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COORDINATED PAIR SYSTEMS; PART II:
SPARSE STRUCTURE OF DYCK WORDS

AND OGDEN'S LEMMA (*)

by A. EHRENFEUCHT (1), H. J. HOOGEBOOM (2) and G. ROZENBERG (U2)

Communicated by J. BERSTEL

Abstract. - In this paper we continue the investigation of the structure of computations in cp
Systems which was initiated in Part I of this paper. Hère again our main combinatorial tooi is the
structure of Dyck words {and the Exchange Theorem). However in this paper we investigate the
"sparse structure" of Dyck words (Le., the structure of sparse subworks of Dyck words) and use
our results about this sparse structure to dérive Ogden's pumping lemma for context-free languages.

Résumé. - Dans cet article, nous poursuivons V'étude de la structure des calculs dans les systèmes
cp, étude commencée dans la première partie de cet article. A nouveau, notre outil combinatoire
principal est la structure des mots de Dyck (et le théorème d'échange). Ici, nous étudions la
« structure dispersée » des mots de Dyck (L e. la structure de sous-mots fractionnés de mots de
Dyck) et nous employons nos résultats sur cette structure pour obtenir le lemme d'itération d'Ogden
pour les langages algébriques.

INTRODUCTION

The aim of this paper is to present the results of an investigation which
continues the line of research initiated in [EHR1], [EHR2] and [EHR3]. We
continue the investigation of the structure of computations in cp Systems and
again (as in Part I of this paper) our main combinatorial tools are results on
the combinatorial structure of Dyck words. Now however we are interested
in the structure of sparse subwords of Dyck words. We obtain a number of
results concerning this "sparse structure" of Dyck words (Section 1) and then
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combine these results with the Exchange Theorem (given in [EHR2]) to prove
Ogden's pumping lemma for context-free (i. e., cp) languages (see, e. g., [O],
[H]).

0. PRELIMINAIRES

We assume the reader to be farniliar with Part I of this paper [EHR3]; we
use without recalling terminology, notation and results from there. If we refer
to a resuit (or a définition) from Part I, then we précède its référence number
by I-hence, e. g., Lemma 1.2.1 refers to Lemma 2.1 from Part I.

In considérations of this paper we will often embed a given word as a
sparse subword in another word. Hence we need the following technical
notion.

DÉFINITION 0 . 1 : Let U=(iu i29 . . ., in) be a support in a word w. The
U-embedding, denoted (pü5 is the bijection from { 1, 2, . . ., n} onto U defined
by cpt/ (0 — h f ° r 1 = t~ n- *

If u = (fls i2i . . ., ïn) is a support in a word w and
V={jlyjl9 • • •, 7m) = { 1> 2, . . ., n}, then following the usual convention we
use <pv(V) to dénote ((pi/0'i)> • . -, <Pu(/«))• Moreover, if K=VU . . ., Vm is a
séquence of subsets of {1, . . . , n}, then we use (p^ic) to dénote the séquence
<!>u(V1)9...7<f>ü(VJ.

1. SPARSE SUBWORDS IN DYCK WORDS

In this section we investigate the structure of sparse subwords in Dyck
words. We start by introducing a number of basic notions that formalize
such a structure.

DÉFINITION 1.1. Let U be a support in weDz.

(1) U is w-complete if, for every w-nested pair (z", j \ ieU if and only if
jeU.

(2) The w-completion of U, denoted by cplw(U), is the set

cplnilO^U {p\p is a w-nested pair withp

It should be obvious that cplw(U) is w-complete for any support U in w.

The following is an easy observation concerning Dz.

Informatique théorique et Applications/Theoretical Informaties and Applications



COORDINATED PAIR SYSTEMS 427

LEMMA 1.1: Let weDL and let u~w(U) for some w-complete support U in
w. Then ueDz. Moreover, ifp is a u-nestedpair, then (pv(p) is w-nested. /ƒ K
is a w-chain, then (p[/(K) *5 a u-chain. •

The following example shows that even balanced pairs are not preserved
under q>v (where U is a w-complete support) and consequently that <pv does
not preserve cochains.

Example 1.1: Let w = abbâabaaââbbbâ and let U={29 3, 5, 7, 10, 14}.
Then U is a w-complete support.
w and u~w(U) have the following nested structures.

1 2 3 4 5 6 7 8

a b b a a b a a

9 10 11 12 13 14

a a b b b a

u

K1=(3,6), (4,5) is a u-chain and cpC7(K1) = (5,14), (7,10) is a w-chain.

On the other hand, p = (\,6) is u-balanced, but the corresponding pair
(pf/(/?) = (2)14) is not w-balanced.

Consequently K2 = (1,2), (3,6) is a u-cochain, while cp(;(K2) = (2s3), (5,14) is
not a w-cochain. •

This example motivâtes the following notion.

DÉFINITION 1.2: Let U be a w-complete support in weDz and let u = w(U).
U is w-proper iï (pv (K) is a w-cochain for every u-cochain K. •

The following result is obvious.

LEMMA 1.2: Let weD^ and let U be a w-complete segment in w. Then U is
w-proper. •

Example 1.1 (continued):

U={2, 3, 5, 7, 10, 14} is not w-proper.

Let V={ 1, 2, 3, 4, 5, 7, 10, 14}. Then Fis w-proper. •

The next result shows that, for a w-proper support U, cp̂  preserves balanced
pairs.

vol. 20, n° 4, 1986
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LEMMA 1. 3: Let U be a w-proper support in weDz and let u = w(U). If p is
a u-balanced pair, then (pv (p) is w-balanced,

Proof: Let p — (z, j) be a w-balanced pair.

If p is w-nested, then q>v (p) is w-nested and so our lemma clearly holds.

If p is not w-nested, then there exist occurrences jx and i1 such that
K = (Ï, j \ \ (il9j) is a u-cochain. Since U is w-proper, (PV(K) is a w-cochain.
Consequently (<Pu(ï), q>v(J)) = <Pu(P) ^ a vv-balanced pair. •

In order to extend arbitrary supports to proper ones we need the following
notions.

DÉFINITION 1. 3: Let U be a support in WGDX and let p = (i, j), px—{iuh)

be two w-nested pairs.

(1) pis U-relevant if {i, i+1, . . .,j}C\U¥*0.
u

(2) p and px are U-equivalent, denoted by p = pu if

{uï+i,...,j}nt/={»i,ii + i , . . . , A } n t / . •

We use [p]v to dénote the équivalence class of p with respect to =; that is
the set of all w-nested pairs [/-equivalent with p.

If p is [/-relevant, then clearly \p]v consists of [/-relevants pairs; we say
then that \p]v is U-relevant. The set of w-nested pairs that are not [/-relevant

u
forms an équivalence class of =.

Example 1.1 (continued):

(6, 13) is [/-relevant because {6, 7, . . ., 13} O U={7, 10}.

(7, 10) and (6, 13) are [/-equivalent w-nested pairs because also

{ 7 , 8 , . . . , 10}nU={7, 10}.
u

(8, 9) and (11, 12) are not [/-relevant and consequently (8, 9) s (11, 12).

[(7, 10)]D = {(6, 13), (7, 10)} and

[(8, 9)]„ = {(8, 9), (11, 12)}. •

LEMMA 1.4: Let U be a support in w G DZ. The éléments of a U-relevant
u

équivalence class of = form a w-chain.

Proof: Let (il9ji) and (i2, j2) be two different [/-equivalent w-nested pairs.

We may assume that i1 <i2.

Then either ix < i2 <j2 <Ji or

Informatique théorique et Applications/Theoretical Informaties and Applications
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Assume that the latter (i. e., the "or" case) holds.

Then {il9 i\ +1 , . . ., j l } O {i2, h + h • • - > h} - 0- Consequently, since

This implies that (il9 jx) and (i2, j2) are not [/-relevant.

Thus, if we have two [/-relevant w-nested pairs that are [/-equivalent, then
the former (i. e., the "either" case) holds: one pair lies within the other. It is
now easy to see that a set of [/-relevant [/-equivalent w-nested pairs forms a
w-chain. •

Let K=/71S . . ., pm be a w-chain. Then we write out (K)=/?1 ; hence OUÏ(K)

dénotes the outer pair of K. Moreover, somewhat informally, we will use the
notation out(\p]v) to dénote out(K) where K is the chain consisting of the
éléments of [p]v (see the above lemma).

DÉFINITION 1.4: Let weDz and let U be a support in w. The extension of

U (in w), denoted extw(U) is a support in w defined by
extw(U) = cplw(U)\J{out(Ipju)\p is a [/-relevant w-nested pair}. •

Note that the extension of a support U in weDz is w-complete. Further-
more, w-nested pairs contained in extw(U) are [/-relevant.

Example 1.1 (continued):

For t/={2, 3, 5, 7, 10, 14} we have the following [/-relevant classes:
{(1, 4), (2, 3)}, {(5, 14)} and {(6, 13), (7, 10)}.

Hence extw(U) = UU(lA)U(59 14) U (6, 13) = {1, 2, 3, 4, 5, 6, 7, 10, 13,
14}. •

LEMMA 1. 5: Let U be a support in weDz and let V=extw(U), Then

(1) t/EK,

(2) if p = (i, j) is a w-nested pair such that p g V— U, then

(3) if K^O'i, A), (Ï2, 72) is a w-cfcain such that (iu j \ ) U

/- (1) Obvious.

(2) F = extw (U) contains only [/-relevant pairs. Hence
ï, i + 1, . . ., j} O t/ # 0 , but (Uj)nU=0 and cpnsequently

(3) Oi, A) n [ /=0 and (i2, j2) O E/=0.

vol. 20, n° 4, 1986
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If moreover both

{ii + 1, i'i+2, . . . . i2-l}nu = 0 and {;2 + l j ' 1 - l } n i / = 0 ,

then (Ï1S 7X) and (i2, j2) are [/-equivalent.

Since (il9 j1)C\U = 0, (iu jj was added in the extension so we have
(hJi) = out ([(ii,A)]u)-

Analogously we conclude that (i2,j2) = out ([(i2, j2)]v).

But [(il9 jjlv = [(i29 j2)]v and consequently (ils jj = (i2, ;2); a
contradiction. •

We are now able to prove our main resuit concerning the extension of a
support in a word.

LEMMA 1.6: Let U be a support in WGDL. Then V=extw(U) is w-proper.

Proof. Let v = w (V) and let K be a v-cochain. In order to prove the lemma
we have to show that <PK(K) is a w-cochain.

Assume to the contrary that ÇV(K) is not a w-cochain.

This implies that there are two w-nested pairs (i^ji) and (i2,j2) in cpK(K)
with j \ <i2 such that (fl5 j2) is not w-balanced.

Hence there has to exist a w-nested pair (i0, j0) such that either

Since these two cases are symmetrie we diseuss only the former one (leaving
the latter one to the reader).

Thus assume it <jt < i0 < i2 <j2 <j0 for some w-nested pair (i0, j0).

The pair (i0> jQ) is CZ-relevant because (z2, j2) is [/-relevant. So (hj)~
out ([(io,Jo)]u) ^s a well-defined w-nested pair. (i, j)^extw(U)=V. Since
( ï l s / i ) is (7-relevant, {il9 ix + l9 . . .yjx} C\U&0. This implies that i^ju

because by définition (i, j) is [/-equivalent with (z0, j 0 ) .

Hence we have found (il9 j l 9 i, i2, j29 j)^V for some w-nested pairs (il9 jj,
(h'Ji) a n ^ (U j). This contradicts our assumption that (q>vX(h)> ^ K ^ ' I ) )

and (cppJ1 (i2), cp^1 (/2)) are nested pairs in a v-cochain K.

Consequently <PV(K) is a w-cochain for every v-cochain K. •

2. A SPARSE PROOF OF OGDENS LEMMA

The Exchange Theorem given in [EHR2] has turned out to be very useful
in Part I of this paper; it will also play a crucial rôle in the present part.

Informatique théorique et Applications/Theorc »cal Informaties and Applications
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Our basic techniques are the same as bef ore. We use Lemma 1.4.2 to relate
balancée pairs in the weak description of a computation to equivalent pièces
in its trail. We can "pump" these pièces using the Exchange Theorem.
Lemma 1.4.1 is used to establish a relationship between occurrences in the
result of a computation and occurrences of right letters in its weak description.

Since Odgen's Lemma deals with "special" occurrences in a word of a
context-free language, now we are not interested in all occurrences but rather
in "special" subsets of these letters. In dealing with these subsets the results
on the sparse structure of Dyck words presented in the previous section
become important. They enable us to embed properly "special" balanced
pairs in the weak description of a computation.

THEOREM 2.1 (Ogden's Lemma): Let Kbe a context-free language over an
alphabet 0 . Then there exists a constant deN+ such that, for every WGK and
every Ag/s(w) with #A^d, there exist segments U1<U2<U3<UA<U5

satisfying
5

(i) fs(w)= U ü„

(ii) either Uu U2 and t/3 contain éléments from A or U3, UA and U5 contain
éléments from A,

(iii) U2 U U3 U U4 contains at most d éléments from A, and
(iv) w1w2w3wlw5e K for every neN, where w^wiUd for all l ^ i ^ 5 .

Proof: Let G = (GU G2, .R) be a real-time cp System Computing K=L(G\
where G1 = (E1) Pl3 Si9 ®) and G2 = (Z2, P2, S2).

Let d = 4(2r2)i5r2\ where r= # T(G). We will show that the theorem holds
for this choice of d.

Thus consider a word weK and a set A <=f s (w) of occurrences in w such
that # Agrd. Then let p be a successful computation in G such that res(p) = w
and let oc = tW(p), £> = wdes(<x). As usual, we consider a to be a r(G)-coloring
of Ç; a maps every occurrences in f s (a) = ƒ5 (£) to an element of F(G). Then
of course, ind(a) = r,

G is a real-time cp system, thus every occurrence k of a right letter in ^
corresponds in a natural way to an occurrence of a letter-ctó (a (fc))-in w (see
Lemma 1.4.1). This correspondence is described by the F-embedding cpK,
where V~{kefs(^)\l,(k)eÊ2} is the set of occurrences of right letters in Ç.
Thus, for a support W in Ç, we have ctb(a(W)) = w(<pyl (W)).

Let Aj: = (pv(A)5 hence Â  consists of those occurrences of letters in Ç that
contribute to occurrences of "distinguished" letters in w (that is occurrences
in A).

vol. 20, n° 4, 1986
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Then let E = ext^ (A4) be the extension of Â  in Ç. Â  consists of occurrences
of right letters in £ only, but S contains at least these and the matching
occurrences of left letters in Ç. Consequently, for any ^-complete support
W, # (W H S ) ^ 2 (W n A4), and in particular we have #E^2# A%^2d.

CLAIM 1; T/zere existe a balanced segment W in £ SWC/Ï tfiat;

(a) #(W^nAç)gd, ató

(fc) W contains

either an a-uniform ^-chain K witft | K | = 6,

or an a-uniform ^-cochain K with | K | = 3,

each pair of which is contained in S.

Proof of Claim 1: S is a ^-complete support, hence Ç=Ç(H) is an element
of / ) l 2 . It has length | Ç | = # H ̂  2 d.

According to Theorem. L 3.1. there exists a balanced segment W=
(T, r+1 , . . ., J) in Ç" such that d < # W^ld, If we consider â = a(S) as a
r(G)-coloring of Ç, then ind(a) = r.

Theorem 1.3.5. implies that either W contains an a-uniform Ç-chain K
with | ïc | = 6, or W contains an â-uniform Ç-cochain ie with | îc | = 3. So let îc
be either a Ç-chain or a ^-cochain as above. We consider both cases at the
same time.

By Lemma 1.6. S is a ^-proper support. Hence K = cps(îc) is a Ç-(co)chain.
The pair (T9J) is ^-balanced, thus (Uj)= (cps(ô, <pa(/5) is also ^-balanced,
because H is ^-proper (see Lemma 1.3).

Let W—(i, i +1 , . . ., j). Then W is a ^-balanced segment that satisfies our
claim. This is seen as follows.

(a) # (WnA^(l/2) # (WnS) =

(Hère we have used the fact that <ps is a bijection between W and W H H.)

(b) Obviously K is contained in W. Furthermore, K is a-uniform. This
follows from the ôt-uniformness of K and the fact that â(k) = â(k1) implies
thata(cps(/c))=a((ps(/c1)).

Hence our claim holds. •

It seems helpful to illustrate some of the notions used in this claim with
an example. Since the constants used in the proof become rather large even
in simple (but nontrivial) cases we give a "scaled" example: the longest
uniform chain in the trail of the computation we present has length 2 and it
contains no non-trivial (longer than 1) uniform conchains.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Example 2.1: Let G = (GV G2, R) be a cp system which has the following
rewrites:

and

F u r t h e r m o r e , le t GX=({X9 Y, a, b, c}9 P u X, { a , b, c } } a n d G2 =
{{A, B}, P2, A\ where P1 and P2 are chosen in such a way that they "fit"
the set of rewrites.

Consider w = aaaabbbcbbceL(G) together with the set A = {2, 6, 7} of
"distinguished" positions in w.

A possible computation p for w in G is determined by the control séquence

= ty» \|/15 v|/ls \|/ls \|/2, \|/3> \[/2, i|/4> \|/3, \|f2> v|/0.

This computation has the trail

a = trl(p) = [X; A] [x|/l5 0] [x|/l5 1] [x|/l5 2] [v|/l5 0]. . . [x|/2, 0] [x|/0, 0].

The weak description % of p is given by

Ç - AÂBAÂBAÂBAÂBAÂÊAÂÊÊAÂÊ

and obviously ƒ5 (Ç) =/s (ot) = { 1, 2, . . ., 22 }.
The occurrences of right letters in £, that is occurrences in a "contributing"

to symbols in w, form the set

K={2, 5, 8, 11, 14, 15, 17, 18, 19, 21, 22}.

In V we distinguish the set A4 = { 5, 15, 17}.
c/>Zt(Àç) = {4, 5, 12, 15, 16, 17}.

^ contains the following A^-relevant pairs:

(3, 22), (4, 5), (6, 19), (9, 18), (12, 15) and (16, 17).

Of these only (6, 19) and (9, 18) are A^-equivalent. So

out([{% 18)]Â ) = out((6, 19), (9, 18)) = (6, 19).

vol. 20, n° 4, 1986
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£ , = A A B A A B A A B A A B A A B A A B B A A B

1 2 3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22

b b

5 (Tl

b c b b c

10 11

Thus

Then

= {3, 4, 5, 6, 12, 15, 16, 17, 19, 22}.

= Ç (S) =BAÂBBÊAÂÊÊ

and

, 0][xJ/3, l][^/2, 0][v|/3, 0][x|/0, 0].

Ç has an â-uniform chain K = (4, 9), (5, 6) which is mapped by cps to the
a-uniform ^-chain K = (6 , 19), (12, 15).

The above may be depicted as follows.

= A A B A A B A A B A A B A A B A A B B A A B

B A A B

1 2 3 4

B A A

6 7 8

B

10

Informatique théorique et Applications/Theorelical Informaties and Applications
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All the computations in our cp system are given by the following diagram.

(End of Example 2.I.). •

Proof of Theorem 2.1 (continued):

The above claim enables us to find a splitting of a suitable for the
application of the Exchange Theorem.

Let W be as in the statement of Claim 1. We consider séparately the case
when W contains a chain and the case when W contains a cochain.

(1) Let K = (Ï1, 7\), . . ., (Ï6, j6) be a a-uniform Ç-chain contained in W.
Then let Wo, Wl9 . . ., Wi2 be the K-splitting of Ç.

The following two claims are helpul in proving the second condition from
the statement of Theorem 2.1.

CLAIM 2: W6C\^±0*

Proof of Claim 2: K contains only A^-relevant pairs, especially
(ï6s76)gH = ex^(A^). Hence W

CLAIM 3: There exist two pairs Ps = (is, js) and Pt = (it9 jt) of K, where
1 <;s<£^5, such that

either W,n\*0 and Wtf\

vol. 20, n° 4, 1986
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or WX2„tnA%*0 and W12_sH

Proof of Claim 3; Observe that by définition Â  contains only occurrences
of right letters in Ç. Hence the occurrences il9 . . ., f5 all belong to H —A4.

We consider separately three cases, depending on how many of the occur-
rences j ^ . . ., j5 are contained in Av

(a) There exist s, t with 1 ̂  s < t ̂  5 such that js, jt e A .̂

Then clearly "or" holds.

(b) There exists exactly one r, 1 ̂  r g 5, such that jr e Â .

Since obviously W12_rC\A^0, "or" holds whenever for some p^r
W12-pC\A^0. So assume that this is not the case; for everyp^r we have

Then let

if re{\, 2},
if re{3, 4, 5},

and
'4, if re{l, 2, 3},
2, if re{4, 5}.

Note that r is different from all éléments of {5, 5+ 1, ty t+1}.

Since (ÏS, A ) U 0 * S + I , J S + 1 ) E S —Â , Lemma 1.5.(3) implies that either

But we have assumed that W11_sC\Ak = 0i consequently WsC\^

In the same way we deduce that Wt C\A^0.

Hence we are left with the "either" case of the claim.

(c) For ail l ^ r ^ 5 we havejreS—A^.
Then applying Lemma 1.5.(3) to (ir,jr\ (ir + l,jr + i) we find that, for each

1 ̂  r ̂  4, either Wrf^A^0oxWl2_rC\A%^0.k simple counting argument
yields that at least two of the sets Wu W2, W3, W4, Ws, W9> W10 and Wtl

that have a nonempty intersection with Â  must lie at "the same side" of

This implies that our claim holds. •

Let s, t be as in the above claim. We write
ï - i

W ^ i = U Wk,

Informatique théorique et Applications/Theoretical Informaties and Applications
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5

k = t

12-1

K= u

1 2

= U

wk,

wk

wk.
*=12-«+l

and

Now we show that, for i-\, . . ., 5, Ui = (^>v
1(Wi) satisfies the statement

of the theorem. This is seen as follows.

(0) Obviously Wt < W2 < . . . < W5, Hence Ut < U2 < . . . < U5.
because q v l is an increasing function.

(1) UWi= U Wk=fs(Q3V.
f = l k=0

Hence

The reverse inclusion is obvious.
5

Consequently U t/ f=/s(w).

(ii) Clearly, if Wt f | A ^ 0 , then U( O A ^ 0 for i= 1, 2S . . ., 5.
Thus, by Claim 2, C/3 contains an element from A. Moreover Claim 3

implies that either U1 and U2 or l/4 and U5 contain éléments from A.
ii

(iii) The chain K is contained in W, so U ^ i W.
k=l

On the other hand, according to Claim 1, # {W C\ A^)grf,

Hence, because I J ^ S U Wk we have #1 U l ? ( n A ç k i From this
i = 2 fc=l \i = 2 /

4 _ / 4 _ \

it follows that U C/£ = <pK
 1 f U ^ ) contains at most rf éléments from A.

i = 2 \i=2 /

(iv) Let a — a ^ i ) for f= 1, . . ., 5.
Then a1a2a3a4a5 =

vol. 20, n° 4, 1986
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(ityjt) and (i6, i6) are a-equivalent ^-nested pairs. Hence by Lemma I .4 .2 .
a2oc3oc4~a3.

Exchanging these pièces in the trails of two copies of the computation p
leads to (unique) successful computations p0 and p2 in G such that

tri (p0) = a1a3a5 and tri (p2) = a1a2a2a3a4a4a5 = a1a2a3a4a5.

We apply the Exchange Theorem once again, this time to the equivalent
pièces a3 (in p2) and a2a3a4 (in p) to obtain a successful computation p3 in
G such that

t r / (p3) = a 1a 2a 2a 3a 4a 4a 5=a 1a 2a 3a 4a 5 .

Continuing in this way we get an infinité séquence of successful computations
pOî p1 = pJ p2, p3> . . . in G such that, for every neN, tr/(pn) = a1a2a3a4a5.

This implies that res (p j e L (G) ~K for every neN.
Hence, for ail neN, wlw

n
2w3w

n
4w5eL(G) = K^ where

w£ = ctb (0Lt) = ctb (a (Wt)) = w (cp^1 (W$) = w

This proves the theorem in the "chain-case".

Example 2.1 (continued): Let Wu W2, . . ., W5 be the K-splitting of Ç and
le t fo r i= l , 2 , . . . , 5 , L/^cp^

Then

/3 = {10s 11}.

Applying the Exchange Theorem to the equivalent subwords of ^

BAÂBAÂBAÂÊAÂÊÊ = £)(W2 U W3 \J WA) and BAAÊ = $(W3)

it is possible to find it computations in G for the words

w (UO w (U2)
B w (t/3) w ((74)

n w (f/5) = aa (aa)n bb (bcb)n bc, for all neN.

Note that [/2OA = 0 and [/5p|A = 0 , thus this partition of fs(w) does
not satisfy the second condition of Theorem 2.1 (End of Example 2.1.). •

(2) Let K = (ils ji), (Ï2, j2), (i3, j3) be a a-uniform ^-cochain contained in
W.

Let Wo, Wu . . ., P^6 be the K-splitting of .̂ The following result can be
proved in the same way as Claim 2.

CLAIM 4: W r
1 P i A ^ 0 , *P3n A 4 # 0 and ÏF5 H
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We choose now U—t^y^W^ where W1 = W0\JW1\JW2,
W2 = W3{JW4, W3^W5, W4 = 0 and W5 = W6.

This choice satisfies conditions (i) through (iv) from the statement of
Theorem 2.1. The proof of this fact is omitted, because it can be done
analogously to the proof given for the "chain"-case. As a matter of fact,
now the proof is quite simpler: in the "cochain" case our construction implies
that the "either" part of condition (ii) from the statement of the theorem
holds-hence now Claim 4 can replace Claims 2 and 3,

We would also like to remark the following concerning the proof of (iv)
in the "cochain" case: now a2a3a4~a3 , where a1. = a(Fri) for i—l, . . ., 5,
follows from the fact that (i29 j3) and (i3, y3) are equivalent ^-balanced pairs.

Hence the theorem holds also in the "cochain" case.
This concludes the proof of Theorem 2.1. •
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