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A DECISION METHOD
FOR THE RECOGNIZABILITY OF SETS
DEFINED BY NUMBER SYSTEMS (*)

by Juha HONKALA (*)

Communicated by J. BERSTEL

Abstract. — We show that it is decidable whether or not a k-recognizable set is recognizable.
Consequently, it is decidable whether or not the set defined by a number System is recognizable.

Résumé. - Nous montrons qu'il est décidable si un ensemble k-reconnaissable est reconnaissabîe.
En conséquence, il est décidable si Vensemble défini par un système de numération est reconnaissabîe.

1. INTRODUCTION

Recent work in the theory of codes and L codes has increased the impor-
tance of the study of arbitrary number Systems {see [5]). Hère "arbitrary"
means that the digits may be larger than the base (in our considérations also
négative) and that completeness is not required. Many basic facts about
number Systems were established by Culik and Salomaa, [1]. It was shown in
[3] and [4] that the set of bases of the set represented by a number System
strongly dépends on whether or not the set is recognizable. If the set is not
recognizable then the bases form a subfamily of an exponential family. This
is not the case if the set is recognizable. It is often possible to détermine the
bases if it is known whether or not the set is recognizable. For the time
being, however, no algorithm is known for determining the bases of the set
given by a number System. Below we give an algorithm to décide whether or
not the set defined by a number system is recognizable. The algorithm is, in

(*) Received in May 1985, revised in September 1985.
(*) Mathematics Department, University of Turku, Turku, Finland.
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396 J. HONKALA

fact, more gênerai. It can be used to décide whether or not a /c-recognizable
set is recognizable.

The reader is assumed to know the basic facts concerning finite automata
and fc-recognizable sets (see [6] and [2]).

2. PRELIMINARIES

By a number system we mean a ( Ü + l)-tuple N=(n, mu . . . ,my) of integers
such that v^\, n ^ 2 and m1<m2<. .-. <mv, The number n is referred to as
the base and the numbers mt as the digits.

A nonempty word

mikmik-i • • • mhmi# l^ij^v (1)

over the alphabet {m l9 . . .,mv} is said to represent the integer

K f c . • •ml.0] = mifc.n
k + m / j t _ r n

/ c - 1 + . . . + 7 ^ ^ + ? ^ . (2)

The word (1) is said to be a représentation of the integer (2). The set of all
integers represented by N is denoted by S (N). We dénote by Pos S (N) the
set

and by Neg S (N) the set

s ( i v ) n { o , - ï , - 2 , . . . } .

A set K of integers is said to be representable by a number system, RNS
for short, if there exists a number system N such that K—S(N). An integer
p is called a base of an RNS set K if there is a number system with base p
representing K.

If h ^ 2 is an integer, define the mappings Xk and vk from {0,1, . . ., fe — 1 }*
to the set of nonnegative integers by

and
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RECOGNIZABILITY OF SETS DEFINED BY NUMBER SYSTEMS 3 9 7

v k (w)= X w(..fc'

where n ^ w ^ . . . vvm and w fe{0,1, . . .,/c—1 }. A subset A of the set of
nonnegative integers is k-recognizable if there exists a regular language L over
the alphabet {0,1, . . .,/c —1} such that A = Xk(L). The following theorem is
a generahzation of the translation lemma due to Culik and Salomaa, [1], For
a proof see [4].

THEOREM 1: For every number system N=(n, ml5 . . .,mv) the sets PosS(N)
and — NegS(JV) are n-recognizable.

In Theorem 1 we dénote - Neg S (N) = {x | - x e Neg S(N)}.
If A is a subset of the set of nonnegative integers, define the o-word

2... by

0 if i$A9

1 if ieA.

If y is a word dénote by ya the oo-word yyy... The set A is recognizable if
there exist words j ^ and y2 such that G>(>1)—j^ j>2- The co-word yxy^ is called
the représentation of A ïf (ù(A)=yly2 and the following condition is satisfied:
if yiy<2=y3yt f ° r binary words j 3 and yA then either j j / 4 | = | j ; 2 | and
l ^ l ^ l ^ i l » o r I J ^ I ^ J ^ I - Here \y\ stands for the length of y . If y^y^ is the
représentation of A, then \yx\ is called the index of A and | ^ 2 | is called the

period of A.

In what follows we assume that L is a fixed regular language and n is a
fixed positive integer, n ̂ 2 , with the standard form n = ni1 . . . nv

s
s (i. e., each

vt is a positive integer and each nt is a prime with 1 < n t < . . . <ns).

We are going to show that if the index or the period of a recognizable set
A is large then if s/x and J / 2

 a r e finite deterministic automata recognizing
X~l(A) and v " 1 ^ ) , respectively, then at least one of them has a great
number of states. (In fact, both have. In the proofs below, however, it is
more convenient to use first Xn and then v„.) What remains in deciding
whether Xn(L) is recognizable is to check a finite number of times whether
Xn(L) equals a recognizable set. This can easily be done. By Theorem 1 we
can then décide whether Pos S (N) is recognizable for the number system N.

Example: Dénote JVfc = (2, l,fe) and Sm(Nk) = {x\x has a représentation of
length m according to Nk}. It is easy to see inductively that
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398 J. HONKALA

m-k and x = 2 m - l (mod/c-1)}. Hence
oo

= U {x|2m-l^x^A:.2m-/c and x = 2m-l (mod k-\)}.
m=l

For k = 5we obtain S (N5) = { 1, 5} U {x |x = 3 (mod 4)}. Hence S(NS) is
recognizable. Because co(5 (JV5)) =010101 (0100)0, the index of S (N5) is 6 and
the period is 4.

For k = 6 we obtain

OO

S(JV6)= U [{x|x=l(mod5)and21+4m-l^x^6.21+4m-6}

Suppose S (JV6) were recognizable. Because S (N6) contains no element
congruent to 4 modulo 5, the period of S (N6) should be a multiple of 5.
This is, however, impossible because every residue class modulo 5 has arbitra-
rily long gaps. Thus S (JV6) is not recognizable.

For finite automata we use the notation of [6], In particular, if the automa-
ton sé moves to q' when reading w in state q, we write qw => *q'. We dénote
the number of states of sé by # sé. If sé and $ are finite automata we dénote
their product by sé x m (see [2], p. 17).

If w = aoa1a2... is an co-word over the alphabet E and each a{ is a letter,
we dénote w[ij] = aiai+1. . .ai+j_i for nonnegative integers i and ƒ

3. THE PERIOD CANNOT BE LARGE

We show first that if vn(L) = A for a recognizable set A, then the period
of A cannot have a large factor prime to n.

If A is a set of nonnegative integers, define the équivalence relation ~ A by

m1 ~Am2, m1,m2eN

if and only if

min
r + ieA o m2n

r + ieA

for all reN ^
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RECOGNIZABILITY OF SETS DEFINED BY NUMBER SYSTEMS 399

For a proof of the following lemma, see [2], p. 107.

LEMMA 2: lf the set A is recognizable then the number of équivalence classes
of ~ A is finite and equals the number of states in a minimal finite deterministic
automaton recognizing X~ *(>!).

The following lemma is obvious.

LEMMA 3: Suppose (ù(A) = a0a1a2... If (o(A)[mln
r
9 nK]^(ù(A)[m2n

r, nr]
xvhere mvm2 and r are nonnegative integers, then mx and m2 are not equivalent
modulo ~ A.

LEMMA 4: Let A be a recognizable set with the représentation
yt j>2 = «o ai a2 • * * Suppose | y2 \ = c. n"1. . . n"s where c, uu . . ,,us are nonnega-
tive integers and c is prime to n. Choose k and m such that nk §: 21 y2 | and

| | ( m + l).nk . Dénote

Proof: Assume on the contrary that l ^ ï < / ; g c and am + ï- =
Dénote r = |<y2| and y2

 = bxb2. . .br. Then there exist binary words
p3, P4 and a positive integer t such that

and

a m + j = p 3 * * 6 l + l - ' -brbl' ' 'bt-l P 4

and | Pi | = | P3 |. Because (m + i)nk^ (m +;) nk (mod c), we obtain t ̂  1. Hence
the words bt. . .bt_x and bt. . .b r are both nonempty. Because furthermore

(&!.. .& t .1)(6 t . . . frP) = (6r. . . fc r)(fri . . .6,- i)

there exists a nonempty word 7 such that

b1b2...bt_x=yp and fet...6P=y«

for some positive integers p and q. Hence y^y^ is not the représentation of
A. This contradiction shows that am+i#am+7-. D

LEMMA 5: Let A9 yu y2 and c be as in Lemma 4. Then every finite
deterministic automaton recognizing the language X'1 (A) has at least c states,
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400 J. HONKALA

Proof: By Lemmas 3 and 4 m + i^A m+j if 1 ^i<j^c. The claim follows
by Lemma 2. •

Next we show that if vn{L) = A for a recognizable set A, then no high
power of any factor of n can divide the period of A.

LEMMA 6: Let A be a recognizable set. Assume that the period of A is
c.n"1. . . n"s where c is prime to n. Dénote

for 0 ̂  i < c. Then there exists art integer i such that the period of B( is
c.n\l. . . n^ where max tr = max ur

Proof If Bt is not empty then c divides the period of Bt.

To avoid notational complications we assume that Bt^0 for 0^i<c and
that the index of A is 0.

Assume without loss of generality that max ur = uv Let the period of Bt

be c. n"n . . . rc"'s. Dénote u = max u(- v We show that u = uv

Assume on the contrary that u<uv Then for 0 ^ Ï < C there exist words
w- = £ i Ob a . . . b i i g_! of length q = n\nug. . .n"s such that

Then

(ü(A) = (b00b10b20. . .fcc_i,o f coi6ii- • -*c- i , i - * • V « - i * i . f l - i - • - ^ c - i ^ - i r

which shows that the period of A divides c.n\nu
2

2. . .n"s. This contradiction
shows that the assertion is correct. •

LEMMA 7: Let A, c, Mf and Bt be as in Lemma 6. Choose an integer i such
that the period of Bt is c.n^. . . n** with maxtr — max ur. Then every finite
deterministic automaton recognizing the language v~1(BD has at least u states,
where u = max ur

Proof Assume on the contrary that there exists a finite deterministic
automaton St such that L (âl) = v~1 (Bs) and #&£u — l.

Let w b e a word over the alphabet {0,1, . . . ,«—1} such that

(1) vn(w) = ï (modc) ,

(2) | w | ^ u - l ,

(3) w' wAeBi for some word w4, where w = w/w// and | w' | = u— 1.
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RECOGNIZABILITY OF SETS DEFINED BY NUMBER SYSTEMS 4 0 1

Then there exist words w ls vv2, w3) states ql9 q2, q3 and a final state
qF such that w' = wlw2w3, w2^X, q0Wi=>*qx, ^ w 2 = > Y , ^ w 3 = > * ? 2 ,
<22w4=>*4F, <?2w"=>*43, where q0 is the initial state. Choose an integer k
such that no prime factor of c divides w'W2 ' — 1 more than k times. Then we
obtain (9 stands for Euler's function):

= v„(w2). — - — = 0 (mode), ! e N ,
rv W2 ' — 1

because by Euler's theorem n9(c*+1) = 1 (mod ck+i). Let w b e a word over the
alphabet {0,1, . . ., n-1}. Then

)l«'2fvn(w2w) = v„(w1) + n | w i | v n (w 2 w)

= v„(w1 w2 w) (mode).

Choose / such that | Wj wi
2

(p(cfc+1)+1 ) exceeds u and the index of Bt.

Because qow1 wl
2*^+1) + i w3 w4^>*qF we have

) + 1 w3 w4) e B£.

The word w1 w'2
9(c ) + 1 w3w / /has the same first M letters as the word

Furthermore, v„ (w2 w'2
9 (cfc+1)+ x w3 w") = v„(wt w2 w3 w") = vn (w) = Ï (mod c).

Hence vII(w1 w'2
9(ck + 1 ) + 1 w3w")eB i 5 which implies that ^3 is a final state.

Because q0 wx w2 w3 w
/y => *^3, the word w = w1 w2 w3 w" belongs to L{j%).

This shows that the period of f?f is smaller than c. n*£. . . n^. This contradiction
proves the lemma. •

LEMMA 8: Let A, c and ut be as in Lemma 6. Then every finite deterministic
automaton recognizing the language v ~ * (4) has at least max ujc states.

Proof. Let v~x(A) = L(sf) where sf is a finite deterministic automaton.
Let (ii be a finite deterministic automaton, which has c states and which
recognizes the language v„"1({x|x = z(modc)}). Then < P / x ^ £ recognizes the
language v ^ 1 ^ - ) . Furthermore, jxfxVt has #s/.c states. By Lemma 7
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4. THE INDEX CANNOT BE LARGE

We still have to prove that if vn{L)=A then the index of A cannot be
arbitrarily large.

LEMMA 9: Let A be a recognizable set. Suppose that the period of A divides
c. nu xvhere c is prime to n, and that m is the index of A. Ifm^nu + v~2 + l for
a positive integer v, then any finite deterministic automaton recognizing
v~1 (A) has at least v states.

Proof: Assume on the contrary that there is a finite deterministic automaton
j ^ s u c h t h a t vB"1(i4) = L(«^) and #jf^v-l.

Let w be the shortest word such that v„(w) — m — 1. Then | W | ^ M + U— 1.
Hence there are words w ls w2, w3, w4 and states ql9 q2, q3 such that
w = wtw2 w3 w4, w3 =£ X, | w11 = u, q0 w1 => *qu q1 w2 => *q2, q2 vv3 =̂> *42 ,

g2w4^>*g3 , where f̂0 is the initial state. In the same way as in the proof of
Lemma 7 we see that

v„ (w2 w?(cfc+1)+ x w4) = vn (w2 w3 w4) (mod c).

Hence

v„(Wi w2 w|(cfc + 1) + 1 w4) =vB(w! w2 w3 w4) (mode. n").

Because the index of A is m, one of the following two conditions holds:

(1) m — leA and if x > m — 1 and x = m — 1 (mod c. w") then x $ A.

(2) m — l$A and if x > m — 1 and x = m — 1 (mod c. n") then x e A
If (1) holds then q3 is a final state, which is impossible because

and vn(w1 vv2 w^(cfe + 1) + 1 w4)^/ l . If (2) holds then q3 is not a final state,
which is impossible because q0 w1 w2w%{c ) + 1 w4 => *g3 and

5. DECIDABILITY

THEOREM 10: Let k be a positive integer, k^2. It is decidable whether or
not a k-recognizable set is recognizable.

Proof: Let B be a k -recognizable set. By the définition there exist regular
languages Lt and L2 such that B = Xk{Lx) = vk(L2). Thus we can calculate
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how many states the finite deterministic automata recognizing Xk
1 (B) and

v,"1^) have. Consequently, by Lemmas 5, 8 and 9 it suffices to check
whether Xk(Lt) — A when the period and the index of the recognizable set A
are small. To check whether Xk(L1) = A for a fixed recognizable set A form a
regular language L' over the alphabet {0,1, . . ., k— 1} such that A = Xk(U).
This can be done effectively (see [2], p. 108). Clearly Xk(L1) = Xk(L') if and
only if

where (O*) "1LA stands for { w 10* w O Lx ̂  0 }. •
Our main theorem now follows by Theorems 1 and 10.

THEOREM 11: Given a number system N, it is decidable whether or not

Pos S (N) is recognizable.

In Theorem 11, Pos5 (JV) can be replaced by —Neg S (N),
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