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Christos H. PAPADIMITRIOU(3), George PAPAGEORGIOU

and Nadia PAPAKOSTANTINOU (1)
Communicated by J. E. PEN

Abstract. — In the travelling repairman problem (TRP) we are given a finite set of points and
the travel times between any two ofthem, and wish to find the route through them which minimizes
the sum of the delays for reaching each point. We consider the TRP when ail points are on the
straight line, and give a polynomial-time algorithm for it. If we have deadlines (that is, bounds on
the maximum delay for each point) the problem becomes NP-complete, but can be solved by a
pseudo-polynomial time algorithm.

Résumé. — Le problème du réparateur itinérant consiste en la donnée d'un ensemble fini de
points, et des temps de parcours entre ces points. Le but est de trouver une trajectoire qui passe
par tous ces points, et qui minimise la durée totale du trajet. Nous étudions ce problème dans
le cas où tous les points sont alignés, et nous en présentons une solution polynômiale. Si le
retard maximum pour chaque point est borné, le problème devient NP-complet, mais il peut
être résolu avec un algorithme pseudo-polynôme.

1. INTRODUCTION

Consider the following situation: n machines located at different points of
a map have to be repaired, and there is only one repairman. We are given
the time t [ij] required by the repairman in order to travel from machine i to
machine j . We are interested in finding the route which minimizes the mean
waiting time of the machines. We assume that the repair times are insignificant
(or, equivalently, the same for ail machines). We call this mean-flow variant
of the travelling salesman problem the travelling repairman problem (TRP).
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Formally, an instance of the TRP can be described as foliows: Given a
distance matrix t [ij] between n locations, and a distinguished starting location
s, find a permutation n (0)=s, TT(1), . . ., n(n— 1) such that the following
cost function is minimized:

n - l i n-1

c= Z E t[n(j-l\ 7t(/)]= Z (n-0*[*(»"-O, «(O!-

Since this problem is so closely related with the travelling salesman problem,
it is not surprisingly that the gênerai version of the TRP is NP-complete [2].
Moreover it is straight-forward to show that the Euclidean version of the
TRP (that is, the special case in which the locations are points on the plane,
and the distances are the Euclidean metric) is also NP-complete (by observing
that standard réductions to the Euclidians TSP also work for the TRP).
Unlike the TSP, however, it is non-trivial to solve the one-dimensional further
restriction of the problem, that is, the case in which the locations are ail on
a straight line. This is called the line-TRP. The problem becomes even more
difficult, if we assign to each machine a deadline, that is, an upper bound on
its delay which the repairman must not violate in his route.

In this paper we present certain complexity results regarding both versions
of the line-TRP (with deadlines and without). In particular, in the next
section we present a dynamic programming algorithm that solves the line-
TRP without deadlines in O (n2) time. In section 3 we prove that the line-
TRP with deadlines is NP-complete, by reducing the 0-1 KNAPSACK to it;
though further on, we prove that we can tell whether there exists a route
preserving the deadline constraints in O (n2) time, also by dynamic program-
ming. Finally, in section 4 we present a pseudo-polynomial algorithm solving
the line-TRP with deadlines in time O (n2 D), where D is the largest deadline
of the instance.

2. THE LINE-TRP

The instance of the line-TRP is best described as in figure 1, where
s = xo=yo is the starting location, xl9 . . ., xm(resp. yu . . ., yn) are the machi-
nes to the left (resp. right) of the origin, Let us start with an elementary,
although crucial, observation.

LEMMA 1: If in the optimum route the repairman has visited machine xi9

them it has also visited machine xj9j<L Similarly for the machines to the right
ofs.

Informatique théorique et Applications/Theoretical Informaties and Applications
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x 2 x, y, y 2

Fig. 1

Proof; Trivial. •
In other words, it is suboptimal for the repairman to "pass by" a machine

without repairing it. Therefore, the optimum route looks like the one shown
in figure 1.

Let us represent by [xi9 y^[ the fact that the repairman is currently at xu

which is also the leftmost location visited, while yi is the rightmost location
the repairman has visited. Similarly for \yp xj. By lemma 1, all locations
between xt and y} are already visited. Thus, each such pair of locations
represents a complete state of the route. The initial state is [x0, y0], and the
final is one of [xm, y„\, |>„, x j . Finally, it follows from the lemma that state
[xh yj] can be reached in an optimal route only from states [xf_1? yj\ and

bp xi-il
We let c [xi9 yj\ dénote the minimum possible total delay accumulated by

all locations during the time it took to visit all locations between x; and yi

ending up in xf. The above observations immediately lead to the following
équations for Computing this cost:
c[x0, yo] = c\yo, xo] = 0,

(2.1)

xj, yi _ J + (m + n + 1 - i -f) t [xp yt]},

where, in order to save two more équations, we let c[xh y~i] — c\yp x_J = oo.
To justify (2.1), the second and third équations state that the minimum total
delay in order to reach a particular state is the minimum total delay for
reaching one of the two preceding states, plus the distance of the last locations
in the two states multiplied by the number of unvisited locations at the
previous state. Finally, the minimum cost is

(2.2) C = min { c [xm, y„], c [yn, xm]}.

vol. 20, n° 1, 1986



82 F. AFRATl et al.

Thus we have:

THEOREM 1: The line-TRP can be solved in O (mn) time.

Proof: We can compute ail c[x, y] using équations (2.1) inconstant time
per value of c [x, y] computed, and thus in O (mn) time in total. In this
estimate, our units of computation are arithmetic opérations on integers of
précision comparable to that of the largest integer in the cost matrix t
(we shall later describe an algorithm whose number of opérations dépends
exponentially on this précision). If we record at each computation which of
the (at most two) candidate values was was the optimum, we can reconstruct
the optimum path. •

3. THE LINE-TRP WTTH DEADLINES

Suppose now that each machine t has a deadline dh and we impose the
additional constraint that each machine must be repaired before its deadline
expires. We show below that this problem is NP-complete. We redefine the
problem for this purpose as usual, by also introducing another bound M,
and asking whether there is a route such that all deadlines are met, while the
sum of delays is at most M.

THEOREM 2: The line-TRP with deadlines is NP-complete.

THEOREM 2: The line-TRP with deadlines is NP-complete.

Proof: We reduce 0-1 KNAPSACK to line-TRP with deadlines. In this
problem we are given a set [I] of n objects. Foo each l e / we are given its
size siy and its value vh both integers. Finally, we are given two positive
integers B and K We are asked if there exist xu . . . , x n e{0 , 1} such that:

n

(3.1) '

(3.2)

In fact, we shall need a slightly modified version of the 0-1 KNAPSACK in
which no two v( are equal. It is trivial to prove that this version of the
problem still remains NP-complete. We can also assume, without loss of
generality, that Vi<vi+i for ail i.

Given an instance of 0-1 KNAPSACK, we construct an instance of the
line-TRP with deadlines as follows: For each element in iel we add to our

Informatique théorique et Applications/Theoretical Informaties and Applications
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instance three locations. Two of these, zt and z\, are to the right of s at a
distance of Jf and/; from s, respectively, and the third, Z» to the left at a
distance of L, (see fig. 2). Also, we add a point zB+1 to the right of s, at a

Fig. 2

distance /„+,. All these lengths are defined below in terms of the parameters
of the instance of 0-1 KNAPSACK:

__ 1
a,--s*,

n

Y1

h=a,

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Hère G is a very large constant, whose rôle will be clear later. As for the
deadlines:

(3.9) d, = ab

(3.10) d'r

(3.11) D

(3.12) di+l = ,

(3.13)

and finally:

(3.14)

where N stands for:

(3.15) N=2
(=1
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We claim that, there exists a légal route with cost C^M which achieves
all deadlines if and only if there is a solution to the given instance of 0-1
KNAPSACK.

Suppose that x l s . . ., xn is the solution to the knapsack. We construct a
route as follows: We first visit location zu then, if x1 = 1 we repair machine
z'x, change direction, visit Z1? change again, and visit z2. On the other hand,
if x x = 0 , after z^ we go to Z± first, and then to z\ and z2. In gênerai, we
proceed in the same way, always changing direction at the locations on the
left, while we change direction at the machine zt (resp. zj) if x,- = 0 (resp.
Xi=l) . Thus the route ends at zB + 1. We have to prove two things: (a) That
the route is légal, in that it makes all the deadlines, and (b) that the
corresponding cost is less than or equal to M. To prove {a\ we have to show
that no deadline is violated. For machines zb z'i9 and Zf, i = l , . . ., n, this
will be proved by induction on i. Dénote by th t\ and Tx the time the
repairman arrives at machine ziy z'h and Zh respectively. For the basis step,
it is obvious that t^^dx.

Assume that t ^ d f . Then, since z\ will be visited first iff xt= 1:

and, by (3.10) t

Next, for Zt :

and by (3.11), T^Di-

Last, for zi+1:

and by (3.11), and (3.12) ti+1^di+i.

For the machine za+u the time tn + 1 can be recursively computed to:

(3.16) tn + 1 = 2 X
i = 1 i = 1

By (3.3), (3.2) and (3.13) we obtain tn+1£dH + 1.

To prove part (b) we first compute the cost C. Notice that zi is reached at
i - l

time ti = lt + 2 ^ (Ij + Lj + cijXj), zt at time t; = ̂  + af + 2 ft + Lf) ( l - x £ ) , and

Zf at time T̂  = tt + /jr + Lt + 2 af xf. The total contribution of the ith round of
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visits to the cost is then Ci = ai + 3ti + 3(li + Li)-2(Gvi + 3 ( n - i + l ) ^ ) xt. In
adding the Cf's, notice that the afx^ terms cancel, and thus:

n

(3.17) C = JV-2GS»lxi.

Now, by (3.1) and (3.14), C ^ N - 2 G K = M , which complexes the proof in
this direction.

Suppose now that we have a légal route with cost C^M. First, we claim
that the route has the form described above, that is, after zh we visit either
z'h Z;, zi+1 in this order, or Zh z'i9 zi + 1, in this order. Suppose not. Take the
first time this form is violated. This can be done in four different ways:

(a) zi-^z/
i~^zi+1-^Zi;

(b) zi^z/
i^Zi+l-^zi + 1;

(c) zi^Zi^Zi+1^z[;

(d) zi-+Zi-+z'i-+Zi + 1.

Each one of the preceeding four cases leads to a contradiction, because
the deadlines are defined in such a way, that they forbid exactly these kinds
of routes. We shall prove only case (b) as an example:

and thus

In équation (3.8), however, the u/s are strictly increasing and we can take
take G to be as large as needed. Therefore, we can make the L;'s strictly
increasing as well (say, by choosing G>4na), and thus ti+1>di+1. Thus, the
deadline is violated.

Once we have established this "normal form" of the route, we can construct
a solution of the 0-1 KNAPSACK by taking x£= 1 whenever the route goes
from zt to z'h and x̂  = 0 otherwise. It remains to be proved that such an
assignment satisfies (3.1) and (3.2).

Since the route is a légal one, tn + 1^dn+l. However, by (3.16) and (3.13)
we conclude that:

n

E stxtgB.
1 = 1
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Finally, we know that C^M, and by (3.17) and (3.14), we immediately
obtain:

( = 1

Thus the x/s constructed constitute a solution of the knapsack problem, and
the proof is complete. •

As an interesting aside, suppose that we wish to détermine whether the
given deadlines can be satisfied at all, no matter with how much total delay.
The problem then is polynomial:

THEOREM 3: Given an instance of the line-TRP with deadlines, we can teil
whether there is some route that satisfles all the deadlines in O (mn) time.

Sketch: We can do this by a dynamic programming récurrence, as in
theorem 1. One key observation is that a lemma analogous to lemma 1 holds
here as well, in that it is suboptimal for the repairman to "pass by" machines,
and thus pairs [x, y] are adequate states. The récurrence now computes, for
each pair [x, y] as in theorem 1, the shortest time within which the repairman
can visit all locations between x and y, ending up at y, meeting all deadlines
so f ar. If no such route exists, this value is oo. Our task is over once this
time for [xm, yn] or j>„, x j is finite. •

4. A PSEUDO-POLYNOMtAL ALGORITHM

We now attack the question of finding the optimum route, satisfying the
deadlines (despite the fact that we proved it NP-complete in the previous
section). Let us dénote by [xh yp t] the state at which the repairman at time
t is currently at machine xt, and has travelled at the opposite direction till
machine yr Now we assign to each state the cost:

!

oo if t>dxh

min{c[X;_l5 yh t — t[xt_u xj] + (m + n + 1— i— j)^[x,-_ls xj,
c\yp xi~i> t — t\yp xJ] + (m + n +1 - ï -7 ) t \ y p xJ} otherwise.

The optimum total cost is given by:

C = min{c[xm, yn, t], c\yn, xm, t]:t = O, 1, . . ., D},

where D is the longest deadline.
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THEOREM 4: The line-TRP with deadlines can be solved in O (mnD).
Sketch: By the straighforward implementation of the équations above. •
As usual, once we have a spseudo-polynomial algorithm, we can dérive an

algorithm which, given an instance of the TRP with deadlines and a "desired
accuracy" e, finds a route with relative error (that is, distance from the
optimum, divided by the optimum) at most e, in time polynomial in the size
of the instance and l/s. Such algorithms are called fully polynomial-time
approximation schemes [GJ],

Corollary: There is a fully polynomial-time approximation scheme for the
TRP with deadlines, with time bound O (mn (m + n)/e).

Sketch: We round off the deadlines to the next smaller multiple of
[De/(m + n)], and the travel times to the next larger multiple of [Ds/(m + n)].
The pseudo-polynomial algorithm then gives the desired accuracy and time
bound, •

5. AN OPEN PROBLEM

When whe have, not deadlines, but repair times, the problem seems to
become more complex. Naturally, it may now be better for the repairman to
"pass by" a machine with a long repair time, in order to reach and repair
some easy ones first. When the repair times are insignificant compared to
the travel times, we have shown that the problem is in P. When the travel
times are insignificant, then it is easy to see that it is optimum to visit the
machines in order of increasing repair times. It is not clear, however, how to
extend either of these ideas to the genera! case.
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