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ON INFINITARY FINITE LENGTH CODES (•)

by Ludwig STAIGER (X)

Communicated by J. BERSTEL

Abstract. - For a code CcX* the following four conditions are considered:

(i) for ail words u, v, in X* and for every word w in C*, wu, uv, vu in C* imply u, v in C*.

(ii) every one- sided infinité product of words of C is unambiguous.

(Ui) C has flnite decoding delay.

(iv) C has bounded decoding delay.

lt is shown that in gênerai (iv) —> (Ui) —• (ii) -* (ï), and the reverse implications are not true;
whereas in the case ofregular codes C we have (i) -»• (iï) and (in) -+ (iv) but not (ii) - • (Ui)..

Résumé. - On démontre que pour un code rationnel X, les conditions suivantes sont équivalentes:
(i) tout produit infini à droite de mots de X est non ambigu.

(ii) pour tout mot u, v de A* et pour tout mot x de X*, xu, uv, vu dans X* entraîne u, v dans
X*;

(iii) X a un délai de déchiffrage borné.

0. INTRODUCTION

Let X 2 {0, 1} be a finite alphabet and X* be the f ree monoid generated
by X. The éléments of X* will be called words, and the unit element e e l * is
called the empty word. A subset C <= X* is referred to as a code iff every
word w G X* admits at most one factorization as a product of éléments of C,
1. e. w is uniquely decipherable.

In this paper we study a class of codes C which satisfy the stronger
property that the equality

WrW2> . . . =1V1?2- . . • (1)

(*) Received November 1985, revised in April 1986
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of the (one-sided) infinité products where wb vteC implies that

w • = v i for all i e N.

We call those codes infinitary finite length codes (ifl-codes); infinitary
according to the product L in (1) and finite length according to the condition
C ü X*. A completely different kind of infinitary codes has been considered
in [D3] (cf. also [D 1, 2]), where œ-words are admitted as codewords, i. e.
C c P U ^ P being the set of ail semiinfinite words xix2. . . on X) but
only finite products are considered.

In the case of finite codes it is known that ifl-codes are exactly the codes
having finite decipherability delay [L, Se], but for infinité ifl-codes only little
is known. In this paper we show that the classes of ifl-codes having bounded,
or finite, or infinité decoding delay are pairwise distinct. Moreover, we show
that ifl-codes are weakly prefix codes (cf. [C2]) but the converse does not
hold for arbitrary codes. However, it appears that in the case of regular
codes the notions of bounded and finite decoding delay as well as ifl-code
and weakly prefix code coincide. Since ifl-codes are defined via the infinité
product property Equation (1), their study requires not only a considération
of the free monoid

C*=df{w1>w2- . . ^wn:wieC A neN}

generated by C (cf. [Sh]) but also of the co-power

This brings into the play spécifie results of the theory of œ-languages and
topological methods developed there (cf. [S 2, LS, W and S 3]).

1. IFL-CODES AND WEAKLY PREFIX CODES

As in [C2] we call a code C weakly prefix provided for ail weC*, u,
the condition w-u, u-v, y-ueC* implies u, veC*. We obtain our first resuit.

LEMMA 1. — Every ifl-code is weakly prefix.

Proof: Let C be a code not weakly prefix. Then there are a weC* and
nonempty words u, ueX* such that w-u, u-v, v-ueC*.

H e n c e (w-u)-(v-u)-(v-u)- . . . a n d w - (u- v)- ( u - v ) * . . . a r e t w o d i s t i n c t

(infinité) factorizations of the same oo-word, which implies that C is not an
ifl-code. •
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To show that the converse ist not true we dérive the following example.

Example 1: C 1 = d / { 1} U {0' 10< + 1 1 : z^

One easily observes that P = d / 10102103l. . . is the unique œ-word having
two distinct factorizations in Cv Since P is not ultimately periodic, Cx is
weakly prefix, but, clearly, C1 is not an ifl-code. Q

Moreover, since every word weC takes part in one of the factorizations
of p, any proper subcode of Ct is an ifl-code.

This vérifies the following.

LEMMA 2: The set Cin = df { C : C g X * \ { e } and C is an ifl-code} is not
inductive.

Proof: It suffices to consider a chain C'o ü C\ . . . c: C1 of proper subco-
des of the Cx of Example 1 which satisfy U C/

i = C1. •
ie N

Lemma 2 leads to the following open problem: Is there for any ifl-code C
a maximal ifl-code C' containing C ?

Since Theorem 6 of [C 2] shows that the set Cwp of all weakly prefix codes
C <= X*\{ e } is inductive, every weakly prefix code is contained in a maximal
weakly code, and this theorem an our Lemma 2 exhibit a principal différence
between weakly prefix and ifl-codes.

Finally, we mention a condition on Cw being equivalent to the property of
C being an ifl-code.

To this end we introducé some notation. Let wb be the concaténation of
w e l * and beX*{JJC°. This in an obvious way defines a product W.B of
subsets W g X* and B g X* U X*. For the sake of brevity we shall write
w- B and W< b instead of {w} • B and W- { b}, as well as w* instead of {w}*.

LEMMA3: A subset C £ X* is an ifl-code iff w, veC and w- C™ O u* C t ó ^ 0
imply w = v.

Proof. Clearly, the condition is necessary. Now, assume C to be not an
ifl-code. Then there is a PeCœ having two different représentations as an
infinité product, i. e.

P = MVH>2. . . . =V1'V2- . . .

where w(, v( C and wy ̂  Vj for some j e N.
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486 L. STAIGER

Take the least such jeN and consider

1] = Wj.Wj+l. . . . =Vj'Vj+1- . . .

Obviously

v[ e Wj - CM O V} - C
& where w,. # vr •

2. DECODING DELAY

Well known is the concept of finite decipherability delay (cf. [L, Cl]). But
since this delay is measured in letters of X as units, this concept would not
be appropriate in the case of infinité codes, for they have codewords of
arbitrarily large lengths.

Therefore, we introducé another concept as follows:

DÉFINITION: A code C is said to have finite decoding delay iff the following
condition holds true:

A v A A (w-i>[I p=>(3ew- C01) (2)
weC m „

Here we abbreviate by u C b the f act that we l* is an initial word of
beX* U ^ 0 , and Cm = d / {wr . . . • wm: v^eC} is the m-fold product of the
set C ^ X*.

The idea here is to measure the delay in units of codewords, i. e. we can
be sure that the first factor of peC 0 is w whenever we have an initial word
w- v of (3 being a product of m +1 codewords (m depending on we C).

If m is independent of the spécifie weCwe obtain the following.

DÉFINITION: A code C is said to have a decoding delay of m units iff the
following condition holds true

A A A (w/; J^p^Pew-C0) (3)

We say that a code C has bounded decoding delay provided C has a delay
of m units for some meN.

Let C /d, Cw and Cm dénote the sets of codes C £ X * \ { e} having finite,
or bounded decoding delay, or a delay of m-units resp.

In particular, Co is the class of prefix codes.
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PROPERTY 4: (i) CO C d g C2 C . , , Ç £bd = U Cm

(ii) Cbd g £fd g Cifl.

Proof. Lemma 3 ensures that Cfd c= Cifl, and the other inclusions are
trivial. •

We are not going to prove that the inclusions in (i) are ail strong. To this
end we refer to the case of finite codes with finite decipherability delay which
is widely investigated (cf. [L, C2]). We confine to the inequalities of (ii).
Bef ore we are going to show that these inequalities are proper we need some
auxiliary considérations.

Lemma 5: Let C c J * . C e C / d if fit holds

A V A A A ( w - U j Z W'- tt -> W = VV>'). ( 4 )
weC m t , ecm w 'eCueC*

Proof: Let Ce£fd and weC. Choose m depending on w according to
Equation (2), and let ve Cm, w'eC and weC* be such that w• v Ç v/- u.
Then for every r\ e C0* we have |3 = w' • u - r| e Cœ and w • v \Z P*

Consequently, P e w • C*0, and since C is also an ifl-code, we have w = w'.

Conversely, let C satisfy Equation (4) and let weC. Again, choose m
depending on w according to Equation (4), and let veCm and PeC0 be such
thatw-ujZ P. Since peCro, there are w'eC, ueC* and TieC0 such that
P = W/MT| and w-v \Z w'-u. Now Equation (4) implies w' = w, i. e.
pew-Cm. D ~~

The same proof works in the case of codes having bounded decoding delay
i. e. the following lemma is also true.

LEMMA 6: Let C g X*. CeCm if fit holds

A A A (WV d >v'u->-W = W /).
w, w' e C „ e c

m « e C*

These characterizations of the classes Cfd and Cm, or Cw resp. give rise to
the following characterizations of Cœ.

Let C e C fd. To every weC define m (w) ̂  1 as one value satisfying Equation
(4) for w. Extend the function m to C* via m (wv) = dfm (w)-hm (v).

Now we define

C( = df U U'Cm(u) (6)
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By définition, we have

and since m (w) ̂  1 for weC,

Let pe H CrX™. Then fieC^X». Hence, w-u Cl P where weC and

ieiV

üeCm(w).
Let i > | WÜ | (| u | dénotes the length of the word u e X*) and

w • v d wx • . . . • Wj where w£ e C. Then Equation (4) implies wx = w.
Consequently, every v' e Cb i > \ w • v \ satisfying i ; ' Ç P has as its first factor

the word w> and we obtain from Equations (8) and (7) that

This shows, that C e Cfd implies

Applying the following property (cf. [S 1, LS]):

F g A", L g Z * \ { e } and F g L • Fimply F g L*0, (9)

we obtain together with Equation (7) the following.

THEOREM 7: If Ce Cfd, then

c<û= n crjr*. (io)

The above construction also applies to codes having a bounded decoding
delay. In that case we can choose m (w) = m for ail w e C and a suitable meN.
Hence C( becomes C1 ' <m+I), and we get the following theorem.

THEOREM 8: IfCeCbd, then

- H CX». (11)

Remark: It was widely believed (cf. [S 1, BN, DK]) and utilized in [BN,
Property 2 (3)] that Equation (11) holds true for ail e-free languages

Informatique théorique et AppHcations/Theoretical Informaties and Applications
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L g X*\{e} . In the following section we shall show that this is not true
even for regular ifl-codes. Moreover, we shall use the above properties of
Cfd and CM to prove that the inclusions in Property 4 (ii) are all proper.

3. TOPOLOGICAL RESULTS

We regard in X* the product topology which is induced by the basis

Consequently, a set E g X0 is open if and only if there is a language
L g X* such that E = L • X*. The collection of denumerable intersections of
open subsets of X° is known as the family of G5-subsets of X°. The following
characterization of Gs-subsets by languages is due to Davis [Da].

For L i I * we dénote by Lô the ô-limit of the language L where

L = d / { p : p e J r a n d u JI p for infinitely many ueL}. (12)

LEMMA 9 : F g r is a G&-set iff

F=L5 for

Above, in Theorem 7 we have shown, that for ail codes C having finite
decoding delay the set

c= n crA»
ieN

is a G5-set.
As a first example, we shall show that there is a regular ifl-code C2 such

that C2 is not a Gs-set. Hence C2 $ Cfd. This example was first obtained (but
not published) by K. Wagner who constructed it utilizing his DA-reducibility
of (o-languages [W].

Example 2: The set C2 = df {0,10} U {01,02}*-020 is an ifl-code, but C%
= ({ 01,02 }* • 0 U { 10 }r is not a G5-set. The latter fact is proved in [S 3],

That C2 is an ifl-code may be verified directly or via the procedure indicated
by Properties 11 and 12 and Lemma 15 below. •

The next example (first obtained by K. Wagner and G. Wechsung, but up
to now unpublished) shows that Cbd a C/d.

Example 3: Lt C3=df{wlyw2, . . . } where

and wi + 1=dfw\-0iL
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This code has finite delay (take e. g. m (w;) = df \ wi + r |).

On the other hand, for p with { p} = C\ we have p<£ C? and wi + x JZ p for
all i. Hence wj j l p for all ieN.

Consequently, p e f l Q - I 1 0 , and C3£CM. D

We ask now whether the statements of the Theorems 7 and 8 are réversible.
To this end we recall some connections between the <ö-power and the 5-limit
from[S2, 3].

Let L g X* \{ e }.

Lg n^Tc^^ru^'i8. (13)
ieN

This yields:
^ ^ ( L * ) 0 iff L œ ^L 5 . (14)

Example 4: Let C 4 - d / { 010, 20} U 2(001)*

Then C | = {20(010)(010). . . } g CJ. Hence

ieN

but C 4 eC i f l \C / d , since

20 (OIO)1' E 2'

That C4 is an ifl-code may be verified directly or as described in Example
2. D

From Equation (13) it follows that for prefix codes C (they satisfy e. g.
C5 = 0 ) we have

c*= n C;-A™=(C*)0,
ieN

but already in the case CeC1 we may have Cœ#(C*)5, as the code C5 = 1 • 0*
shows.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Thus, the conclusion of this section is that topological methods are helpful
in the study of ifl-codes, but do not provide a thorough characterization of
the classes of codes considered hère:

4. C-CHAINS

In this section following an idea of Levenshtejn (cf. [L] and also [LS, sec.
2.2.1]) we introducé a relation useful in the study of codes. This same idea
reappeared as the concept of L-sequences in [C 1,2].

We set C/w = df {v:\vveC} and we call C/w the state (left derivative) of
the set C g X* derived by the word w. As it is well-known, a subset C Q X*
is regular if f the set { C/w :weX*} is finite, i. e. C is finite-state.

For a subset C g X*\{e} we define Levenshtejn's relation < on X* as
follows:

oàî veC/w

2 df and <=d/<iU <2-

We consider C-chains, i. e. séquences of the form

where u1eC.
By induction one easily proves that any C-chain of length n ^ 2 is in

one-to-one correspondence to a covering relation:

W i • . . . • wi_1 C I vx- . . . 'Vj\Zwx- . . . -Wi

where i+j = n, wfc, vkeC and w1^vv

Moreover, in this case v1 - . . . • vy un = w1 • . . . • w(.

Similar investigations can be found in [L] and [C 1,2].

This observation makes the following équivalences obvious:

PROPERTY 10 (The Sardinas-Patterson Theorem). C is a code iff there is
no C-chain terminating with the empty word e.

PROPERTY 11. C is an ifl-code iff there is no infinité C-chain.

In the proof of Theorem 4 of [C 2] it is shown the following.

PROPERTY 12. C is a weakly prefix code iff there is no C-chain in which a
word occurs twice.
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Let lc (w) dénote supremum over the lengthes of all C-chains starting with
w. From the connection of the length n of the C-chain and the lengthes i
and j of the products in the covering relations above one readily sees that
for m^lc(w) — 1 one has that w-uCw'-u, whereveCm, WeC.ueC*,implies
w = w'. This yields the following connection to codes having finite decoding
delay.

PROPERTY 13: Let /c(w)<oo for any weC. Then C has finite decoding
delay.

On the other hand, if C has a decoding delay of m units, then a covering
relation

is possible only if

i — 2<m and j — 1 <m, i. e. it implies i +; < 2 • m + 3.

Together with the above considération we obtain the following.

PROPERTY 14: If CeCm then ic(w)^2m+2 for every weC, and if lc(w)<,n
for every weC then CeCn_v

5. REGULAR CODES

Observing that any word in a C-chain is a suffix of a word in C, we get
from the above properties that a finite code C is weakly prefix iff C is an
ifl-code iff C has bounded decoding delay. We are now going to investigate
what happens if C is regular but infinité. In the Examples 2 and 4 above we
have seen that there are regular codes without finite decoding delay.

LEMMA 15: Let C be regular. Then C is an ifl-code iffit is a weakly prefix
code.

Proof: In virtue of Lemma 1 it remains to show that if C is not an ifl-code
it is also not a weakly prefix code.

If C is not an ifl-code then C is not a code (and hence not a weakly prefix
code) or otherwise there is an infinité C-chain. Since u<2v implies |u |< |w| ,
this infinité C-chain contains infinitely many pairs ui<1ui + 1 (ieM g iV)-

By définition ui^1ui+1 is equivalent to ui+1e C/ut. Since C is regular, there
are only finitely many distinct C/ut.
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Hence, there is a subchain

u±<. . . <ui<1ui+1<. . . <u]

such that

j^i+1 and Cfu—C/uj.

Therefore we can continue

and, following Property 12, C is not weakly prefix. •

LEMMA 16: Let C be regular. Then C has finite decoding delay if f C has
bounded decoding delay.

Proof: We show that if lc (w) is an unbounded function on C then it takes
on the value oo.

To this end let (wJieAr be a family of words in C such that there is a
C-chain starting with wt and having length i. Without loss of generality we
may assume the chain to start with the relation -<1? for otherwise we replace
w( by w[ where w- is defined by

w>- = w• • u{ when wt -<2 uv

Again wt < 1 ut iff ut e C/wit

Since C is regular, there are only finitely many C/wt, and we conclude that
there is a w£ such that C/w( = C/wj for infinitely many j . Then there are
C-chain starting with wt and having length j for any ; such that C/wt = C/wp

i.e. /c(w;) = oo. D
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