the edges
of the input d-graph. Actually, this is the place where our MCGA differs
from the original CGA of Wu and Rosenfeld [3,4]. In their CGA, each node
automaton is directly connected to d other neighbouring node automata
whereas in our case it is connected to the d incident edge automata. In order
to retain the properties of the original CGA (while trying to improve it), it
has become necessary that the intervening edge automaton (between every
pair of node automata) communicate the states of the end nodes to each
other. To achieve this, the state of an edge automaton is always in the form
of a 3-tuple in which:

(i) The first component gives the information relating to the actual state
of the edge automaton and in f act, might itself be a 2-tuple (we,qe) where we

is the constant label or weight that is to be associated with the edge automaton
throughout the life of the edge automaton, and qe is used to record the
information concerning that edge that changes with time.

(ii) The second and third components directly indicate the states of the
two end nodes and thus enable them to know each others' state.

The transition of an edge automaton actually involves the storing of the
end nodes' states in the respective (2nd or 3rd) components as well as an
updation (if any) of qe in the first component. As a given node automaton
knows the state of a neighbouring node automaton only through the state
of the intervening edge automaton, the alternation of the transition phases
of the edge automata and node automata is necessitated. Thus, in each time
step, our MCGA exécutes two phases of transition, wherein,

(i) the first phase corresponds to that of all the edge automata of the
MCGA, and

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 7

(ii) the second phase corresponds to that of all the node automata of the
MCGA.

2.2.1.4. Initial configuration

The initial configuration for the MCGA consists of the input d-graph with
each of the node automata and the edge automata bearing a label from the
sets LN and LE respectively. The node automata placed on the "dummy
nodes" that have a degree one have their initial (unchanging) state as "#".
The corresponding edge automaton (whose one end node has a label "#")
also bears a label "#" that also does not change with time. (Recall the
notation introduced in définition 2.2.1.3. In f act, # is nothing but We of
définition.) This is because the pendant ("dummy") node and the correspond-
ing pendant edge do not form a part of the underlying graph that actually
has the labels assigned to edges and nodes.

2.2.2. Formai définitions

The MCGA is a 5-tuple (F, MNA9 MEA, HNA, HEA) where:
T is the input d-graph
HNA—is the neighbourhood vector defined for all the nodes in F. The first

component of the z-th element in this vector indicates to the node automaton
which component (2nd or 3rd) of the i-th edge automaton is to be considered
in its transition function and the second component gives the mutual neigh-
bourhood number, Le., if HNA(n) (ï,2) = /c, then this node n is the /c-th
neighbour of its i-th neighbour.

MNA—is the first kind of FSA (QNA, bNA) placed at each of the nodes. The
transition function is:

§ ^ : QNA x QEA x H NA -* QNA

(if qNA = #, then <f+A
x = # for all instants, t = 1,2, . . .).

HEA—is the neighbourhood vector for the edge automaton. For a given
edge automaton e, the two éléments of HEA (e) give the two are end numbers
of this edge with respect to the two adjacent nodes.

MEA — is the second kind of FSA {QEA, §EA) placed on the edges of F. The
transition function is:

&EA : QEA x QIA x HEA -> QEA.

Usually,

&EA ((fe Qu Qii), <lu q'2, (t h tl)) =(C q'u q'2).

vol. 23, n° 3, 1989

2 5 8 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

A configuration of M is a pair of mappings, one corresponding to the
nodes and another for the edges. The mappings assign states to the nodes
and edges and we dénote them by cN and cE respectively. Thus,

and

CE: A —> QEA

and the configuration itself is denoted as c — (cmcE).
At the end of a time step, the configuration of the MCGA might change

from, let us say, c to c' and we dénote that by c\ —c'. We also dénote the
initial configuration by c0 and the configuration resulting at the end of the
t-th time step by cv The corresponding functions are denoted by cN t and c£ t.

One can define a MCGA with distinguished node as the one for which a
particular state in the set QNA is marked as distinguished, which is recognisa-
ble by all FSA, and the node bearing this as the label at the initial step is
called a "distinguished node". This unique label usually does not change for
that node and is used to initiate many algorithms. A configuration ck at the
end of the fc-th time step is said to be a terminal configuration if the node
automaton with a distinguished label D enters into a final state.

One significant improvement on the size of the input symbols for the node
automaton in our MCGA is noted below as a lemma.

LEMMA 2 .2 .1: Ifthe state ofevery node automaton is always in the farm of
a d-tuple, (storing in its i-th component the information relevant to its i-th
neighbour,) then the total number of the symbols for the original CGA is d2.
However, for the MCGA, the number of input symbols is just 3d.

Proof: Usually, the node automata send some signais to one or more of
their d neighbours. In that case, their states are in the form of a d-tuple where
each component contains some information relevant to the corresponding
neighbour. For the original CGA, the node automaton has to consider the
d-tuple from each of its d neighbours before getting into its next state. This
means that each node automaton has to process d2 input symbols at every
transition step. However, we shall see how an additional edge automaton
between every pair of node automata reduces this number by an order of
magnitude (with respect to "d"). An edge automaton, by using the informa-
tion provided by HEA (e) (the neighbourhood vector for the edge automaton),
can register in its second and third components only those components of
the d-tuples of its end nodes that will be relevant to each other.

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 9

For example, define the neighbourhood vector for a given edge automaton
e as HEA(e) = (tl,t2)eZ% for each edge automaton e, where e is the 11-th
incident edge on its first end node and 12-th incident edge on its second end
node. Assume that the state of each node automaton is in the form of a d-
tuple denoted as

where qi is the information relevant to the i-th neighbour of that node. Then,
in the case of the original CGA of Wu and Rosenfeld, the transition of a
node automaton is typically of the form

(0* i> -*>Ud))>H00) = (0 i , k i » « 2 , k 2 > • • • >0d,w)

where ki = H(ri) (i), that is, rc is the fci-th neighbour of its i-th neighbour.
Thus, the node automaton at n has to process d2 input symbols at every
transition step.

However, in our MCGA, the transition of the edge automata précèdes
that of the node automata. The transition of the edge automaton placed on e
is:

tel 1, 02, 2> • • • » 02, d))5 ̂ £ ^ («)) = (0e? 01. f 1, 02, *

so that, for node ny

&NA ((0« 15 0n 2? • * - > 0nd)5 (0e 1 » 0e 2» • -

where each gei is in the form of a 3-tuple.

Thus, the intervening edge automaton reduces the number of input symbols
for a node automaton in this case from a possible d2 in the case of the
original CGA to 3 d in our MCGA. This leads to the réduction in the size
of each time step.

2.3. Modifïed cellular d-graph languages

A modified cellular d-graph acceptor is an MCGA

M=(r,MNAiMEA,HNA,HEA)

vol. 23, n° 3, 1989

2 6 0 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

with a distinguished node such that MNA is a finite state acceptor specified
by the 4-tuple

\Ql, NA>

where (i) (QNA, 5NA) is an FSA of the node defined as in the previous section;
(ii) QItNA is the set of initial states. QI>NA = Ld

N, and (iii) FNA^QNA is the set
of final states.

An initial configuration of Ml is denoted as c0 and it consists of: (i) the
function cNy 0 that maps N9 the set of nodes of the input d-graph F into LN,
the set of node labels of F, and (ii) the function c£) 0 that maps A> the set of
edges in F into LE, the set of edge labels of F.

A configuration of the modified cellular d-graph aeceptor M, at the end
of m time steps, denoted as cm> is said to be a terminal configuration whenever
the finite state acceptor MNA placed on the node with a distinguished label
"D". (appearing as a part of its state) has entered into a final state at that
instant. Symbolically, if n is a node whose corresponding node automaton
bears the label "D" in its state, then, cN m(ri)eFNA.

M=(T9MNA,MEA,HNA,HEA)

accepts the d-graph T = (N, A,fNifE,g) if there is a finite séquence of configur-
ations c05 cl9 . . .,cm, such that co = (fNJE) (recall that fN and fE are the
labeling functions of F equivalent to cNt 0 and cEt 0 respectively) is an initial
configuration, cm is a terminal configuration (m>0) and ct\ —ci+1 for 0< i<m
as defined above. For a given finite state acceptor on the nodes

MNA = (8 1 , NA> QNA> §NA> FNA)>

and the FSA on the edges MEA = (QEA, bEA), we can define the class of
modified cellular graph acceptors determined by MNA and MEA as

C (MNAi MEA) = { M | M = (F, MNA, MEA, HNA, HEA) }

where HNA and HEA are neighbourhoôd vectors as defined earlier.

The language of d-graphs accepted by C (MNA, MEA) is the set

& (M^ , MEA) = { r | M = (r, MNA, MEA, HNAi HEA)e C (MNA, MEA) accepts F }.

A d-graph F is accepted by C(MNA, MEA) if and only if Te£f?{MNÂJMEA).

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 261

3. EQUIVALENCE OF MCGA AND CGA

Let us dénote the language accepted by an MCGA as LMCGA and that by
a CGA as LCGA. We shall make use of this notation in our proofs for the
équivalence of MCGA and CGA. Also, throughout this section, whenever
NA and EA are used, they shall refer to node automaton and edge automaton
respectively.

In the following Lemma, we shall dénote the class öf MCGA determined
by a pair of FSA, i. e., Mx N placed on the nodes and M1E placed on the
edges, as C(M1N9MlE). We shall also dénote by C(M2N) the class of CGA
determined by the FSA on the nodes, i. e., M2N.

LEMMA 3.1: Given a language LMCGA accepted by C (Mt N, Mx £) , there exists
a corresponding class of CGA C(M2N) tnat accepts the same language LMCGA.

Proof: Consider an arbitrary rf-graph F e LMCGA. Given that
M1-(T,M1N,MlE,HNAiHEA), we shall construct the corresponding CGA
M2 = (F,M2iV,H) formed with respect to the d-graph. The proof proceeds in
three parts. They are:

(i) équivalence of initial configurations of MCGA and CGA;

(ii) simulation of transitions of MCGA by CGA;

(iii) équivalence of terminal configurations of CGA and MCGA.

First, we shall see how the initial configuration of the MCGA Mx is
achievable in an equivalent manner by the CGA M2.

(i) Equivalence of the initial configurations.

The initial configuration of the MCGA M1 consists of the node and edge
automata in their initial states that correspond to certain labels on the nodes
and edges respectively of the input d-graph F. We can build a corresponding
initial configuration for the CGA M2 = (F, M2 N,H), where the FSA on the
nodes carry the labels of the d incident edges apart from their node labels.
Thus, the label of each node in the input rf-graph F occurs in the state of
both the end nodes' automata. For example, consider a 3-graph (d = 3 for all
the non-dummy nodes) that is specified as input to MCGA Mx and accepted
by it. (Note that all the dummy nodes and edges bear a label "#", indicating
that the FSA on those edges and nodes do not change their state at any
transition step.) The initial state of an NA in M\ is of the form (p,p,p) where
p is the label of the node. The initial state of an EA is [(a, qOa), qOm, qOn] where
a is the label of the edge. Correspondingly, in the case of the CGA M2, the

vol. 23, n° 3, 1989

2 6 2 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C PANDURANGAN

initial state of a typical NA is

((P, fa 4q«))> (P> (P, qOb)\ (p, (c, qOc))).

Thus, each NA of the CGA M2 incorporâtes in its i-th component whatever
is found in the first component of the 3-tuple of the corresponding i-th
incident EA. The second and third components of the E A of M x are not
included in the NA of M2 as each NA of M2 can directly sense the state of
its d neighbouring NA.

(ii) Simulation of the transition step.
The transition step of the MCGA involves two phases. In the first phase,

the EA undergoes a transition that involves.

(a) copying the states of its end nodes into its second and third components,
and

(b) an updation (if any) of the second part of the 2-tuple placed in its first
component.

Now, each NA of the CGA M2 also has two transition steps that corres-
pond to a single step of the MCGA Mt. The first in such a pair of transitions
will correspond to the first phase of the Mx

9s transition. In this step, the 2-
tuples placed in each of the components of the NA*s d-tuple (that correspond
to the first components of the EA's state in Mx) undergo a change in exactly
the same manner as the corresponding E A in M1. In the next step, the other
parts of the d-tuple states of the node automata that represent the NA's state
in M1 undergo a transition based on the 2-tuples in the same manner as the
NA of M t .

For example, if SNA and dEA are the transition functions of the NA and
EA respectively of the MCGA Ml5 then their actions can be simulated in
two transition steps by the 5 of the CGA M2's NA as follows:

The state of each NA also has a component (apart from the regular
d-tuple) that toggles with respect to time to indicate which part of its state
(i. e., either the part corresponding to the EA of M1 or that of the NA of
Mt) is to undergo a change at that time step. Assume that if this component
has a value zero, then, at that time step, the exécution of the transition
function results in a change in that part of the NA's (of M2) state that
corresponds to the d incident EA of the MCGA Mv This change is actually
accomplished by executing the 8EA of M± on all the d 2-tuples found in NA's
(of M2) state. In the next time step, the toggle variable assumes a value one
and hence in this time step, the NA of the CGA M2 directly exécutes the
5NA of M1 on that part of its state that corresponds to the NA of Mx.

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 263

(ni) Equivalence of terminal configurations.

It can be easily seen that once: (a) the initial configuration, and (b) the
individual transition steps of the MCGA M t are simulated in an equivalent
manner by the CGA M2, then, whenever the distinguished node (with a
special label DeLN) of the MCGA Mt enters a final state at an instant "t"
then the corresponding NA of the CGA M2 also enters its final state at a
time instant "2t".

Thus, the CGA M2 = (F,M,iJ) accepts the input d-graph F. Since this
holds good for any FeLMCGA, we state that for a given d-graph language
LMCGA accepted by a class of MCGA C(M1N,MiE) determined by the pair
of FSA M1N and MlE placed on the nodes and edges respectively of the
input d-graphs, then there exists a corresponding class of CGA C(M2N)
determined by the node automaton M2 N that also accepts the same language

In the following Lemma, the class of CGA determined by the FSA on the
nodes MiN is referred to as C(M1N). Also, the class of MCGA determined
by the pair of FSA M2 N and M2 E placed on the nodes and edges respectively
of the input d-graph is referred to as C (M2 N9 M2 E).

LEMMA 3.2: Given a d-graph language LCGA accepted by C(M1N% there
exists a corresponding C(M2 N, M1E) that accepts the same language LCGA.

Proof: Consider an arbitrary d-graph FeLCGA. The CGA Ml = (r , Mx N, H)
and the corresponding MCGA M2 = (F, M2 N, MEA, HNA, HEA) are formed
with respect to this d-graph F. In line with the proof of Lemma 3.1, we
proceed by showing how the (i) initial configuration, (ii) the transitions, and
(iii) terminal configuration of the CGA Mx are simulated by the MCGA
M2.

(i) Equivalence of the initial configurations.

In the case of the CGA Ml9 the initial configuration consists of each NA
bearing the label of its corresponding node (an element of the set of labels
L, as described in Wu and Rosenfeld [3,4]). Note that there is no label for
the edges at all in the case of the d-graphs input to the CGA. Thus, what
the MCGA M2 does is to include these node labels into the corresponding
JVyl's state and the first component of each EA$ 3-tuple contains a quiescent
symbol (as there is no label for the edges).

(ii) Simulation of transition steps.

At each time step, the transition of the CGA Mx involves a change in
state of each NA of M1 depending upon the state of its d neighbours. The

vol. 23, n° 3, 1989

2 6 4 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

MCGA simulâtes this action of Mx in the two phases of its transition step
as follows:

(à) The first component of the EA's 3-tuple is always in a quiescent state
and does not change with respect to time.

(b) In the first phase of the transition step, each EA of M2 just includes
the states of its two end nodes (which are the same as that of the NA of the
CGA M J into its second and third components.

(c) In the next phase, each NA of M2 takes the relevant component from
the state of each of its d incident EA and undergoes a transition in the same
way as the corresponding NA of the CGA Mv

Thus, the two phases of the MCGA M2's transition completely simulate a
single transition of the CGA Mv

(iii) Equivalence of the terminal configurations.
It can be easily seen that once (a) the initial configuration, and (b) the

transition steps of the CGA M t are simulated in an equivalent manner by
the MCGA M2, then, whenever the NA with a special distinguished label
DEL enters a final state in the CGA Ml9 then the corresponding NA of the
MCGA M2 also enters its final state, accepting the same input d-graph I\

Since F is an arbitrary element of the set LCGA, we can state that the class
of MCGA C (M2 N9 M2 E) determined by the pair of FSA whose actions are
as described above, accepts the same d-graph language LCGA that is accepted
by a given class of CGA C(M1 N).

Combining the above two Lemmas, we can state our équivalence theorem
as follows:

THEOREM: MCGA and CGA are equivalent with respect to the acceptance
ofd-graph languages.

4. DETAILS OF CERTAIN HIGH LEVEL DESCRIPTIONS

4.1 . Introduction

We now give brief explanation for certain high level descriptions of actions
viz., sending and receiving signais, waiting for a signal, etc., in tenus of the
actual transitions of the node automaton (the action of the edge automaton
is similar). Since states are represented as tuples, we see that we can interpret
certain components of the tuple to represent some particular kind of informa-
tion. Since every node automaton has complete knowledge about the states
of all the neighbouring nodes, we immediately conclude that every node

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 6 5

knows all the information available with its neighbours. Now, the node
automaton can either ignore the information thereby blocking its propagation
or move the information into its own state thereby making the information
available to some other node automaton. This phenomenon is what we
informally refer to as "flow of information" or "propagation of signais".
This global arrangement is predetermined for that particular MCGA designed
for executing the desired algorithm on an input d-graph.

4.2. Sending and receiving signais

In this case, the state of each node automaton is in the form of a 3-tuple
[q, (si, . . ., Sj), (s'/, . . ., s'd')] where the second and third components consist
of d signais to be sent to and received from d neighbours respectively. Each
signal is of the form "name (arg)" where "arg" is the (optional) information
to be communicated to various nodes. For sending a signal S to the z-th
neighbour, the node automaton n places it on the z-th position of the second
component of its state. The corresponding edge automaton, during its phase
of opération, removes S from that position and places it in its own state.
The node automaton at the other end then finally transfers the contents of
the state of the edge automaton to the k~th position of the third component
of its own state (where n is its fc-th neighbour). Thus, sending and receiving
signais involves nothing but transferring certain predefined positions of the
state from a node automaton to an edge automaton and then from the edge
automaton to the other adjacent node automaton.

4.3. Storing son and father nodes

For a given node, in order to remember which one of its neighbours is its
father and which are its sons, it maintains an additional d-tuple (s1? . . ., sd)
where st is equal to

(i) F, if the z-th neighbour is its father,
(ii) S, if the z-th neighbour is its son,

(iii) TV, if the z-th neighbour is a non-special neighbour.
(This additional d-tuple is maintained as part of the first component.)

4.4. Waiting for a signal

This is achieved by entering a state 4wait<name) where "name" is the id of the
signal which the node automaton is waiting to receive. The node automaton
performs no action as long as the "name" is not available in the third

vol. 23, n° 3, 1989

2 6 6 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C PANDURANGAN

component of its state. It scans that d-tuple at every time step to détermine
whether "name" is present. If yes, it gets into <?wait(over) s t a t e a n d perforais
the required actions. #wait (name) is kept as part of the first component.

4.5. Relaying a signal

Section 4.1 described how a signal is transferred from one node to another.
Now, we shall briefly describe the spécifie actions of the node automata that
resuit in the traversai of a signal over a path containing more than one edge.
This action is referred to as "relaying". For relaying a signal without doing
or undergoing any modifications, the node automaton just transfers that
signal from the d-tuple in its third component to the requisite positions of
the d-tuple in the second component of its state that correspond to the
neighbours that signal is to be sent to. This action is carried out at each of
the intermediate nodes of the path traversed by the signal that results in its
relaying.

5. ALGORITHMS

5.1 . Introduction

It may be recalled hère that section 2 presented the définition of our
MCGA and the language it accepts. Section 3 established the équivalence of
MCGA and CGA. It is evident that the size of the sets QNA (the set of states
of the node automaton) and QEA (the set of states of the edge automaton)
détermine the amount of "memory" associated with those automata. When
we make use of the cellular graph automata consisting of these two kinds of
FSA to solve certain graph theoretic problems (as in Wu and Rosenfeld
[3,4]), it is préférable to have the "memory" (or, the number of distinct
states in the sets QNA and QEA) of the automata to be proportional only to
the degree "d" of the input i-graphs. It can be easily seen that such an
algorithm that requires the FSA to have memory size that is function of only
"d" will facilitate a given MCGA (designed for a particular "d") to be used
on an input d-graph of any size to obtain a solution. (Hère "size" refers to
the area i. e., the total number of nodes in the input d-graph). This kind of
space complexity is easily achieved for certain graph problems like obtaining
the area of the input d-graph, finding the radius, etc. The algorithms for
solving these problems are given in Wu and Rosenfeld [3,4]. However, for
certain other more complex graph problems, especially those like the weighted
graph problems that are considered in this paper, it has not been possible to

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 6 7

achieve a space complexity that is independent of the area (total number of
nodes) of the input <i-graph. This may be due to the inherent complexity of
the problem. Also, if one tried to limit the memory of the automata to be
proportional only to "d", it was found that the number of time steps required
for the termination of such algorithms was either exponential with respect to
the area or a polynomial of a high degree. Hence, it has been found more
reasonable to assume that the memory of the FSA involved is also propor-
tional to the area of the input <2-graph, actually a small function of it [e. g.,
memory log (area)]. This has also been suggested by Wu and Rosenfeld [3,4].
It is to be also noted that in our case of weighted graph problems, the edge
automata should have their memory size that is proportional to the largest
weight possible in the input d-graph.

In this section, we present four algorithms for solving certain graph theore-
tic problems viz., distinct labeling of all the nodes of an input d-graph,
distinct labeling of all the edges of a weighted d-graph based on a global
sorting of their weights, minimum weight spanning tree construction and
single source shortest path for weighted rf-graph, in that same order. Through-
out this section, the edge automaton will be abbreviated as E A and the node
automaton as NA,

5.2. Distinct labeling of all nodes of a d-graph

5 .2 .1 . The algorithm

In this section, we present an algorithm on our MCGA that assigns a
distinct label for all the nodes in the input d-graph F.

The main idea behind this algorithm is the numbering of the nodes based
on a postorder traversai of a breadth first spanning tree of the input d-graph.

We briefly give the principle behind the algorithm before presenting the
actual decentralised version. Given an arbitrary tree in which the internai
nodes may have none, one or any number of sons, the postorder traversai of
that tree is defined as follows:

(i) visit the subtrees from the one with the least séquence number to the
one with the highest (the séquence number of a subtree, in the case of the d-
graphs that we will be concerned with, is the same as the are end number of
the corresponding edge and it lies between 1 and d);

(ii) visit the root node.
Note that the above rules of traversai are to be applied recursively in the

tree. Consider as an example the tree shown in the figure 2 whose post-order
numbering of all the nodes is also given. With respect to the figure, it can be

vol. 23, n° 3, 1989

2 6 8 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

noted that 2 is the immédiate left cousin of 7 (in this case it is brother
straightaway) and 3 is the immédiate cousin of 4, etc. Also note that the
total number of nodes in the subtree rooted at the node 7 is equel to 5
whereas it is 1 for the node 4. Thus, it can be easily seen that given any
arbitrary tree, the postorder number of any node in that tree is equal to the
sum of the total number of nodes in the subtree rooted at that node and the
post order number of the immédiate "left" cousin of this node. Thus, the
main purpose of this algorithm is to make available these two informations
to each of the nodes in the BFST so that they can label themselves with the
sum of these two numbers. The BFST is constructed during the forward pass
of the "CONSTRUCT" signal. Each node records the total number of nodes
in its subtree during the backward pass of the "REPLY" signais. After the
"REPLY" signais reach the root node, it initiâtes transmission of "LABEL"
signais towards the leaves which inform each node of the postorder number
of its immédiate left cousin. Thus, this algorithm leads to correct numbering
of nodes.

The algorithm is as follows:

(1) The distinguished node D sends a "CONSTRUCT" signal to all its
neighbours.

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 6 9

(2) A node receiving one or more "CONSTRUCT" signais simultaneously
marks the sender with the lowest are end number as its father and then sends
a CONSTRUCT signal to all its other neighbours. It ignores any subséquent
receipts of CONSTRUCT signais. It sends a REPLY signal to its father
node so that it can note the are end leading to its son node.

(3) A node that receives no "REPLY" signais (leafnode) sends a COUNT
(O) signal to its father.

(4) An E A receiving a COUNT (s) signal from one end node adds one to
s and sends COUNT (s+1) to its other end node, after noting down (s+1)
in its state as SUBNO.

(5) A node ha ving more than one son waits still it gets COUNT signais
from all its sons, adds up all the arguments and sends the sum in a COUNT
(s) signal to its father.

(6) A node ha ving K sons maintains a iC-tuple of the form

O,SuS t-hS2, . ; . , X si) w h e r e siis t h e argument of the "COUNT" signal

received from its z-th son. It also maintains the sum of the arguments of all
k

the COUNT signais received from its sons, as BASENO = £ s£+ 1.
i = i

(The case K=0 will occur at every leaf node of the spanning tree. In such
a case, the leaf nodes do not maintain any K-tuple and assign a value of one
to their BASENO.)

(7) The root node equates its own label named NODENO to its BASENO.

(8) The root node, after labeling itself sends its entries in the X-tuple, to
the corresponding sons in a LABEL (ct) signal (where ct is the i-th component
in the fe-tuple corresponding to its i-th sons.

(9) An EA receiving a LABEL (c£) signal, adds its SUBNO value to ct

bef ore transmitting to the other node.

(10) An internai node receiving a LABEL (c) signal subtracts its BASENO
from c, adds the résultant to each entry in its own /c-tuple and then sends
the final résultant to each of its corresponding sons in a set of LABEL
signais. It sets its own NODENO as "c".

(11) A leaf node sends a COMPLETED signal to its father node after
determining its NODENO.

(12) An internai node sends a COMPLETED signal to its father only
after receiving COMPLETED signais from all its sons.

vol. 23, n° 3, 1989

2 7 0 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

(13) Whenever the root node receives COMPLETED signais from ail its
sons, it terminâtes the process.

It can be seen that steps (l)-(2) construct the rooted tree and store father
and sons.

(3)-(7) enter in the memory of a node the number of nodes of the subtree.

(8)-(10) set up the post order numbering.

(11)-(13) terminate the process.

5.2.2. Complexity analysis

(a) Time steps

The worst case number of time steps required for this algorithm to termina-
te = height of the tallest BFST in the given graph = diameter of the
graph = O (n) (where n = total number of nodes).

It can be seen that worst case rarely occurs and the diameter is mostly a
fraction of "n'\ Hence this algorithm is better than the one suggested by Wu
and Rosenfeld [3] where distinct labeling is done using the order of visiting
the nodes in a DFST construction. This was found to take always 2n — 2
time steps.

(b) Space requirement

As is evident, each E A requires O (log n) memory while each NA requires
O (rflog n) = O (log n) memory only.

From the foregoing discussion, it can be stated that, THEOREM. There
exists a Modified Cellular Graph Automaton denoted as Adn that distinctly
labels all the nodes of a class of graphs that have bounded degree d and
area n, in O (diameter) time steps, each node having a memory size O (cflogn).

5.3. Global sorting of edges in a weighted graph

5.3. 1. The algorithm

We now give an algorithm that assigns consécutive numbers to the weighted
edges (non-negative in value, duplicate weights are allowed) according to their
position in an imaginary global list formed by sorting the edges according to
their weights in an ascending order. The weights are assumed to be non-
negative. Two or more edges are allowed to have the same weight.

Hère, an imaginary globally sorted list of the weighted edges is assumed
to exist. Each edge initially assumes that it forms the first element in that
list. But whenever it comes to know of an edge whose weight is less than its
own, it shifts its position up by one and so on till it has examined the weights

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 7 1

of all the edges in the graph. The following method is used to inform every
edge automaton in F about the weight of every other edge automaton that
has a non-negative weight. Note that the edge automata and node automata
hearing the label "#" do not take part in the algorithm. Each EA depending
on a certain décision criterion, assigns itself to one of the two end nodes. A
particular NA knows which subset of its d incdient edge automata have
assigned themselves to it Based on this information, it forms a list (consisting
of utmost d weights) that correspond to those edge automata that have
associated themselves with this NA. Such a packet of edge weights formed
at each of the n nodes of the input graph, are transmitted through the
branches of the BFST so that a packet formed at a node reaches all the
other nodes of the BFST which in turn inform their associated edges about
the packets whenever they arrive. A node does not receive the same packet
twice because they are transmitted through the circuit-free BFST. Whenever
a node receives one or more such packets at an instant, it transmits them to
its associated edges, thus enabling every EA of the graph to know about the
weight of every other EA. Then, an E A may perform an incrementing
opération on its label for every entry that it finds in the packets which is
less than its own weight. A node knows that it has received packets from all
the nodes of the graph whenever it finds that at a particular instant, it has
not received a single packet from any of its BFST neighbours. This is because
packets have been transmitted to the node through the BFST tree. At that
instant, all the edges assigned to that node will carry the correct rank
number in a global sorted list. It accordingly informs its associated edges that
termination has occured.

(1) Initially, a BFST is constructed and all the nodes are distinctly labeled
using the algorithm in section 5.2.

(2) At the first step af ter this node labeling is over, each E A assigns itself
to one or the other of its two end nodes as follows:

(i) If it carries an odd numbered weight, it assigns itself to the end node
having an integer label that is smaller of the two end nodes.

(ii) If it carries an even numbered weight, it assigns itself to the end node
with the higher label value. This is to uniquely assign an edge to a node.

(3) Each EA maintains an integer variable SORTNO which is initialised
to 1.

(4) After assigning itself to one of its end nodes, each E A sends its weight
w to that node in an INITSORT (w) signal.

vol 23, n° 3, 1989

2 7 2 S'. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

(5) A NA receiving a set of INITSORT signais notes the neighbours from
which it received them as its assignée edges, orders the weights in a list
according to their neighbourhood number (L e., of the form (wu w2, . . ., wd)
where wt is — 1 if the ï-th incident edge is not assigned to it). This rf-tuple is
the packet formed at that node which will be sent to all the other nodes
through the branches of the BFST.

(6) Each NA initially sends the first list made of the INITSORT signais
to all its assigned edges in a SORTOUT signal. It also sends this list to its
father and ail its son nodes in a TRANSMIT (n, (wl5 . , ., wd)) signal (where
n is its own id).

(7) An EA receiving a TRANSMIT signal just transmits it to the other
end node.

(8) An E A receiving a set of lists in a SORTOUT ((nl9(wll9 . . .,
(«2>O2i, • - .,w2*))> . . .,(iife (wtl, . . .,wfcJ)) signal, scans the whole list and
incréments its SORTNO by 1 for every weight wtj which is less than its own.
If a weight happens to be equal to its own, it incréments SORTNO only if
the corresponding node is less than its own assigned node. (For the first
SORTOUT signal, if the weights are the same, the EA with the higher
neighbourhood number only incréments its SORTNO.) The EA does not
perform the incrementing its SORTNO.) The EA does not perforai the
incrementing action for ail other cases, k can be at most à and the maximum
value of wèj is the maximum of the edge weights.

(9) A NA receiving a set of "TRANSMIT" signais retransmits each of
them to its tree neighbours. This is done in such a manner as to avoid the
same neighbour node that sent this signal from receiving it again (a sort of
"reflection" of the TRANSMIT signal). This could be achieved by sending
the node identity along with a transmit signal. It also sends all of the received
packets (d-tuples) in a SORTOUT signal to its associated edge automata.

(10) A NA terminâtes the process locally by sending a "FINISH" signal
to ail its associated nodes at an instant after the one in which it finds that
it has not received a single TRANSMIT signal from any of its BFST
neighbours.

(11) An E A receiving a FINISH signal knows that it has examined the
weights of all the edges in the graph and hence the value of SORTNO at
that instant gives the required distinct label to that edge that corresponds to
its own position in a globally sorted list of edges arranged in an ascending
order of their weights.

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 7 3

It should be noted that a node sends the TRANSMIT signal to all its
BFST neighbours except the one from which it was received. But it sends
the SORTOUT signal only to its associated edge automata.

It can be seen that steps (l)-(3) consist of initialisation, (4)-(9) describe
how the flow of weights is transmitted to each edge automaton and (10)-(ll)
terminate the process.

5.3.2. Complexity analysis

(a) Time steps

The initial node labeling algorithm (see section 5.2) requires 0 (diameter)
time steps. The worst case time required for subséquent sorting = time required
by a TRANSMIT signal to reach all the nodes = 0 (diameter).

Hence, the worst case time complexity of the whole algorithm = 0 (dia-
meter).

(b) Space requirement

(i) Message Length: worst case measure of message length = length of
the longest SORTOUT or TRANSMIT signal = d x (d+1) x logmax(wmax? n)
(where wmax is the largest of the edge weights).

(ii) Memory: each EA needs space to store the message to be transmitted.
Hence memory requirement is 0(d2log max(wmax, n)), It will also be the
memory requirement for node automata. From the foregoing discussion, we
can state that

THEOREM: There exists a MCGA Adt „ that labels all the edges of the class
ofweighted graphs that have bounded degree d and area n, with distinct integers
that correspond to their position in a global list formed by sorting the edges
according to their weights in an ascending order in O (diameter) time steps,
each node and edge automaton having a memory O (d2 log max (wmax, n)).

5.4. Construction of the minimum weight spanning tree

5.4.1. The algorithm

We now present an algorithm that makes use of the global sorting of edges
achieved in the previous algorithm to construct the MWST for a weighted
graph in which all the edges bear positive intégral weights. This algorithm is
based on the sequential algorithm due to Kruskal [5],

We first briefly describe Kruskal's algorithm for the construction of MWST
of a weighted graph that serves as the basis for our distributed algorithm on

vol 23, n° 3, 1989

2 7 4 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

the MCGA. KruskaFs algorithm consists of the following steps:

(a) Sort the edges of the weighted graph to form a list in an ascending
order.

(b) Examine the ï-th edge occuring in this list (only after examining all the
previous i — 1 edges) as to whether it can be included in the MWST or not.
The ï-th edge can be included as a branch in the MWST only if either one
or both the end nodes of this edge are not yet included into the MWST or if
both the end nodes are already inciuded into the MWST then this edge can
be included if it does not form a fundamental circuit with the existing
branches of the MWST. Otherwise, if that edge forms a circuit with some
branches of the current MWST, then its weight will be greater than all the
other edges (branches) in the fundamental circuit and hence it will become a
chord of the MWST, Thus the complete spanning tree would have been
constructed as soon as all the edges in the weighted graph have been exam-
ined. In our algorithm, the position number of an edge in a global list formed
by sorting the weighted edges in the graph in an ascending order is stored in
the corresponding edge automaton itself using the algorithm in section 5.3.
Following Kruskal's algorithm closely, a node whose position number is i
should examine whether it can be inciuded into MWST or not only after the
fate (branch or chord) of all the previous (i — i) edges have been decided. In
case one or both the end nodes of an edge automaton are not yet included
into the MWST, it takes only one time step to décide about the inclusion of
that edge into the MWST. Ho we ver, in our distributed case (as against the
sequential algorithm of Kruskal), it will take (in the worst case) n time steps
to décide whether an edge whose both end nodes have been already included
into the MWST, can become a branch of the MWST or not. This is because,
it takes, in the worst case, (n-1) time steps to know whether a circuit is
formed with existing branches of the MWST wherein all such branches have
a weight less than its own. In that case, this edge is not included as a branch
in the MWST. If we were to strictly follow Kruskal's sequential algorithm,
then an ï-th edge automaton can start examining whether it can include itself
into the MWST or not only after (n— 1) x(i— 1) time steps from the start of
the algorithm. This means that the algorithm will take O(exn) time steps.
In order to reduce this, we have specified in our algorithm that an ï-th edge
automaton automatically starts examining at the ï-th instant itself without
waiting for all its previous (i—l) edges to décide about their inclusion.
Whenever an ï-th edge automaton finds that both its end nodes are already
in the MWST, then it sends a special signal to search for any fundamental
circuit formed by it and hence waits for the return of this signal for n time

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 7 5

steps. While this edge automaton is in the "wait" state, the next edge
automaton labeled (i+l) will start its examination at the (i+l)-th instant
itself. If it also finds that both its end nodes are already included in the
MWST, then it also sends its own circuit search signal. Thus, while the time
complexity is reduced by this method, the number of circuit search signais
increases. However, one can see that the correctness of the algorithm is not
hampered by this modification of Kruskal's algorithm. We now present the
actual algorithm.

(0) All the edges are distinctly labeled according to their weights using the
algorithm in section 5. 3.

(1) The distinguished node ha ving label n synchronises the initiation of
the process by communicating to each of the EA the time instant at which
they have to all start the TIME counter through a SYNC (n) signal [where n
is the total number of nodes in U(F)]. The argument of SYNC signal
décréments at each time instant.

(2) Each E A starts incrementing the time counter at an instant t time steps
after its first receipt of a SYNC (t) signal.

(3) An EA with SORTNO as i waits till its TIME counter reaches L It
then détermines the state of its adjacent nodes. If one or both the end nodes
are still having their INCLUDED variables not set to 1, it sets its BRANCH
to 1 and sets the INCLUDED of both the nodes to 1. Otherwise, if both
the nodes are already included, it sends a CIRCUIT-FIND (i) signal to the
node with lower id (note that all the nodes are distinctly labeled initially
using the algorithm given in section 5.2). It then goes into a WAIT state for
n more steps.

(4) A NA receiving a CIRCUIT-FIND signal sends it to all the neighbours
other than the one from which it received.

(5) An EA receiving a CIRCUIT-FIND (i) signal sees whether i is greater
than its own SORTNO. If so, it transmits it to the other end node. Otherwise,
it blocks that signal from propagating.

(6) An EA in its WAIT state, receiving its own CIRCUIT-FIND (i) signal
through the other end node, sets itself as a CHORD of the MWST.

(7) An EA that has "WAIT" ed for n time steps without getting back its
CIRCUIT-FIND signal, sets itself as a BRANCH of the MWST. This can
be achieved by having the EA count upto n by having a counter as part of
the state.

vol. 23, n° 3, 1989

2 7 6 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C PANDURANGAN

(8) The algorithm terminâtes automatically when the e-th edge détermines
whether it belongs to the tree or not, which in the worst case will take (e + n)
time steps from the instant the TIME counter was started at every EA.

It can be easily seen that steps (0)-(2) initialize the process, (3)-(7) describe
the algorithm, and (8) terminâtes the process.

5.4.2. Complexity analysis

(a) Time steps.
As noted in step (8) above, the worst case time comple-

xity-O (e + n) = O (dn) = O(n).
(b) Space requirement.
After determining its SORTNO, the EA does not even need to store its

weight in its memory and hence the worst case space
requirement = O (log(SORTNO)maJ = O (log (dn)) = O (log n). But initially
finding SORTNO requires each edge automaton to have more memory.

From the foregoing discussion, we can state that, THEOREM. There exists
a MCGA Adn that constructs the minimum weight spanning tree for the
class of weighted graphs with bounded degree d and area n, in 0 (n) time steps,
each node and edge automaton having a memory of 0 (d2 log max (wmax, n)).

5.5. Single source shortest paths

5.5.1. The algorithm

This algorithm for the MCGA is based on the Dijkstra's [6] sequential
algorithm for finding shortest paths from a given node to all other nodes in
a weighted graph whose edge weights are positive integers.

We shall first briefly describe the sequential algorithm due to Dijkstra.
Initially all the nodes are assigned with oo as their temporary label except
the single source node that bears a permanent label of zero. In the next step,
all the nodes that are neighbours to the single source node alter their
temporary labels such that they are equal to the distance value in the
corresponding incident edges. The minimum of all the existing temporary
labels is found out and the node with such a minimum is given the next
permanent label. Subsequently, new distance values are calculated for all the
nodes that are neighbours of the last node that was given a permanent label.
If the new distance value is less than the existing temporary label of a node,
then its temporary label is altered to that distance value. A global minimum
is again obtained to find the next node with the permanent label. Ultimately,
all the nodes will get their permanent label that is nothing but the value of

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 7 7

the shortest distance between that node and the single source node. We now
give our distributed algorithm on the MCGA that is based on this sequential
algorithm.

(1) Af ter labeling themselves distinctly using the algorithm in section 5.2,
each NA maintaïns an integer variable CURRENTMIN initialised to oo.

(2) The distinguished node D (from which the paths have to be determined)
starts the process by setting its CURRENTMIN to zero and sending an
UPDATE(O) to all its neighbours.

(3) An E A receiving an UPDATE (ï) signal adds its own weight to the
argument i and then transmits it to the other node.

(4) An NA reveiving a set of UPDATE (i) signais from its neighbours for
the first time, sets its CURRENTMIN to the minimum of the values received
and sets its UPSTR E AM-NODE to the corresponding sender. Depending
upon which node sends the UPDATE signal which modifies the CUR-
RENTMIN value, the value of UPSTREAM-NODE is changed. The finer
details are left out. Ties are resolved in favour of the lowest are end number.
The purpose of storing the variable UPSTREAM-NODE is to indicate the
path that corresponds to the current shortest distance value. Ultimately, at
the end of radius (D) time steps, when all the nodes have obtained their
shortest paths to the source node, it is this variable that will serve to indicate
the actual path to be traced. As mentioned in Deo [6], it can be seen that
the union of all the shortest paths is an arborescence rooted at the source
node and hence the value of UPSTREAM-NODE at a given node at the end
of the algorithm will also correspond to its farther node in the arborescence.

(5) Any subséquent receipt of UPDATE (i) signais by a NA results in the
following actions:

(i) It finds the minimum of all the distance values received.

(ii) If that minimum is greater than or equal to the CURRENTMIN
stored in its state, it ignores all the signais and does not retransmit any of
them.

(iii) If that minimum is less than the CURRENTMIN, it resets the value
to the new minimum and also alters the UPSTREAM-NODE accordingly.
It also retransmits the new minimum to all its neighbours in an UPDATE
(smj signal

(6) The distinguished node terminâtes the algorithm Lc time steps af ter it
had initiated the process (where Lc = length of the longest chain in the graph
from the distinguished node D, which can be safely assumed to be n, the
total number of vertices in the graph).

vol. 23, n° 3, 1989

2 7 8 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

It can be seen that step (1) initialises the process, steps (2)-(5) describe the
algorithm, and step (6) terminâtes the process.

5.5.2. Complexity analysis

(a) Time steps.
As noted in step (6) above, the worst case time compiexity of the above

algorithm = O (n).
(b) Space requirement.
Each E A needs O(logwmax) size memory and each NA needs O(logsmax)

size memory where
wmax = maximum of the weights of all the edges,
smax = largest possible distance value in the graph.
We shall state the above mentioned results in the form of a theorem and

give an indication of the proof of correctness of our algorithm.

THEOREM: There exists a MCGA Ady n that finds the single source shortest
paths for the class of weighted graphs that have bounded degree d and area n,
in O (n) time steps, with each E A having a memory O(logwmax) and each NA
having a memory O (logsmax) where wmax and smax are as defined above.

Proof: The value of the variable CURRENTMIN maintained at every
node at any instant corresponds to the shortest distance value communicated
to that node upto that instant. If the shortest path from a node to the source
node consists of k edges, then it takes k time steps for the UPDATE signal
to reach that node that will result in CURRENTMIN assuming its minimum
possible value. Thus, the CURRENTMIN values always go on decreasing
with respect to time till they attain a value that corresponds to the shortest
distance to the source node. Subséquent receipt of UPDATE signais will not
affect its value as they will always be greater than this minimum.

6. CONCLUSIONS

We have now seen various algorithms for solving problems concerning
weighted graphs on the Modified Cellular Graph Automaton. The basic
algorithm for labeling of all nodes distinctly has time complexity of
O (diameter) which is faster than the labeling of the nodes with a depth first
numbering using the DFST algorithm of Wu and Rosenfeld whose time
complexity is O (area). An MCGA algorithm based on Prim's [6] sequential
algorithm for MWST construction on the MCGA was found to require

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 7 9

0 (n2) time steps. But the algorithm given in this paper is based on Kruskal's
[5] sequential algorithm for MWST construction and takes only O (é) = O (h)
time steps. This algorithm requires the edges to be in sorted order with
respect to their weights which was done on the MCGA using the algorithm
in section 5.3 that also takes O (n) time. This one on signle source shortest
paths (based on Djikstra's [6] sequential algorithm) that takes O(LC) time
illustrâtes the ease of solving weighted graph problems on the MCGA. As
for the future work, it would be interesting to devise algorithms on this
MCGA for more weighted graph problems viz., Travelling Salesman Problem,
maximal weighted matchings, etc, and analyse their time requirements.

REFERENCES

1. A. R. SMITH, Cellular Automata and Formai Languages, in Proceedings, l l t h SWAT,
Vol. III, 1970, pp. 216-224.

2. P. ROSENTIEHL, J. R. FiKSEL and A. HOLLIGER, Intelligent Graphs: Networks of Finite
Automata capable of solving Graph Problems, in Graph Theory and Computing,
R. C. READ Ed., 1972, pp. 219-265, Academie Press, New York.

3. A. Wu and A. ROSENFELD, Cellular Graph Automata I, Information and Control,
Vol 42, 1979, pp. 305-329.

4. A. Wu and A. ROSENFELD, Cellular Graph Automata II, Information and Control,
Vol. 42, 1979, pp. 330-353.

5. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.

6. N. DEO, Graph Theory with Applications to Engineering and Computer Sciences,
Prentice Hall, 1974.

7. A. ROSENFELD et al, Sequential and Cellular Graph Automata, Journal of Informa-
tion Sciences, 1980.

8. J. MYLOPOULOS, On the relation of Graph Grammars and Graph Automata, in
Proceedings, 13th SWAT, 1972, pp. 108-120.

vol. 23, n° 3, 1989

