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VARIETIES OF FINITE CATEGORIES (*)

by Alex WEiss (') and Denis THERIEN (3)

Communicated by J.-E. PIN

Abstract. — Many new results in the algebraic theory of finite-state machines are based on the
idea of using finite categories as the mathematical model for automata. In this article, we study
varieties of finite categories. Our main goal is to point out the similarities and distinctions between
C-varieties and varieties of finite monoids that underlie the more traditional approach to the theory.

Résumeé. — Plusieurs résultats nouveaux en théorie algébrique des machines a états finis découlent
de l'utilisation de catégories finies comme modéle mathématique des automates. Dans cet article,
nous étudions les variétés de catégories finies. Notre but est d'indiquer les similitudes et les
différences entre les C-variétés et les variétés de monoides finis de I'approche traditionnelle.

0. INTRODUCTION

The classical point of view in algebraic automata theory uses monoids (or
semi-groups) as models for finite-state machines. Underlying this choice of
formalization is the assumption that any sequence of symbols, drawn from a
finite input alphabet, can be fed to the machine. Denoting the input alphabet
by A, the universe of possible inputs is then the free monoid A* and a
finite-state machine can be thought of as a quotient of A* by a finite-index
congruence f.

In some interesting situations the assumption above is not realistic: for
example, when two machines are connected in series, the input sequence
processed by the ““tail” machine is essentially the output sequence produced
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358 A. WEISS, D. THERIEN

by the “front” machine. Because of the preprocessing done, the input universe
to the ““tail”’ machine is no longer a free monoid.

A more convenient formalization is to view the input alphabet as edges of
a graph. The possible input sequences are then paths in this graph, and a
finite-state machine becomes a finite category. This generalizes the former
point of view since a free monoid can be viewed as the set of paths in a
one-vertex graph.

The categorical approach is not just rhetorical sophistication. It has already
produced results which were not obtainable within the old framework. The
new approach was implicitely used in [2], [4], [5] and [12] to solve decidability
problems about the wreath product. Recent work [10, 8, 6] is fully exploiting
the power of the categorical model. In this paper, we will present some basic
ideas and techniques that are relevant to this area.

1. DEFINITIONS

A category C is given by a non-empty set of objects Ob. and, for each i,
j€Oby, families of arrows H (i, j). We write H for the union of all H¢ (i, j)
and drop the subscript C whenever the context is clear. For all i, j, keOb, a
binary operation is given from H (i, j)x H (j, k) to H (i, k) subject to the
following axioms:

(i) for any xe H(i, j), ye H(j, k), ze H(k, I} (xy)z=x(yz);

(ii) for each je Ob, there exists an arrow 1;€e H(j, j) such that x1;=x for
all x in H(i, j) and 1;y=y for all y in H(j, k).

We always assume that Ob is a finite set.

Given a directed multigraph G with vertex set V and edge set A, the free
category G* is defined by Obg.=V and Hg. (i, j) being the set of all paths of
finite length from vertex i to vertex j. Concatenation of consecutive paths is
the operation. Note that we include for each vertex i a trivial path 1, which
acts as the identity arrow.

A congruence B on a category C is a family of equivalence relations, one
for each set H (i, j) such that for any x,, y, € H(, J), x,, y,€H (j, k) we have
x; By, and x, By, imply x, x, By, y,. Note that two arrows can be congruent
only if they are coterminal.

The category D=C/Bf is then defined by Ob,=Ob, and
Hp(, j)={[x]g| xe Hc(i, j) } with the operation being [x]; [y]; =[xy,

Every category C can be obtained as the quotient of a free category by a
congruence. Let G be a graph with vertex set Ob. and edge set any generating
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VARIETIES OF FINITE CATEGORIES 359 ¢

set for H,. On G* define xBy iff x=y in C: then C can be identified with
G*/B in an obvious way.

A relational morphism { @, y >: C — D between two categories consists of
an object function ¢: Ob,—>Ob, and a morphism relation
Hc(i, j) > Hp (i, j @) such that

(i) x¥#J for any x in H;

(1) ;o 1Y,

(i) (x ) V)<= (xp) V.

C is a subcategory of D if @ and V are injective functions. C is a morphic
image of D if ¢ is a bijection and y~' is a surjective function. We say that
Cdivides D, written C<D, if, for all x, ye Hc (i, j), x¥ N y ¥ # & implies x =y.
Note that if C and D are monoids, i.e. one-object categories, this definition
of division is the same as the one given in [3]. C and D are equivalent,
denoted by C~D, if C<D and D<C. We will write C<, _,; D if C<D with
the object function ¢ being injective.

LemME 1.1: C<D iff C is a morphic image of a subcategory of E where
E~D.

— Sufficiency of the condition follows from transitivity of <. As for

necessity, let (@, ¥>: C—->D be the division. Define E by Ob,=
Ob, x Ob,, and

Hy (G, J), @, i) ={x|xeHp(, j)}.

We observe that E~D via {@,, ¥, >: E— D, defined by (i, j)o,=j and
xV{; =x, and { @,, ¥, >: D — E, defined by j ¥, =(iy, j) for some fixed i, and
xYy,=x. Next consider the subcategory F of E given by
Obr={(i, ip)|ieOb} and

He (G, 19), G, j@)={y|yexV for somexeHc(, ) ).
Let { @3, V3 >: C — F be defined by
i93=@, i9),  xVY3={y|yeH: (G i9), (,j®), yexy}.

It is then checked that C is a morphic image of F. [
A category C is trivial iff |HC (3, j)lgl for all objects i, j. The direct product
of two categories C and D is given by Ob., ,=0b.x Ob, and

Heup (G ), (@ i N={(x »)|xeHc(, i), yeHp(, J) }-

LemMmE 1.2 C<D iff C<,_,D xE where E is a trivial category and
E<,_,C.
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360 A. WEISS, D. THERIEN

— Let (@, ¥>: C— D be a division. Let E be defined by Oby=Ob, and
He(G, )={G, j)} if HcG, ))# B, Hg(i, j)= otherwise: the product in E is
given by (i, j) (j, k)=(i, k). It is trivial that E<, _; C. Define next { @, {, >:
C—oDXxE by io,=(ip, i) and x{,=(xV, (i, j)) for xe H.(i, j): this esta-
blishes that C<, _; D x E. The converse follows from the fact that D x E<XD
whenever E is trivial. [J

A C-variety V is a collection of finite categories such that D,, D,eV and
C<D, imply CeV and D, x D, V. This generalizes the notion of M-varieties
where only monoids (i. e. one- object categories) are considered. Similarly to
the monoid case dealt with in [3] and [9] one can naturally define notions of
varieties of congruences on free categories [13] and varieties of rational
languages over free categories [11], such that 1-1 correspondance can be set
up between all three types of varieties.

2. RESTRICTED C-VARIETIES

Since any non-empty C-variety admits categories on more than one object
as elements, M-varieties are not C-varieties. One way of recapturing M-va-
rieties as special cases is to allow 1-1 division only. A restricted C-variety is
defined to be a class of finite categories closed under 1-1division and direct
product. As will be seen below, restricted C-varieties are essentially obtained
by restricting the type of free categories under consideration.

Let G,=(V,, A,) and G,=(V,, A,) be directed multigraphs: the direct
product G, x G, is defined by

(Vi xV, (4, XAZ)U(Alx{lilieVZ})U({ lilieVI}XAZ))'

Observe that Hgy x Hgy # Jiff Hgy # P and Hgy # . Also, we will say that
G, is covered by G, if there exists a 1-1 function ¢ from V, to V, such that
whenever there is a path from i to j in G, there is also a path from i¢ to j
in G,. A family F of free categories will be said to be admissible if whenever
it contains two free categories induced by the multigraphs G, and G, it also
contains the free category induced by G, x G, and any free category induced
by a graph G that is covered by G,. For any (unrestricted) C-variety V,
define

V.={C|CeV, C=G*/Bfor some G*cF}.

THEOREM 2.1: W is a restricted C-variety iff W=V, for some unrestricted
C-variety V and some admissible family F of free categories.
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VARIETIES OF FINITE CATEGORIES 361

— Let W be a restricted C-variety and let V be the smallest C-variety
containing W. Let F={ G*| there exists C=G*/pe W }. By definition W< V.
Let C=G*/peV with G*€ F: thus C<D with DeW and there exists some
B=G*/yeW. By lemma 1.2, C<,_, D x E where E is trivial and E<, _, C.
Then E<,_, B and CeW: hence W=V_. Suppose Gf and G% are in F: there
thus exists v, and vy, such that C,=G%}/y, and C,=G%/y, are in W. The
congruence y, Xy, on (G, xG,)*, defined by (x,, x;)v, Xy, V1, ¥,) iff
X, Y,y and x, Y, ¥, is such that (G, x G,)*/y, Xy, is isomorphic to C, x C,;
hence (G, x G,)* belongs to F. Now suppose that G¥ is in F and that the
graph G, is covered by the graph G, via the 1-1 function @: define on G}
the congruence ¢y, by x @y, y iff x@ v,y @, then G,/py, <,_,G%/v, so that
G¥ is in F. Conversely let C, =G¥/y,, C,=G%/y,. If they are both in V| then
C,xC,eV and it can be obtained as the quotient of the free category
(G, x G,)* by the congruence v, x v, defined above; hence C, x C, € V. Also
if C,eVp and C,<,_;C,, it must be that G, is covered by G,. Hence
C, € V. This proves that V is a restricted C-variety. [

The family of all free categories is certainly admissible. It turns out that
there are only three other such non-empty families. Define

M={G*”Ob6‘ =1 }’
Q={G*|H(, H=gifi#j},
P={G*|H (i, j)# & implies H (j, i)=Fori=j}.

THEOREM 2.2: M, Q, P and the set of all free categories are the only
admissible non-empty families of free categories.

— That M, @ and P are indeed admissible is straightforward. Conversely
if F is non-empty, it must contain the one-object, one arrow category: note
that the underlying free category is generated by the empty set. The
underlying graph covers any one-object graph: hence Mc F. If M & F there
must be in F a k-object category G*, with k=2: any graph underlying a free
category in Q can be covered by a direct product of copies of the graph G.
Thus QcF. If Q<& F, a k-object category G* can be found in F with k=2
and H (i, j)# & for some i#j. Any graph underlying a free category in P can
be covered by a direct product of copies of the graph G, so that P<F.
Finally if P& F then F contains some G* with objects iy, iy, . . ., i, all different
such that H (i, i,), H (i, i,), . . ., H (i}, i) are all non-empty. Any graph can
be covered by a direct product of copies of G so that F must then include all
free categories. []

The M-varieties are seen to correspond exactly to the restricted C-varieties
of the form V,,.
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362 A. WEISS, D. THERIEN
3. INDUCING C-VARIETIES FROM M-VARIETIES

Let W be a M-variety: we can view W as the restriction of some C-variety
V to one-object categories, i.e. W=V, V certainly determines W uniquely:
we will see that the converse does not always hold.

DefinegW ={ C|C<M for some Me W}
and

IW={C|M<C and|Ob, |=1imply Me W }.

The two families form C-varieties and we have gW,,=1W,,=W. We say that
gW is the C-variety globally induced by W, and IW is locally induced by W.

THeoreM 3.1: Let V a C-variety and W=V,,. Then gW<SV <IW.
— If CegW then C<M for some MeW. Since W<V, we have MeV

and CeV as well. Let now CeV: since V,,=W any monoid dividing C is in
W. Hence CelW. [

Thus W=V,, uniquely determines V iff gW=IW. This equality holds in a
number of interesting cases: for example, whenever W is a non-trivial variety
of groups [12], and when W is the variety of nilpotent monoids [14]. In the
next section we will prove that gA, =1A, where A, is the M-variety of
idempotents monoids. On the other hand examples are known where the
equality does not hold ([12, 4]). The simplest such case is when W=1 is the
M-variety consisting of the one-element monoid only. It is clear that gl is
the C-variety of all trivial categories. The category E, described as

S

QXD 5w

t

is in 11 but is not trivial. Hence gl #£11. The C-variety 11, despite its apparent
simplicity, seems to be playing an important role when decomposing machines
(see [8] and [6] for example). We indicate below some interesting properties
of this variety.

Let G* be a free category with Hg. generated by 4. Define a preorder on
Obg. by i<j iff H(i, j)# . Let i=j iff i<j and j<i. The preorder naturally
induces a partial order on the =classes. Let A<= A be defined by ae Ay iff
ae H (i, j) with i#j. Next define on H. (i, j), x By iff for all ae Ap x=x,ax,
iff y=y,ay,. Thus x and y are By-equivalent iff they traverse the same set of
edges, where only edges between distinct =-classes are considered. It is easy
to check that G*/Br is a well-defined category.

THEOREM 3.2: C=G*/Bell iff B2p;.
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— If B2P; then |Hc(, i)|=1 for all ie Ob.. Hence Cell. Conversely let
Cell, x, yeHs (i, j), xBry. Then x=xpa,x,...a,X,, y=yoa,y;...a,y,
with a,,...a,e4; and Xg ..., X, Vo ---» Va€E(A—AL)*. Suppose
X; i€ Hg. (k, I): there exists z; such that x;z;€ Hg. (k, k) and z;y,e Hg. (1, D).
Thus x;z;B1, and z,y,B 1, This gives x;Bx;z;y;By; and B2B. O

An important property of categories in 11 is that C<M for any monoid
M that is sufficiently large. This is equivalent to the following theorem of
Tilson [10].

THEOREM 3.3: 11 =gW for any non-trivial M-variety W.

— By theorem 3.2 it suffices to show that C= G*/B divides some monoid
in W. Suppose Ar={ay,..., a,}. Let MeW with |M|>1 and choose any
m in M different from the identity. Define (o, y): Co>Mx ... xM (n
times) by letting i ¢ be the unique object of M x ... x M for all ie Ob,. and,
for a;e Ag, a;¥=(1, ..., ..., 1) where the unique m in the vector a;\
occurs in the i-th position: if aeA—AF then ay=(1, ..., 1): ¥ is extended
in a unique way to H. Since a path x in G* can traverse an edge in A, at
most once we get x\Y=(u,, ..., u,) Where u;=m if x=x,a,x, and u;=1
otherwise. This yields that xV{ characterizes [Xlgps 1. L@, ¥ is a
division. [J

In general, it is not known at present if gW and IW are the only possible
C-varieties V such that V,,=W. This is probably not so but no examples
are known. At least the case W=1 is settled.

THEOREM 3.4: If V,, =1 then V=gl or V=I1.

— Suppose that glgV: there exists CeV and i, jeOb, such that
|H(, j)|=22. It cannot be that i=j otherwise C would not be in 11. Hence
E,<C. We claim that G*/B divides a direct product of copies of E, for any
free category G*. The theorem follows from this claim.

Let Ap={ay, ..., a,}: then B=P, N...N P, where x B,y iff x, ye H (j, k)
and x=x,a;x, iff y=y,a;y,. It thus suffices to show that G*/B,<E,. Suppose
a;€ H (u;, v;). Partition the objects of G* in three sets: V,={v | H@, u)#J},
V,={v|H(v, v)#} and V, consists of the remaining vertices. Define
<o, ¥ G*B;,—» E, by vo=2 if veV, and v¢=1 otherwise, and ay=s if
a=a; ay=1, if acH @, v) with veV, UV, a¥=1, if aeH(u, v) with
ueV, and ay=t otherwise. The reader will check that <o, ¥) is a well
defined relational morphism: moreover x y=s iff x=x,a;x, so that (o, ¥
is indeed a division. []

It is clear that gW, =IW,, and that gW,=IW,. The category E, exempli-
fies that gl,#11,. On the other hand we have the following.
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364 A. WEISS, D. THERIEN

THEOREM 3.5: For any M-variety W#1 gW,=1W,.

— Since gW<SIW we have gW,<IW,. Let C=G*/BelW,, where
Ob.={1, ..., n}. By hypothesis H (i, i)<M, for some M;e W. Define B, on
G* by xB;y iff x, ye H(j, k) and either x, y have no prefix in H(j, i) or
X=XqUXy, y=y,vy, with u v where u(v) is the maximal length segment of
x(y) that is in H(i, i). Then B; is a congruence on G* and G*/B,<M,.
Moreover B=B, MN... MNP, N Bg so

G*/B<G*/B,; x ... x G*/B, x G*/B;.

Since G*/B,<M; and G*/Br<M for some M e W by theorem 3.3, we deduce
CegW,. O _

This last result has consequences for decidability problem concerning the
wreath product. Given monoids S, T and an M-variety W we want to
determine if there exists Xe€ W such that S<XoT. It can be shown [12, 10]
that this problem reduces to deciding if a specific (constructible) category
belongs to gW. This is decidable whenever gW =IW and membership in W
is decidable. If T is R-trivial, the category in question is of the form G*/B
for some G* in P. By theorem 3.5, the problem above can thus be solved
whenever W has a decidable membership problem.

4. gA,=1A,

Let A, be the M-variety of idempotent monoids i.e. MeA, iff m=m? for
all me M. We will show that gA, =1A,. The proof given here is typical of
similar results.

We first need a general fact.

LEMME 4.1: Let W be an M-variety. Let C=G*/f where Obg;.=0Ob, and
Hg. is generated by A. Then CegW iff there exists a congruence y on the free
monoid A* such that M=A*/yeW and for any x, yeHg.(i, j) xyy implies
xBy.

— Suppose there exists such y. Define (@, ¥): C—>M by ip=1, the
unique object of M, for all ieOb. and [x]g¥={[y],|xvy}. This is indeed a
division so that CegW. Conversely let <@, y)>: C—> M be a division for
some MeW. Let A={a,, ..., a,}: choose for each i an arbitrary element
m;ea,¢. We define a new relational morphism <{¢, ¥, > C—- M by
[x]g ¥y ={m,,...m,| there exists wBx, where w=a, .. .a;, }. The image of
C by V, is a submonoid M, of M that is generated by 4. Also if [x]g and
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VARIETIES OF FINITE CATEGORIES 365

], are coterminal and [x]ﬁ\ll1 Nl is not empty then [x]gy N[V is
not empty either so that x 8 y. Hence ¥, is a division. [J

It is known (see [3, Ch. 9]) that A*/ye A, iff y=a where o is defined in
the following way. For xeA* let A,={alacA, x=xqax,}; if A, #J let
x A (x p) be the longest prefix (suffix) of x such that 4., # A, (4,,#A4,). The
congruence o is given by xay iff A,=4, and, if A, #J, x=(x1)
au=vb(x, xp), y=@A)aw=zb(yp) with (xA)a(y L), (x p)x(y p). Note that
in particular x and y have the same initial and terminal letter.

THEOREM 4.2: gA,=IA,.

— It suffices to show that 1A, SgA,. On the free category G* let B be the
smallest congruence satisfying x B x? for all xe Hg. (i, i). Thus C=G*/8€lA,
iff §2B. In view of lemma 4.1 and the canonical property of o defined
above, it is sufficient to show that x oy implies xdy for any x, ye Hg. (i, j)-

If | A,|<1 the result is trivial. We proceed by induction on |4, | We first
show that x a.uv implies x Buv’ for some v'. Again if | 4,|<1 the claim follows
immediately. Otherwise let u, be the longest common prefix of x and u: if
uo=u we are done. If not, let u=uyau,, x=uy x,. If u, does not contain the
letter a then x,=waz and uyauyw: this follows from the definition of a.
Since | A, |<|4,| we deduce ug Buyw: thus x Bugaz. If u, does contain the
letter a then uy=waz and x=wazx, B wazazx,=uyazx,. In both cases we
have x B x’ for some x’ having a longer common prefix with u. Since <o we
can iterate the argument until this common prefix coincides with u. By
symmetry we also have xauv implies x Bu’v for some u’. Now going back
to the proof of the main result let x « y. The statement proved above can be
used to deduce yBxz for some z: hence we also have xaxz. Using the
symmetric version of the intermediate result we get x § wz for some w. Then
xBwzzPBxz, so that xBy. [

5. CONCLUSION

The theory of varieties of Eilenberg and Schiizenberger, relating algebraic
properties of monoids and combinatorial properties of languages, has helped
tremendously to organize the body of knowledge that concerns finite-state
machines.

What is emerging at this point is simply a refinement of that theory. By
relaxing the condition that a machine should have a free monoid as its input
space, one is led to introduce categories as the right model for automata.
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366 A. WEISS, D. THERIEN

The notion of variety is easily generalized in a way that the relationship with
languages is preserved.

The advantages are two-fold. First, as we have outlined in the introduction,
partial multiplication better represents what is happening in a situation where
a machine is decomposed into simpler components. Second, there are ‘“more”
C-varieties than M-varieties and the generalization from monoids to catego-
ries appears to allow enough freedom to express conveniently phenomena
that are impossible to describe using exclusively the old framework. For
example several results abour wreath product decompositions have been
obtained in recent years by using the categorical approach. Also the C-variety
11 provides a missing link in the theory of maximal proper epimorphisms of
Rhodes [7, 8]. We believe that categories could be helpful in studying some
important decidability problems like those about the dot-depth hierarchy [1]
or the group-complexity hierarchy [3, Ch. 12].
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