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EACH REGULAR CODE IS INCLUDED
IN A MAXIMAL REGULAR CODE (*)

by A. EHRENFEUCHT (*) and G. ROZENBERG (2)

Abstract. — It is proved that each regular code is included in a maximal regular code. A
corollary ofthis resuit seules an open question from [R].

Résumé. — On prouve que tout code rationnel est contenu dans un code rationnel maximal. Un
corollaire de ce résultat répond à une question ouverte posée dans [R].

INTRODUCTION

A language C E+ is called a code if C* is a free submonoid of E* with
base C. The theory of codes initiated by M. Schutzenberger [Sch] forms an
interesting fragment of formai language theory. A code C ^ X + is called
maximal if, for any xeS* — C, C[J{x} is not a code. Ail codes are subsets
of maximal codes and the investigation of maximal codes forms an active
research area within the theory of codes (see, e. g., [BPS], [PI], [R] and [SM]).
In particular one is often interested in the problem of the following kind:
given a code C of type X (e. g. finite or regular) is it possible to find a
maximal code D of type X such that C £ D?

It was shown in [R] that for finite codes this question gets a négative
answer. Since then the following question remained open: is every finite code
included in a maximal regular code? Obviously any finite (resp. regular)
prefix code is included in a finite (resp. regular) maximal prefix code. Recently
it was shown in [P2] that every finite biprefix code is included in a maximal
biprefix regular code.

In this paper we pro vide a positive answer to the above question. As a
matter of fact we prove a more gênerai resuit (theorem 5): each regular code
is included in a regular maximal code. We would like to emphasize the
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following: the new resuit presented in this paper is theorem 5; most of the
other results is in one form or the other (and perhaps in a different termino-
logy) retrievable from the literature. However we have decided to make this
paper rather self-contained and to provide all the needed results with their
(sometimes different from the literature) proofs carried out in a "uniform
manner".

We assume the reader to be familiar with basic formai language theory — in
particular with rudimentary theory of regular languages (see, e. g., [S]).

PRELIMINAIRES

We use mostly Standard language theoretic notation and terminology.
For a set A, #A dénotes the cardinality of A.
For sets A, B, A — B dénotes the set theoretic différence of A and B.
For a word x, \ x | dénotes its length and first (x) dénotes the first letter

of x; if x = x 1 jx 2 then y is called a subword of x (also referred to as a
segment or a factor of x). The set of all subwords of x is denoted by sub(x)
and for a language K, sxxb(K)— U sub(x).

xeK

A nonempty word x is called bordered if x=yzy for a nonempty word y;
otherwise x is called unbordered.

A language C ^ X + is called a code if every word yeC+ satisfies the
following condition:

if y = u1...un and y = x1...xm for n, m ^ l and ul9 . . . , M„, xu . . . , xmeC
then n = m and u{ = xt for 1 ̂  i < n. (In other words, y has a unique représenta-
tion in C; subwords u1? . . . , un of this représentation are referred to as C-
blocks of y).

A code C e E+ is called maximal if, for each x e l * - C , C U W is not a
code.

In the sequel of this paper we consider an arbitrary but fixed alphabet E
where a= # £ > 1; all languages we will consider are over S.

For a language K and a positive integer n, Ln(iQ = {weK: |w| = n} and

We will define now and recall a number of notions concerning lan-
guages — they will be central to our paper.

(1) K is dense if xesub(K*) for each xeS*.

Informatique théorique et Applications/Theoretical Informaties and Applications
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(2) K is fast if there exists a positive integer n such that for each w e sub (K*)
there exist i , j ; e l * such that |xy| ^ n and xwyeK*.

(3) X is rich if there exists a positive integer e such that ocm(K*) ^ am/e
for infinitely many positive integer s m.

RESULTS

In this section we investigate the problem how various properties of a code
(such as: fast, dense, rich, regular and maximal) influence each other. Once
this relationship is explored we can settle the problem of completing a regular
code to a regular maximal code.

Our first result is known (see [SM]). However for the sake of completeness
we provide its proof (which is different from the proof in [SM]).

THEOREM 1: Each maximal code is dense,

Proof: First we prove the following result.

CLAIM 1: Let C be a code that is not dense. There exists an unbordered
word vvc such that wc£sub(C*).

Proof of Claim 1; Since C is not dense, there exists a word z<£sub(C*).
Let bel, be such that b # first(z) and let wc = zfc|z|. Clearly wc is unbordered.
Moreover wc £ sub (C*), because z£sub(C*).

Thus claim 1 holds. •

Now we prove theorem 1 as follows.

Let C be a maximal code.

Assume to the contrary that C is not dense. Then let wc be an unbordered
word satisfying the statement of claim 1.

Consider D = CU{w c}. Let y be an arbitrary word in D + . Since wc is
unbordered, y has a unique représentation of the form y = xowcx1wc.. .wcxn,
where n ^ O (that is if y = uowcu1 wc.. .wcum where m ^ O then m = n and
u—Xi for 1 ̂  ï < n). Since C is a code and wc£sub(C*), y has a unique
représentation in D. Thus D is a code.

Since C ^ D and wc^sub(C*) we get a contradiction (to the fact that C is
maximal).

Consequently C must be dense and theorem 1 holds. •

THEOREM 2: Each rich code is maximal

Proof: Let C be a rich code and let e be a positive integer constant
satisfying the définition of richness for C.

vol. 20, n° 1, 1986
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Assume to the contrary that C is not maximal Let z be a word such that
B = C{J{z} is a code; let \z\ = u

Let k be a positive integer. Let nl9 . , . , nkbea séquence of positive integers
such that:

a"*
n1<n2< ...<nk and otB.(C*) ^ —. (1)

(Since C is rich and e satisfies the définition of richness of C, such a séquence
exists.)

Consider r = n1 + n 2+.. .+n f c + /ct. Clearly:

OLr(B*)£a'. (2)

On the other hand let us consider an arbitrary permutation iu . . . , ik of
the set {1, . . . , *}. Let j ^ e L ^ C * ) , . . . , ^ e L ^ ( C » ) and let
Y (ii, . . . , ik) =yil zyi2 z...yikz. Since B is a code, if (ju ..., jfc) is a permutation
of {1, . . . , fc} different from (il9 . . . , jk), then y(il9 . . . , ik)ïy(ju --Jù-
Consequently from (1) it follows that:

a"1 a"2 a"fc

...—kl£*,(B*). (3)
e e e

From (2) and (3) it follows that:

(4)

Since ea ' is a constant (independent of /c), there exists a positive integer
k0 such that, for ail s>/c0, s! > (eaf)s. Consequently (4) yields a contradiction
(k was chosen to be an arbitrary positive integer).

Thus C must be maximal and theorem 2 holds. •

THEOREM 3: Each regular code is fast.

Proof: Obvious. •

THEOREM 4: Each dense and fast code is rich,

Proof: Let C be a code that is dense and fast. Then there exists a finite set
F of ordered pairs of words from S* such that for each w e l * there
exists (x, y) e F such that xwy e C*. Let q = max {| xy | : (x, y) e F}, ƒ = # F and

CLAIM 2: For eac/i positive integer n there exists a positive integer m <^
such

Informatique théorique et Applications/Theoretical Informaties and Applications
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Proof of claim 2: Let for each wel,*, pair (w) be a fixed element (x, y) of
F such that xwyeC*.

Let n be a positive integer. Let:

E (n, x, y) = {we L„ (S*) : pair (w) = (x, ƒ)}.

Clearly for some (xo,j;o)eF, # E(n, x0, y0)^ on/f. Let p = \xoyo\. Then

Hence:

Thus if we choose m = n+p we get m ^ n + <? and claim 2 holds. •
Now theorem 4 follows directly from claim 2. •

REMARK: Theorems 2 and 4 together are more gênerai than theorem 7.4
(due to Schutzenberger) from [E]. However, it is pointed out by D. Perrin in
[P3] that a proof of the gênerai case can be retrieved from the proof of
theorem 9.3 in [E]. •

THEOREM 5: Let C be a regular code, There exists a code D which is dense,
fast, regular and such that C ^ D.

Proof: Let C be a regular code.
We consider separately two cases.
(i) C is dense.
Then the theorem follows from theorem 3 (take D = C).
(ii) C is not dense.
Then, by claim 1, there exists an unbordered word xvc such that

Let:
A = {wcx1 wcx2... wcx„wc: n ^ 1, x££C* and

and let D = C U {wc} U A.

CLAIM 3: D is a code.

Proof of Claim 3: Let yeD+. Since wc is unbordered, y has a unique
représentation of the form y = xx wcx2 wc. ..wcx„ (that is we can uniquely
distinguish all occurrences of wc in y).

This représentation provides the basis for the division of y into Z)-blocks
which is obtained as follows:

(1) A subword wcxJ-wcxJ + 1 . . .wcxj+lwc constitutes a D-block (correspon-
ding to A) if 2 ^ j g n - l , ;\+/ ^ n— 1, xp . . . , xj+l$C* and Xj_u

xj+l + l€C*; such a D-block is referred to as an A-block.
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(2) Ail occurrences of wc not involved in A-blocks are also D-blocks.
(3) Ail Xi s which are not involved in ̂ 4-blocks must be in C* and so they

are uniquely divisible in D-blocks (really C-biocks).
The définition of A and the fact that wc£sub(C*) and wc is unbordered

guarantee that such a division is unique.
Hence D is a code and claim 3 holds. •

CLAIM 4: D is dense.

Proof of claim 4; Let we E*.
Consider y = wc uwc. Reasoning as in the proof of claim 3 we get a (unique)

représentation of y in D + .
Thus D is dense and claim 4 holds. •

CLAIM 5: D is regular.

Proof: Obvious. •

CLAIM 6: D is fast.

Proof: This follows from claim 5 and theorem 3. M
Now theorem 5 follows from claims 3 through 5. •
Our results yield two interesting corollaries. The first one solves an open

problem from the theory of codes (see, e. g., [R] and [P2]). As a matter of
fact it provides a more gênerai resuit: Restivo has asked ([R]) whether an
arbitrary fînite code can be completed to a maximal regular code —we show
that even an arbitrary regular code can be completed to a maximal regular
code.

COROLLARY 1: Let C be a code. If C is regular, then there exists a code D
such that C ç D, D is maximal and D is regular,

Proof: Let C be a regular code.
By theorem 5 there exists a regular code D such that C ̂  D, D is fast and

dense.
Thus, by theorem 45 D is rich and so, by theorem 2, D is maximal.
Hence corollary 1 holds. •
Secondly, we notice that theorems 1 through 4 provide an alternative proof

of the theorem by Schutzenberger (see [E], p. 94).

COROLLARY 2: Let C be a regular code. Then C is maximal if and only if C

is dense.

Proof: It follows directly from theorems 1 through 4. •
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DISCUSSION

We have established a number of relationships between dense, fast, rich,
maximal and regular codes. Using these relationships we were able to
demonstrate that each regular code is included in a maximal regular code.

In particular we have demonstrated that each rich code is maximal and
each maximal code is dense. Hence each rich code is dense. We provide now
a "direct" proof of this result —we believe it sheds a different light on this
relationship.

COROLLARY 3: Each rich code is dense.

Proof: Let C be a rich code.
Assume that C is not dense. Hence there exists a word z<£sub(C*); let

|z | = t. Let n be an arbitrary positive integer; n can be represented in the
form n = k1t + k2 for some k ̂  0 and k2 < t. An arbitrary word from Ln(C

+)
can be (starting from the left end) divided into k1 consécutive subwords of
length t leaving a suffix of length fe2. Thus:

Consequently:

oc„(C+) (a'-l)*ia*2 (a(-l)fci

Hence:

which contradicts the fact that C is rich.
Consequently C must be dense and the result holds. •
To put some of the dependencies we have demonstrated in a better perspec-

tive we provide now the following result.

THEOREM 6: There exists a maximal code which is not rich.

Proof: Consider the family of all full binary trees in which leafs are labelled
by a and all inner nodes are labelled by b. Consider now all postfix notations
for these trees —in this way we get the language P ç {a, b} + . It is well known
that P is a code (every forest of full binary trees has a unique représentation
in the postfix notation).

Consider an arbitrary word ze{a, b}+ —P. Clearly a M + 1 zeP+ (we parse
a'z '+ i z from right to left assigning +1 to a and — 1 to b\ then each subword
yielding by summation weight +1 is a tree corresponding to an element of
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P). Hence P U {2} is not a code, because a'2 ! + * z would have two different
représentations in P+. Thus F is a maximal code.

On the other hand it is known (see, e. g., [F], ch. III, sect. 3) that:

(Hère one considers random walks on the line of positive integers where a
represents a "step up" and b represents a "step down". It turns out that the
probability of starting in 0 and not returning to 1 in up to n steps equals 1
in the limit.)

Hence P is not rich and the theorem holds. •
Perhaps the most significant open question in the area of "extending codes

to their maximal counterparts" is (see [P2]): can every biprefix regular code
be extended to a maximal biprefix regular code? An answer to this question
will certainly make the picture of the whole area clearer.
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