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A PARAMETRIC AIMALYSIS
OF THE LARGEST INDUCED

TREE PROBLEM
IN RANDOM GRAPHS (*)

by M. PROTASI (l) and M. TALAMO (2)

Communicated by G. AUSIELLO

Abstract. - The optimal value of the largest induced tree is evaluated for a wide family of
random graphs, Vsing this analysis it is possible to solve a conjecture proposed in this area by
Erdô's and Palka.

Résumé. - On présente l'évaluation de Varbre induit maximal pour une large famille de graphes
aléatoire. En utilisant cette analyse on parvient a démontrer une conjecture qui avait été proposée
par Erdô's et Palka.

INTRODUCTION

The problern of finding the induced tree with the maximum number of
nodes (shortly the largest tree) in a graph has been extensively studied in the
last years from a combinatorial and algorithmic point of view. Many efforts
have been devoted to this problem in the case of random graphs. In this
particular setting some interesting results have been achieved but remarkable
questions have to be answered. The aim of this paper is to study the problem
in a more gênerai probabilistic framework with respect to the results already
given in the literature. From our analysis in particular we will be able to
solve a conjecture posed by Erdös and Palka.

In order to present our analysis, first of all we review some preceding
results about this problem. If we assume the constant density model (that

(*) Receïved in May 1984, revised in December 1985.
(') Dipartimento di Matematica, Università deU*Aquila, 67100 L'Aquila, Italy.
<2) Istituto di Analisi dei Sistemi ed Informatica del C.N.R., Viale Manzoni 30, 00185 Roma,

Italy.

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 86/03 211 9/S2.90/© Gauthier-Villars



2 1 2 M. PROTASI, M. TALAMO

is we assume random graphs with constant edge probability) in [1] and,
independently, in [4], it was show, that the size of the largest induced tree in
a random graph of n nodes is about 2 log n/constant. Some partial results
can be also found in [3]. Furthermore in [4] the behaviour of a greedy
algorithm was studied proving that the greedy achieves almost surely an
approximate solution whose value is one half of the value of the optimal
solution. However, using a constant density model, we deal with dense graphs.
What happens if we are interested in solving the problem for sparse graphs?

Erdös and Palka posed the following problem:
Let p be a function of n, i. e. p=p{n) with p{n) tending to zero as n tends

to infinity. Find such a value of the edge probability p for which a random
graph has the largest induced tree.

Erdös and Palka conjectured that for a suitable p (n), for example p = c/n,
c>\ constant, a random graph contains a tree of size b(c).n, where b(c)
dépends only on c.

In this paper we analyze the size of the largest induced tree for a wide
family of sparse graphs using a gênerai model for random graphs. In particu-
lar, applying this analysis we will be able to prove the conjecture of Erdös
and Palka.

Finally we note that a first version of the solution of the Erdös and Palka
conjecture was presented at the X CA.A.P. Conference [7].

2. A PROBABILISTIC MODEL

As we said in the introduction, in order to solve the conjecture, we would
only need to prove that for a single function p (n) the random graph contains
a tree of size b(c).n. However our techniques allow to show such a resuit
for a family of functions p (n); this fact is possible using a gênerai probabilistic
model, that was already used in [5] and [6] to perform a probabilistic analysis
of the max independent set problem. So first of all, we introducé this model
which is a generalization of the classical models.

DÉFINITION!.: Let V be a set of n nodes. Every pair (i, ƒ) with i, jeV is an
edge with probability p(n)—\ —c(ri)~cin)jn independently front the présence or
absence of any ôther edges.

Of course the type of random graphs that we achieve with this définition
dépends on the value of c(n). In [6] it has been shown that if the range of
c(n) is chosen in the real interval (1, n), we start dealing with dense graph
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and we arrive to deal with very sparse graphs. In particular we note that c
can be also a constant.

In the following, since we are essentially interested in dealing with sparse
graphs we will limit the possible values of c. To simplify the notation we will
write c instead of c (n).

We now state two lemmas that will be used in the proofs of the next
paragraph.

LEMMA 1:

Proof: The proof is trivial using some simple analytic steps.

The second lemma is more interesting. We give an upperbound, in a spécifie
case, to the binomial which is more précise than the classical approximations.

LEMMA 2: Let § be a quantity between 0 and 1. Then

n
9n

Proof The proof has been given independently in [2] and in [6].

3. MAIN RESULTS

In this paragraph we want to analyze the size of the largest induced tree
for a wide family of random graphs. Instead of achieving the précise size, we
will be able to give an upper and lower bound to this size. However, the two
bounds are very near. In fact we will prove that, for almost every graph,
there exist A and B such that the size Zn of the largest induced tree of a
sparse random graph vérifies the following inequality:

A.n^Zn^B.n, 0<A, B<\

Furthermore, we will be able to give a précise analytic évaluation of A
and B. First of all we state the upper bound. In the following the logarithms
are to base e.
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THEOREM 1. ƒƒ p(ri) tends to zero and c is a constant sufficiently large, then

^ ^ lnc + lnlnc +

c/2
. n almost surely.

Proofi Given a tree T, let | T\ dénote the size of T. Let k = Qn. The theorem
is proved if we show that Prob (3 T/\ T\ ̂  k) -> 0 with

înc + Inlnc -I-1
Ü =

c/2

Let xk be the random variable that dénotes the number of induced trees of
size k.

\ \ (n\kk-2.pk-1.q<<2)~(k~1) where q=\-p

(since k = Qn and /?= 1 -c'c/n)

(Exploiting Lemmas 1 and 2)

0)(1-e))-n-(en)en-2( }

V « /
fassuming 6 ^ / n c + / n f c + !

 ? J _ ( i _ 9 ) i - i / e c ( c 9 - e n + i ) < A

n - l

Now it is sufficient to consider the quantity

It is easy to see that this quantity is less than 1 giving the requested
convergence to zero if

Inc + Inlnc + 1
e> c/2

Q.E.D.
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Before proving the lower bound we want to note that the hypotheses of
the theorem are satisfied by a large class of functions p (ri). Equivalently this
means that the result holds for every sparse random graphs and even in the
case of particular dense graphs. The same considérations remain true for the
lower bound.

In order to evaluate the lower bound we need two lemmas that will be
crucial in the proof.

The first lemma allows to study the following situation. Fixed an induced
tree T in a graph, let us consider the set I of the possible other induced trees
which have / common nodes with T. We can divide I in subsets Io, Iu . . ., It

according to the fact that the induced trees have 0,1, . . ., i, . . . edges in
common with T. We want to prove that the maximum cardinality of the sets
//s is achieved for 70, that is when we have 0 common edges.

LEMMA 3: Let T=(VT, ET) be a fixed induced tree of k nodes in a graph of
n nodes. Let Tr(fc, /) dénote the set of the induced trees Th , of k nodes having
l nodes and h edges in common with T.

Then

. JTrCO-Ol

Proof. Let L = {1, 2, . . ., /} be the labelling of the common nodes. Let
BJt , = (L, EB) be the graph with £*£{(/„ lj)eL/(l0 ïj)eET} and \EB\=j.

By définition of induced tree this implies that Bh i^Tht ,.
Now we prove that

|Tr( / i - l , /)|è(fc-0|Tr(fe, 0|- We consider a particular Thtl.

Let us delete an edge eeBh ,. So we obtain a graph Bfc_lt j with h— 1
edges. We can build a set A^Tr(h~ 1, /). Every tree in A contains Bh_1 ,
and is built from Thl — {e} adding an edge ë=(vt, v) (with vt or vj but not
both belonging to L) in such a way that TKl\J{ê} has a cycle containing e
and e.

Choosing every time a different edge ë we build different trees in the set
Tr(/i— 1, /). In this way it is easy to see that we can build at least (k-1) trees

On the other hand applying this construction to different Th t we obtain
correspondingly different (k — l) trees in Tr(h— 1, /). In fact, since the edge e
belongs to every Th „ deleting e, we obtain \Tr(h, l)\ different graphs.
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Furthermore, even in the adding phase we obtain different'trees from
different ?s.

From the formula

the thesis follows by induction.
Q.E.D.

In the next lemma we want to find an upper bound to | Tr(0, /) |.

LEMMA 4:

Proof. Cayley's Theorem gives a bijection between the set of the trees of k
nodes and the set of the strings of length k — 2 defined over the alphabet
{1, 2, . . ., k}. In particular this means that instead of considering the trees
To t we can study the corresponding strings in order to evaluate |Tr(0, l)[
A string that represents a tree To ( has to verify the following property:

(1) at least /— 1 positions in the string correspond to edges having one of
the two vertices belonging to the independent set contained in To |t Therefore
in these positions we cannot have more than k — / values;

(2) in the remaining positions k values are possible.

/ k\

Finally we have ( 1 different ways of choosing the positions correspon-

ding to the edges of the independent set.
Therefore an upper bound to | To t | is given by

Q.E.D.

THEOREM 2: Ifp (ri) tends to zero and c is a constant sufficiently large then

2lnc-6

clnc
.n^Zn almost surely.

Proof: The proof is based on the second moment method and on the
preceding lemmas.
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As in the proof of Theorem 1 let Xk be the random variable that dénotes
the number of induced trees of size k. Let a* be the variance of Xk and
E(Xk) the expectation of Xk, Then

Prob(A:fc = 0 ) ^
[E(Xk)]

2 [E(Xk)]
2

From the proof of Theorem 1 we know the value of E(Xk), Therefore we
need now to evaluate E{Xl),E{Xl) is equal to the sum of the probabilities
of having ordered pairs of trees of size k with / common nodes, l^l^k.

First of all we evaluate something slightly different, that is, E (X£ h) where
E(Xjt h) is equal to the sum of the probabilities of having ordered pairs of
trees of size k with Z common nodes and h common edges.

A B

We note that respectively A(B) is the part of the formula which gives the
probability for the first (second) tree of the pair.

By Lemmas 3 and 4 we know that

On the other hand

On the whole we obtain therefore

k-lj\l
[E(Xk)]

2
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[Remembering the value of E (Xk)]

« V"2

k'

(remembering that as n ~> oop = cînc/n and k = 0 n)

<max-
h f n

.k

(assuming 0 g (2/ne — 6)/clnc, (Qclnc) X < 1 , furthermore the maximum of the
sum is achieved for h = 0)

£(;:»)«.,-»*>

(since q-w2)<c
cQl/2

 and the biggest term of the sum is given in the case l = k)

When p tends to zero as n tends to infinity, the last formula converges to
zero exponentially if 4cc6/2 0< 1. This last inequality is verified if

clnc

Q.E.D.

Putting together Theorems 1 and 2 we have solved the Erdös and Palka
conjecture. In fact, we have proved that there exists an induced tree of size
b (c). n, where b (c) does not depend on n but only dépends on c.

Since we have an analytic expression of the lower and upper bound we
can also give précise numerical approximations of the size of the largest
induced tree
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COROLLARY 1: Theve exists a probability p (ri) such that

0,42.n^Z„<;0,91.n almost surely.

These two bounds have been reached starting from the proofs of Theorems
1 and 2 and using some numerical approximation techniques.

Finally we note that we could have made precisely coincide the lower and
upper bounds but the rate of convergence in the proofs becomes linear
instead exponential Therefore in this case the results become stronger from a
mathematical point of view but less interesting from an algorithmic point of
view.

Note added in^roof: The conjecture by Erdös and Palka has been proved,
independently by 1) Frieze, 2) Kucera and Rodl, 3) Fernandez de La Vega.
The result is proved by these authors using a different approach.
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