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THE LOCAL AND GLOBAL VARIETIES
INDUCED BY NILPOTENT MONOIDS (*)

by Alex WErss (%)

Communicated by J.-E. PIN

Abstract. — It is proved that MNIL x D=LMNIL. Thus the membership problems for the
semigroup variety MNIL x D and the category variety gMNIL are solved.

Ré é. — On dé tre que MNIL « D=LMNIL. Alors les problémes d’appartenance pour la
variété de semigroupes MNIL x D et la variété de catégories gMNIL sont résolus.

1. PRELIMINARIES

1.1. Goal

To solve the membership problem for the semigroup variety MNIL x D
and for the category variety induced globally by the monoid variety MNIL.

1.2. Introduction

This paper solves a difficult problem using the theory developped in [W & T]
and [T&W]. Some familiarity with the results and terminology of these
two papers is presupposed. The following proposition shows that the two
membership problems are really one and the same.

1.3. ProrosiTioN: Let V be a monoid variety. Then the following statements
are equivalent.

{*) Received in April 1985, revised in January 1986
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340 A. WEISS

(i) V*D=LV.
(ii) V induces globally and locally the same category variety.

(iii) Given any finite category C whose base monoids are in V, there exists
an injective relational morphism from C to some monoid in V.

(iv) Over any graph, a local V-congruence is a V-congruence.

Proof: All the-equivalences are demonstrated in:[T &Wland [W&T]. [0

1.4. Plan

The principal result [theorem (3. 1)] shows that statement (iv) in the above
proposition holds for the monoid variety MNIL. The complete proof, howe-
ver, is long and complicated. Theorem (3. 1) proves the result modulu the
construction of a certain function f (n), to which the bulk of the paper is
devoted.

The plan of the paper is as follows. Section (2) contains the basic definitions
and notations. Section (3) contains the principal result. Section (4) contains
a number of technical lemmas. Finally, Section (5) contains the main lemmas
as well as lemma (5.6) which defines f(n) and completes the proof of
theorem (3. 1). The next section starts with a few facts about MNIL.

2. MNIL-CONGRUENCES

2.1. DefFINITION: Let A be an alphabet, xe A*. | x|, denotes the number of
times the letter a appears in x. Let

xy={aed|x|,21
that is, x'y is the alphabet of x. Next let
= {aeAHxl

Notice that xy=xy;.

Let x d, be the subword of x obtamed by erasing from x all occurences of
the letters in x v,

The following definition and lemma are borrowed from [S].

2.2. DeriNiTioN: Define a congruence =, over A* as follows. For all x, ye A*,
xx,y iff xv,=yy, and x38,=y8,
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LOCAL AND GLOBAL VARIETIES ’ 341

2.3. LEMMA:
(i) =, is a finite index congruence over 4*.
(ii) Forall n20, ~, 2 ~,,,. O

2.4. DeriNtTION: Define a family of semigroups
NIL= SeS I S is a semigroup with a zero,

this zero being the only idempotent of S }.
Given a semigroup S, let

. { S if Sisamonoid,
SU{1} if Sisnotamonoid.

So S’ is always a monoid.
The next proposition is extracted from [S].

2.5. ProposiTioN (Straubing): The following families of monoids are all
equal.

(i) The M-variety generated by
{S'|SeNIL}.
(ii) The family
{ S eM|there exists an n=0 such that for all

n+1

ses, s"=s and for all seS

and all idempotents e€ S, es=se }.
(iti) The family
{S €M |there exists an v=0 such that

for all seS, s"=s""!

and for all x, yeS, x"y=yx"}.
(iv) The family
{S €M |there exists an n20 such that for all

ses§, s"=s"*!

and for all x, yo, ¥4, . . ., V4€S,
VoXPie o XPu=X"Yo V1.« - Vn=YoV1- - VuX"}.

(v) The monoid variety generated by the monoids

vol. 20, n° 3, 1986



342 A. WEISS
{ A*/=~,| A is an alphabet and n20}. [

The monoid variety thus identified by the above statements in called MNIL.
For our work, characterizations (iv) and (v) are the most useful.

2.6. DerFiNiTION: A (directed) graph G=(V, E, o, ) consists of a set V of
vertices, a set E of edges, and two functions a, ® : E — V which assign to
each edge its begin and end vertex, respectively. We denote by P the set of
all (possibly empty) paths over G. We use the symbol ~ to denote the
coterminamity relation on paths. Let G be a graph and let xe E*. Then xvy
makes sense whether x is a path or not. Now, if xe P, define

xv={veV|x can be f actored as x=xyx, with xo@=x,00=v}.

So xv is the set of vertices which x visits. Denote by |x|,, the number of
times that x visits the vertex v.

Let L denotes the set of loops in G, while L, denotes the set of loops
about the vertex v.

Let =, be the family of MNIL-congruences induced by the family =,
over E*. '

Define the relation R, over G by
R,={(x", x"*")|x is a loop }
U{(DoXp1- - - XV YoVi- - -YaX)|¥os P15+ - -5 Yo X are coterminal loops }
U{(YoXV1- - -XVp X" VoY1 - -¥)|Yo» ¥15- - -» ¥u X are coterminal loops}.

Note that in the definition of R, we allow empty loops. Let §, be the smallest
congruence over G which contains R,. Once we show [lemma (2.8) below)
that the B,’s have finite index, ‘it follows by proposition (2.5) (iv), that the
B,’s are local MNIL-congruences.

2.7. NotaTioN: Our first goal is to prove that the B,’s have finite index. To
do so, we need to introduce some notation. Let

S, 1=EU{¢é|eis aloop-edge and 1<j<n}.
For all k such that 2<k < | E|let

Sp = {xeP|x| <k(@®|S, -1]|+2}.

Informatique théorique et Applications/Theoretical Informatics and A pplications



LOCAL AND GLOBAL VARIETIES 343

2.8. LemMA: For all xeP such that |xy| =k there exists x€S, , such that
x B, x.

Proof: We proceed by induction on k where 1<k< |E|. If |xy| =1 then
either x is an edge, in which case let x=x, or x=e’ where e is a loop-edge
and j= 1. In the latter case let x=e™""", In either case x B, x.

Next suppose that the induction hypothesis holds for k=1, and let
|xy|=k+1.1If
|x| <(k+1)(n|S, .| +2)

let x=x. Else we shall construct a path x such that xB,x and | x| < |x|. The
induction will then follow by iteration.

Put some arbitrary but fixed ordering on E. As
[x|2k+1)(n|S, | +2),

it follows by the pigeon hole principle that there exists ee E such that
lx|egn|S,,.,,| +2.

If there are several such edges, choose the first in the E-ordering. Thus x
contains n|S, ,| +1 non-overlapping segments, all of which are coterminal
paths whose alphabet is of size <k.

If one of these paths is empty, then e is a loop-edge and as |x|e>n, we
can construct x such that |x|,=n and x B, x.

If none of the segments is empty, then, by induction, each of them is
B,-congruent to some path in S, ,. Again, by the pigeon hole principle, at
least n+1 of them must be B,-congruent to the same path in S, ,. Let
Si> - - -5 Sp+1 be the first n+1 such B,-congruent paths and let s be the path
in §, , which is congruent to then. Then

X=XgSy X1+ -Sys1Xn+1Pn
Xo8X1. . SXpi1 By
xossnxl e Xpyy Bn

n . _
XoS" X5 Xy 1 =X,

Ast,,fand |x| < |x| we are done. [

2.9. LemMma: B, is a finite index congruence over G.

Proof: There are no more than |S, g | B,-classes. [

vol. 20, n° 3, 1986



344 A. WEISS

3. THE PRINCIPAL RESULT

3.1. THeoREM: Any local MNIL-congruence is an MINIL-congruence.

Proof: If & is a local MINIL-congruence, then there exists an n=0 such
that 8 2 R,, and thus § 2 §,. But by definition (2. 6) and lemma (2.9), B, is

a local MNIL-congruence. By proposition (2.5) (v), ~, is an MNIL-

Y ~n

congruence. Thus if we can find a function f=f (n) such that B, 2 <, ()

then this would prove that B, is an MNIL-congruence and thus so is 8.
We now embark on the task of constructing f(n). [

4. TECHNICAL LEMMAS

4.1. Lemma: Let L, ,, ,=S, N L, Let L, , be any element of {L, , ,|veV}
of maximal cardinality. Let g (n)=n|L, g,| +1. Then for all xe P and for all
ecE, |x !egg(n) implies that x contains n non-overlapping segments, all of
which are PB,-congruent loops whose first edge is e.

Proof: As |x|,2g(n), x can be factorized as x=xpex,...eX,, SO x
contains n|L, ;| loops about ea, namely, ex,,...,ex, By

A
lemma (2. 8), there are

Xis oo e xnlL,)\g}leLn,lEt.eu

such that for all 1<i<n|L, g |, ex;B,X. By the pigeon hole principle, there
exists at least n of the x;’s which are B,-congruent to each other. Thus at
least n of ex,, ..., ex,|,, , are B,-congruent to each other as well. [

4.2. Remark: Notice that |S,,'|E|| is a constructible upper bound to the
index of B,. Let k, be the cardinality of a maximal cardinality base monoid
of G*/B,. Then |L, | is a constructible upper bound to k,. Lemma (4.1)
would still be true with g (n) defined as nk,+ 1. However, while we do not
have an algorithm to decide for any paths x and y whether x B,y is true, we
do have an algorithm to decide whether x and y are f,-congruent to the
same path in §, | z|. If they are then x B, y is true, but even if not it may still
be the case that xf8,y. Similarly, if x and y are coterminal loops, we can
decide whether x and y are B,-congruent to the same loop in S, | z. Thus to
make the proofs to come algorithmic, we must define g (n) as in lemma (4. 1).

We now proceed with the lemmas.

Informatique théorique et Applications/Theoretical Informatics and Applications



LOCAL AND GLOBAL VARIETIES 345

4.3. LemMa: For alln20, B,2B,+,, and B, S =,

Proof: The first statement follows from B, 2 R,.;. The second follows

from R, S ~ 4

n= Xn

4.4, LemMa: Let x=ul"ve P with le L. Let u=u, u, with u; ®=Ia. Then
xB,u, "uyv.

Similarly, if v=v, v, with v, ®=Io then x B, uv, I"v,.

Proof: In fact, ul®vB,u,l"u,v, since in the definition of R, we allowed
empty. loops. [

4.5. LEMMA: Let xe P and ecE be such that |x|,2g(n). Let | be any of the
n B,-congruent non-overlapping loops starting with e which occur in x by
lemma (4.1). Let x=u, u, be any factorization of x such that u, ®=Ilo. Then
for all k=n

x B, ul*v.

Proof: Write x =x,es, x,. . .es, X, where es,, . . ., es, are the B,-congruent
loops. If ! is any of them, we have
X=XqeSy X,...e5,%,B,
Xolx,...Ix,B,
Xol"xy...%,B,
XoI"I"xy. . . %, B,

xol"es; x,...es,X,
By lemma (4. 4), we conclude that x B, ul"v and thus x B, ulfvforall k2n. O

4.6. DermniTION: We introduce the notion of a simple path.

Let xeP.x is said to be simple iff either x is an empty path, or for all
eexy, |x|,=1. Next we define a map s: P — P which associates to every
path a simple path coterminal to it. If x is simple then s(x)=x. Else there
exists an edge which accurs in x at least twice. Introduce an ordering on xy
by the order in which the edges of x appear for the first time as x is scanned
from left to right. Let e be the first edge in xy which occurs in x more than
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346 A. WEISS

once. Then x can be factorized as x=x,ex, ex, so that x, is simple and
| x;|.=0. Then define s(x)=xqes (x,).

4.7. LEMMA: Let x be a non-empty path. Then there exists r>0 such that
x=xl el. B .x'e'

where e, ..., e,eE, s(x)=e,...e,, x~e,...e, and for all 1Zi<r, x;is a
(possibly empty) loop about e;a.

Proof: We proceed by induction on | x|.

If |x| =1 then s(x)=x and r=1.

If x| >1 then if x is simple, r=|x|. Else, as in (4.6), x=x,ex, ex, with
X, being a simple path and s(x)=x,es(x,). If x, is empty then s(x)=x, e so
r=|x,| +1. Else, as | x,| < | x|, by induction we may assume that there exists
u>0 such that x,=z,e,...z,e, where e,...e,=s(x;) and x,~e,...e,

Then x=xq(ex;)ez,e;...z,e, So r= |x0| +1 4u and s(x)=xqee;.. .¢,
and x~x5ee,...e,, O

4.8. LEMMA: Let u, v, u,. . .v,,_, U, be a path and let z be a simple path such
that for all eezy,|u,. . .u,|.2(m+1)g(n). (Note that u, . . .u, need not be a
path). Then

Uy Dy Uy U Uy BaWwi vy oWy 12ZW; 50 Wy,

for some 1 Zi<m. Furthermore, for all ecE,

luy. . .1

mle= Wi Wi 1w Wyl

That is, z can be created in one of uy, . . ., u,, without affecting the v;’s.

Proof: We proceed by induction on |z|.
If |z| =1 then the result is trivial.
Else, suppose by induction that

Uy Oy Uy Vo Uy BaWy 0y oW 1 ZW 20 W,
for a simple path z, and let ee E be such that ze is a simple path and
[ Wy oW w5 W2 (m+1)g (n).

By the pigeon hole principle, at least one of wy, ..., w1, Wi 2 ..., W,
contains e at least g (n) times. Call it x. By lemma (4.5), x B, ul"v where [ is
a loop starting with e. As zo=ea the result follows by lemma (4.4). [

Informatique théorique et Applications/Theoretical Informatics and Applications



LOCAL AND GLOBAL VARIETIES 347

4.9. LeMMA: Let xeP and let z be a simple path such that for all eczy,
|x|.2(m+1)g (m)+(m—1). Then

xBnylzyZ"’zym+l
for some paths y,, ..., Ym+1, and for all e€ E,
lx|e= Iyl Zyy- . ~z.Vm+l|e'

Proof: We proceed by induction on i for 1<i<m. The case i=1 follows
by lemma (4. 8).

By induction suppose that after i —1 steps with i> 1, we have
XByi2zyz. .. 2y;
Then for all eezy,
|y192- - yileZm+1)g (M) 2 +1) g ().

Again using lemma (4. 8), we can create another z in one of y,, ..., y.. O

4.10. LemMmA: Let h(n)=(n+1)g(n)+(n—1). Let x€ P, and let z be a simple
loop about x @ such that for all eezy, | x|, 2h(n). Then

‘X B, xz:
Proof: By lemma (4.9),
XBaYozZVi- - - ZVp
As za=y,®, y, is a loop. Then

XB, VoY1 -VnZ

BaYo¥i- - -YaZ'z

BaYozyy. . .2ynz
B,xz. O

4.11. LemMA: Let xe P and let z be a loop about x ® such that for all eczvy,
| x|.2h(n). Then

x B, xz.

Proof: Note that this lemma differs from the previous one in that z is no
longer required to be simple.
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348 A. WEISS

We proceed by induction on |z|.
If |z| =1 then z is simple, so we are done by lemma (4. 10).
Else suppose that |z| >1 and let

zZ=Y,€,...).¢

where e, . . .e,=s(2) and the y;’s are loops [see lemma (4. 7)].
By lemma (4. 10) we have

xB,xe,...e,.
By induction on i for 1 <i<r we shall now prove that
xe,...eP,xy e,...y;e.

If i=1 then x B, xy, since y, is a loop and |y, | <|z|.
If i>1 then, by induction on i, we have

xe;...e;Bxye;...5;e; (%)
If i=n we are done. Else suppose that i<n. As |y;,,| <|z|, we have
xe,...e;B,xe .. .4,
So
xey...ee B,Xxe ... €y (*%)
Now, using (*) and (*%), we have
xey...eey 1 B.xyie .. .ye ¥, €4,

This completes the induction on i.
Now, setting i=r, we obtain,

xe,...e, B, xy,e,...y,e,=xz.

So xB,xe,...eB,xz. O

5. CONCLUSION OF PROOF

5.1. Remark: h(n) is not large enough to qualify as f(n), but it is large
enough to handle a special case.
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LOCAL AND GLOBAL VARIETIES 349

5.2. LemMA: Let x xy(, ¥ and suppose that both x 9, ,, and y 3, are empty.
That is, for all eexy=yy, | x|,2h(n) and similarly for y. Then

xB,y.

Proof: Without loss of generality, assume that |x| < |y|. We start by
proving by induction on i for 0<iZ |x| that there exist paths y, such that
¥ B, »; and x have a common prefix of length i and for all e E, |y |.< | »:/..

For the case i=0 let y,=y.

Now suppose that x=pau and y,=pbv where | p|=i§0, a, be E and
yB,pbv. If a=b we are done. Else, as |y;[,=]|y|, it follows that
] Yi |agh(n)g g(n). So y; contains n non-overlapping B, -congruent loops star-
ting with the edge a. As aa=ba, we can use lemma (4.5) to conclude that
»;B,pI"bv where [ is a loop starting with a. Let y;, , =pl"bv. This completes
the induction on i.

Now by setting i= |x|, we obtain y B, xz for some loop z. As yy=y,7 for
all 0<ig lx l, we conclude that (xz)y=y7y. So zy &€ xy=yy. Finally using
lemma (4. 10), we have '

xB,xzB,y. O

5.3. Remark: The next two lemmas are long and complicated, but the ideas
behind them are rather simple. The reader may wish to study first the final
lemma in order to see the meed for the two lemmas.

5.4. LemMaA: Let x x k1, y. Write

where
Ay, ag=Xx8,1El (=Y 8 IEIy.

Suppose that for all i such that 0k, x; O LEl(y IS empty, and similarly for the
v:’s. Then xB,x" and y B,y where ' : '

3 ’ . ’
=Xqa; X7 .. G X
’ ’ ’
Yolr Y1« -GV

vol. 20, n®:3, 1986



350 A. WEISS

where for all 0Si<k, x; ~,y; and either both x; and y; are empty or both
x; 8, and y; 8, are empty.

Proof: Given paths p and g such that p3, and g6, are empty, we have

that p =, q iff py=gqy and p~gq. This observation will be used later.
We start by introducing some notation. Let

B=(a,...a)y.
By= {e€E||x|.<gm)}.

For all 0<j< | E| let
B;={ecE|g/(m=<|x|.<g/" ' (m)}.
Finally let
Big = {ecE|x|.2g'"8'(m)} =xv 121

Observe that B= {J B;. Observe further that if B=E then x=y and

0<js|E|

this lemma is rather trivial. Also, if B=0, then k=0 so let x=x" and y=y’
and the lemma follows. Thus we may assume that 0< | B] < | E|. This implies
that there exists 0<j< | E| such that B;=0, but we shall not use this fact.

Given paths p and g, we say that g is fuller than p, written p<g, iff
pY=qy and for all eeE, |p|,<|q].. This relation satisfies p<p and p<g
together with ¢=<r implies p<r. However, p<q and g<p does not imply
that p=gq. But we do not need this last property.

The proof proceeds via a certain construction. We construct two sequences
of fuller and fuller paths

x=x(0)§x(l)§ éx(lfl)

0). E
y=y( ’éy“’é. . §y” 1

which have certain properties. These properties will now be stated for the x
sequence. The corresponding properties for the y sequence can be obtained
by reading x for y and y for x in the obvious places.

(i) For all I such that 0<I<|E|,
=xPa, xP.. . axP

that is, a,. . . a, is a subword of every path in the x sequence. Similarly for y.

Informatique théorique et Applications/Theoretical Informatics and A pplications



LOCAL AND GLOBAL VARIETIES 351

(ii) For all 0<i<k and for all 0ZIZ|E|, either x{8,iz1- :(,,) and
P8, 1E1-1, are both empty or x{’ and y{" are both empty. That is

X’y U B;=0.
0<j< |E| -1
Similarly for y.
(iii) For all 0<I< |E]

xOB1ei-a+n g x4,

Similarly for y.
(iv) If for some 0<I< |E| and for some 0<i<k

X0y 2 0y then X+ =x0,

Similarly for y.

(v) I for some 0<I< |E| and for some 0<i<ky{y—x{"y#0 then x**V
will be created from x® using R,1£1-¢+1 ,-transformations in such a way-
that for all 0gi<k

1+1)

Py 20y

Similarly for y.

We defer the details of this construction to later in the proof of this lemma.
In the meantime, assuming properties (i) to (v), we have the following.

Lemme: For all 01< | E| and for all 0Si<k,

either x"y=y®y

or |xPy| 21 and |yPy| 21

Proof: We proceed by induction on 1.

If /=0 then the lemma is trivial. Thus assume that the lemma holds for
some 0ZI< |E|. If xPy=yPy then x{*Vy=xPy=yPy=y{* Dy by (iv), so
the induction follows.

Now suppose that xPy#3y®y. Without loss of generality we may assume
that y{y —x{0y #0. ,

Then by (v), x{* Py 2 yPy so |x{*Vy| 2 |xPy| +121+1. Next we show
|#Py| 21+1.

If xPy—y®y#0 we argue by symmetry. Else y{"y strictly contains x{"y
so :

|"’y]>lso]y(‘*”] |y"’v]>l+1 0

vol. 20, n° 3, 1986



352 A. WEISS

Using this lemma we may conclude the proof of main lemma. From the
lemma we deduce that for all 0<i<k, x{!/EDy=3{IEDy  Also, by (i),
x{P ~y® for all 0LI< | E|. Thus setting x’=x{/E1) and "=y ED) and remem-
bering the observation made at the very beginning of the proof, the lemma
follows.

We shall now take up the details of the construction.
We proceed by induction on 0<I< |E|.
As x=x© and y=y©, the case |=0 is immediate. So we pass to the

induction step. Assume that for some 0<I<|E|, x and y® have been
constructed in accordance with properties (i) to (v).

We shall now construct x**1, y¢*+1 j5 constructed in an identical fashion.

Define a succession of fuller and fuller paths z; ; for 0<i<k and
0= |y y—xPv|, with the j index varying faster.

The z; , are defined just for notational convenience.

zo, o=x" and if i20,

Z; 0=2 o (

=1, [y =< vy

We construct the z; ; inductively to have the following properties.
() z, ;=25"a,z0". . .a,z{?, that is, the z, ; have a,...q, as a
subword. )
(I1) x"<z ; and x"<z0,.
I x® Bgrei-a+n g,z o
vy I yPy—xPy+0 let

{e| 1= [yPy—xPy |}

be the edges in " y—x{" y ordered by their order of appearance in y{ as y¥
is scanned from left to right. Then

{es, ..., e;} 20,
In fact
{er, ..., e} Sz Py 1E1-a+n gy

Clearly z, , has these properties.
Suppose by induction that so does z; ;. If j=|y®y—xPy| tl}é:} the next
path is z;,, o and z;,, o=z, ; so we are done.

Else suppose that 0<j< |y y—x{y|. Once again we need a
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LEMMA: ¢;, aez{v.

Proof: We proceed by induction on j with 0<j< |y y—xPy|.

If j=0 then either y{"=e, p for some pe P or y=ue, w for some paths u
and w with uy < x{"y.

In the first case, e, a=ypPa=xPa=z" .

In the second case, e, a=uwex{®v. By property (II) xPv < z&?v, so
e, aez v, This completes the j=0 case.

Now let j=O0. Then either y=ue;e;,, w for some u, weP, or
" =ue;pe;,, w for some u, p, we P, where py < x{"y.

In the first case, e;,, a=¢;0. By property (IV) and by the induction on
z; » we have e;ez{"?y. Thus,

ey a=e;0ezi v,

In the second case, ¢;,, a=poex{’vc v, O

Thus we know that e;,, €z{*?v. By the induction on I and property (ii),
we have |y{|, 2g'®!17'(n). As I<|E|, we use lemma (4.1) to create
g'E1=¢* Y () occurrences of e;,, in z{? using only R, 1£|-a+1 ,-transforma-
tions, in such a way that the only segment of z, ; to be affected is z{"7 itself.
This new path we call z ;,, which differs from z ; only in that
z V#2317, ., have been constructed in accordance with properties (I)
to (IV).

This completes the induction on the z; ;’s.

Now let x**V=2z, . .o Then x**! has properties (i) to (v).

This completes the induction on . [

5.5. LeMMA: Let X x4, y. Write
X=Xq@1 X1+ .. .0 X,
Y=Yo@1Y1: - Wy

where ay. . .a;=x98,,,=y9

g (n) g (n)

Then x B,x" and y B,y” where

and
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V'=yoai 1. . &Y

and for all 0Zi<k, x;8, is empty, and similarly for y!.

Proof: Note that a,...a,=x9,, implies that for all 0<i<k, x; is either
empty Or X;Y S XY, and similarly for y,.

Let B=(a,...a.)y. As in lemma (5.4), the result is immediate unless we
assume 0< | B| < | E|.

We proceed with a construction similar to the one used in lemma (5.4) to
construct x¢*1) from x®.

Define a succession of fuller and fuller paths z;
0<j<|x;v| with the j index varying faster.

i j» where 0=i<k and

We define z; , for notational convenience only. We have z, o=x and
Z; 0=Zi_1,|x_,y) I i>0.

The z; ; are constructed to conform to the following properties.
() z;, ;=28 7a, 2. . .az}7, that s, a,. . .a, is a subword of z; ;.
(i) x=z, ;and x,<z{" 7.
(i) xB,z; ;.
(iv) If x;v#0, let {e;|1<j<|x;y|} be the edges in x,y in their order of
appearance in Xx; as x; is scanned from left to right. Then

{e), ..., e} sz 9y,

We proceed by induction on z; ;

As z, o=x, it has the above properties. Suppose by induction that z; ; has
the above properties. If j=|x; y| then z,,, o is the next path in the sequence
and z,,, o=2; ;, so the induction follows in this case.

Next suppose that 0<j<|xy| If [z?|,  =zn, let z, ;. =z, ; Else
|z 7|,,,, <n. But as |z |, 2g(n), we may use lemma (4.5) to create in
28 n occurrences of e; .+1 using R, -transformations, with the only segment
of z; ; to be affected is zf‘ # itself. We call the result of these transformations
z; j+1, which differs from z; ; only in that z{?#z{/*Y Thus z, ;,, has
properties (i) to (iv).

This completes the induction on the z; ;.

Let x"=z, |, - In an identical fashion one obtains y".

Note that x” and y’ may contain edges of B, but those B-edges must appear
in x and y at least n times. The edges which appear in x and y less than n
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times can not be affected by an R,-transformation. We thus conclude that
X' =y O
5.6. FINAL LEMMA: Let
fm)=g@'® (h(m)).

Then

B.2 = my

Proof: Suppose that x  ;(, y. Write
X=Xg@y Xy. . .0X
Y=Yol@1 Y1 - &Yy
where

ay...aq,=x08; (=8, ()

By lemma (5.5) x B, 181 4 (my X" and y B, 1E1 4 ¥" such that x” < 141 (Y and
x'=xpa,x7...a4,x, and Yy =yga;y;...ay, where for all 0=Zi<k
X; 0,11 4y 1s empty, and similarly for y;8,1£1, ).

Now, by lemma (5.4) we conclude that x'B,,, x” and y B,»"”
where x"=xga,x{...a,x; and y’'=yja,y!...a,y; and for all

0<isk, x{' =nwy” and x{’ 8, is empty and similarly for y’3,, .
Thus, by lemma (5. 2), for all 0<i<k, x;'B,y;". So x”'B,y".
So we have the chain

X Bg LE (1 (n)) x' By, ) X" By B mY Bg IElpy- O
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