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SINGLE-TAPE RESET MACHINES (*)

by S. A. GREIBACH (X) and C. WRATHALL (2)

Communicated by J. GALLIËR

Abstract. — A reset tape can be written on once from left to right and then reread once, from
left to right. A circular tape can be written once from left to right and then reread from left to
right an arbitrary number of times. A writing circular tape is a circular tape which can be
overprinted but not extended. An on-line nondeterministic Turing machine with one writing circular
tape can accept any recursively enumerable set. A complete diagram is given and established for
proper inclusions and équivalences among ail other classes of nondeterministic on-line machines
with one reset or circular or writing circular tape with or without restriction to finite-delay and
with or without reinitialization. These classes are incomparable to the class of linear context-free
languages.

Résumé. — Une classe d'automates non-déterministes qui parcourent le ruban mémoire seulement
de gauche à droite est considérée. Un automate à un « reset » peut écrire une fois, et ensuite relire
le ruban une seule fois, sans modifier le contenu de sa mémoire. Un automate à « mémoire
circulaire » peut relire plusieurs fois, également sans modifier le contenu de sa mémoire. Enfin, un
automate à « mémoire circulaire réécrivable » peut modifier le contenu du ruban mémoire, mais
non sa longueur; sans restriction, il peut reconnaître tout langage recursivement ènumérable.

Nous étudions ces automates avec ou sans la restriction de « délai fini », et avec ou sans
« recommencement ». Les inclusions strictes et les équivalences entre ces familles de langages sont
démontrées, et représentées par un diagramme complet. Chacune de ces classes (sauf la famille de
langages recursivement énumérables) et la famille des langages linéaires sont incompara-
bles.

1. INTRODUCTION

One of the long-standing thèmes of research in formai language theory is
the study of the generative power of spécifie languages under specified sets
of opérations. Perhaps the richest source of interesting examples in this area
has been models of computation obtained by placing restrictions on Turing
machines. Restrictions have been placed on resources such as time and space,
and also on the access of the machine to its data, that is, on the type of
storage tape allowed. Examples of this type of restriction include pushdown
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56 S. A. GREIBACH, C WRATHALL

stores, finite-turn pushdown stores and stacks. In a previous paper [3]s the
concept of a reset tape was introduced. In this paper we study on-line
nondeterministic machines with a one-way tape that is either a reset tape or
a simple extension of a reset tape.

A machine can write only once (say from left to right) on a reset tape and
then can reread the tape only once, also from left to right. A reset tape is thus
similar to a single-turn pushdown store, but instead of changing direction, the
head is reset to the beginning of the tape for the second sweep.

If we allow the working tape to be reread any finite number of times, that
is, the working tape head to be reset as desired from the right end of the
tape to the left end, we have a drcular tape, for we can envision the right
end of the tape to be pasted to the left end. Thus in a circular tape the string
written on the tape during the first pass can be reread any number of times,
always from left to right. If we now allow the symbols on the circular tape
to be overprinted, we obtain a writing circular tape; the length of tape
available in any computation is determined by the string written in the first
pass and, although the contents of the tape can be changed, the tape can
only be accessed by sweeping from left to right. The model can also be
extended by allowing reinitialization of the tape, that is, the tape is instanta-
neously erased and the computation can continue with an empty tape of the
same type.

Machines with multiple tapes of these types were examined in the previous
paper [3]. Any such machine can be simulated nondeterministically without
loss of time by one with three (but not two [9]) reset tapes. For fixed fc^l,
machines with a single circular tape that is restricted to k sweeps accept the
class of languages that has been studied under the names "/c-equal matrix
languages" [13, 15] and "/c-right linear simple matrix languages" [16], and as
the class derived by certain homomorphic replications of regular sets [14].

In this paper, we study the inclusions among families of languages accepted
by on-line nondeterministic machines with one of these tapes, with or without
restrictions on the time, and with or without reinitialization. In all cases,
acceptance is by both final state and "empty store"; that is, the machine
must be in a final state and the head on the work tape must be at the right
end of the string written on the tape.

Each of these types of tapes can be described by a language which captures
the essence of the restriction on access involved and which moreover is in a
certain sensé a generator of all the languages definable by that type of one-
way machine. The language corresponding to a reset tape is

COPY = {ww: we{a, 6}*};
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SINGLE-TAPE RESET MACHINES 57

to a circular tape,

*COPY = {(wc)fc: fc^O, we{a, b}*};

and to a writing circular tape,

SHIFT={e}U{<x l f x2>c<x2, x 3 > c . .

<xm, x m + 1 >c: m ^ l , xte{a, &}*, |x t | = . . . = |x m | } ,

where <x, y} is a parallel encoding of equal-length strings. The class of
languages accepted by nondeterministic finite-delay machines with a single
tape of one of the three types is exactly the semiAFL (family of languages
closed under nonerasing finite-state transductions) generated by the language
corresponding to the tape. If the time restriction is dropped one has the full
semiAFL (semiAFL closed under arbitrary homomorphism) generated by the
appropriate language. Allowing the machine to reinitialize the tape when it
reaches the right end gives rise to the AFL (semiAFL closed under Kleene*) or
full AFL (full semiAFL closed under Kleene*) generated by the corresponding
language.

In this paper we describe and study the families of languages accepted by
these various types of one-way nondeterministic machines in terms of the
semiAFL and AFL opérations and the languages involved. For example, we
use J?(COPY) for the family of languages accepted by one-way nondetermi-
nistic machines with a single reset tape and finite delay. Section 2 reviews
the basic notation and définitions used.

The inclusions and noninclusions among these classes of languages are
examined in section 3. For machines with one reset tape, the finite-delay
restriction causes no loss of power (theorem 3.1a). An on-line nondeterminis-
tic Turing machine with one writing circular tape can accept any recursively
enumerable set (theorem 3.1 b). Otherwise, no inclusions hold except as
implied by the définitions of the machines involved, and all such inclusions
are proper. A complete diagram ( fig. 1) is given and established for proper
inclusions and équivalences among all these classes. For example, the
semiAFLs form a strict hierarchy as the type of storage is extended from a
reset tape to a circular tape to a writing circular tape, and, except as noted
above, the restriction to finite delay is a restriction in power and the extension
to reinitialization is an extension.

The action of a single-turn pushdown store can be described by the
language PAL= {wcw* : we{a, è}*} consisting of center-marked palindro-
mes; that is, l;he class of linear context-free languages is the (full) semiAFL
generated by PALIJ {e}. The language COPY is not a (linear) context-free
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58 S. A. GREIBACH, C. WRATHALL

^I(SHIFT)

>L(COPY)

language, nor can PAL be accepted by a machine with a single-reset tape.
Section 4 contains a proof that PAL cannot be recognized either by a machine
with a circular tape or by a finite-delay machine with a single writing circular
tape.

2. PRELIMINARÏES

This section contains a review of some basic définitions and notation.
For an alphabet (set of symbols) S, S* dénotes the free monoid generated

by Z, with identity e (the empty word); Z+ =Z*— {e}. The length of a string
x e £ * is the number of occurrences of symbols in x and is denoted by |x|.
The reversai of x = ax. . .an(at€E) is xR~an. . .av For strings w, x, y and z,

if vv = xy then x is a prefix of w and j> is a suffix of w, and if w = xjz then j ;
is a factor of w.

A language is a subset of X* for some finite alphabet E. In addition to
union ( U ) and intersection ( O ) of languages, we make use of the following
opérations:

(a) concaténation: L1L2={xy : xeLu yeL2};
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SINGLE-TAPE RESET MACHINES 59

(b) Kleene*: L*= {x1. . .xn : n^O, each x,-eL};
(c) homomorphic image: h(L1)= {h(x) : xeL x} and inverse homomorphic

image h~1(L2)= {yel<* : h(y)eL2} where h : E* -> A* is a (monoid) homo-
morphism, L± c S* and L2 g À*.

In (c), if h(a)¥^e for each aeL then h is a nonerasing homomorphism. A
language L is bounded if there exist r^O and strings wls ..., wr such that
L <i wf . . . w*. (For a string w, w* is used to abbreviate { w }*.)

A semiAFL (full semiAFL) is a family of languages containing at least one
nonempty language and closed under the opérations of intersection with
regular sets, union, inverse homomorphism and nonerasing homomorphism
(resp., arbitrary homomorphism). An AFL (full AFL) is a semiAFL (resp.,
full semiAFL) that is additionally closed under product of languages and
Kleene*, For a language L, Jt(V) dénotes the smallest semiAFL containing
L and Ji{V), the smallest full semiAFL containing L. Similarly, &(L) and
# ( L ) dénote, respectively, the smallest AFL and full AFL containing L.

A homomorphism h : L* -> A* is said to perform linear erasing on Lx g E*
if there is some constant k such that whenever |x | g: k and xeL^ then
|x | ^k\h(x)\. Let J?LlN(L) dénote the smallest semiAFL containing L that
is also closed under "linear erasing": if L1eey#LIN(L) and h performs linear
erasing on Ll9 then h(L1)eJ^UN(L).

We define:

COPY={ww: we{a, />}*}

and

*COPY ={{wcf : ifê O, we{a, b}*}.

The language SHIFT can be defined as follows. Let:

I o = {o, b } x {o, b } - {[o, fl], [o, ftj, [b, fl], [i, fc]}.

For strings x = xlt . .x„ and >'=j ;
1 . . .ƒ„ with x£) j>,-e{a, fc} (so n = | x | = | J ; | ) ,

let <x ,^> = [x1? yi] [x2,y2]...[xn,ynl Then SHIFT g ( ï 0 U {c})* is the
language

I ^ U K w i , w2)c(w2, w 3 >c . . . c<w M > wm + 1 > c : m ^ l ,
w (e{a, 6}*, |wi | = | w 2 | = . . . = |wm + 1 | } .

For the homomorphism h : {a, b, c }* -• (Zo U {c })* determined by defining
A (a) = [a,a], h(b) = [b9b]9 h(c) = c, we have ^ C O P Y ^ ^ " 1 (SHIFT), so
*COPYe^(SHIFT) . Note also that COPY is a member of
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6 0 S. A. GREIBACH, C. WRATHALL

We can now express the families of languages accepted by one-way nonde-
terministic machines with one working tape of the given kind in terms of the
semiAFL and AFL operators and the languages above:

^(COPY), reset tape, finite delay;
^(COPY), reset tape, finite delay, with reinitialization;
^(COPY), reset tape;
^(COPY), reset tape, with reinitialization;
^(*COPY), circular tape, finite delay;
Jr(*COPY), circular tape, finite delay with reinitialization;
^(*COPY), circular tape;

t#
r(*COPY), circular tape, with reinitialization;

Jt (SHIFT), writing circular tape, finite delay;
^ (SHIFT), writing circular tape, finite delay, with reinitialization;
M (SHIFT), writing circular tape;
iF (SHIFT), writing circular tape, with reinitialization.
Further explanation of the relationship between one-way nondeterministic

machines and semiAFL and AFL generators and how to compute these
generators can be found in [6, 17].

3. NON-INCLUSION RESULTS

There are twelve apparent classes determined by the three generators
(COPY, *COPY, SHIFT) and the four operators (Jf, J% jk, # ) , but three
pairs of these classes are in fact equal. For machines with one reset tape,
requiring opération with finite delay (i. e., "quasirealtime") does not cause
any decrease in their power of acceptance, whether or not reinitialization of
the tape is allowed between resets. Also, machines with one writing circular
tape can perform any effective computation if sufficient time is allowed.

THEOREM 3.1:

(1) M (COPY) =UT (COPY) and & (COPY) = # (COPY).
(2) M (SHIFT) = # (SHIFT) is the class of all recursively enumerable lan-

guages.

Proof: (1) A simple variation of the construction given in [7] for linear
context-free languages (i. e., for one-turn pushdown automata) can be used
to convert any machine with one reset tape to a nondeterministic machine,
also with one reset tape, that opérâtes with finite delay, so that
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SINGLE-TAPE RESET MACHINES 61

^(COPY) g ^T (COPY). It follows from gênerai principles [6, 8] that the
AFL generated by COPY must also be full: #(COPY) g jF(COPY).

(2) Certainly each language in iF (SHIFT) is recursively enumerable. On
the other hand, any recursively enumerable language is the set accepted by
some Turing machine with one-way input and a single one-way infinité tape.
Such a machine M can be simulated by a machine M' that has a writing
circular tape: M' begins its computations by guessing the amount of tape M
will need and then makes successive sweeps of that portion of its tape while
following a computation of M on the input. Thus any recursively enumerable
language can be accepted by a nondeterministic machine with one writing
circular tape that opérâtes without time bound, and so is a member of
Jt (SHIFT). (In contrast, a deterministic machine with a circular tape can
use only linear space in any accepting computation.) •

Since it is clear that any member of ^ (SHIFT) or #(*COPY) must be a
recursive set, the following corollary to theorem 3.1 is immédiate.

COROLLARY 3.2:

& (SHIFT) p Jl (SHIFT) and <#(*COPY) p Jt (SHIFT).

Consider now the remaining eight classes, lying strictly below Jt (SHIFT).
The inclusions among them that follow from their définitions are shown in
figure 1. We will see that all the inclusions shown (by upward lines) are proper
and that each pair of classes with no obvious inclusion (e. g., ^(*COPY) and
J^(COPY)) are in fact noncomparable classes.

The following technical lemma is useful for extending négative results, of
the form L^J5f, from semiAFLs to AFLs.

LEMMA 3.3 [2,8,11]: Suppose ££ is a semiAFL (full semiAFL) containing
{e} and Lt is a language in &{£?) (resp., &(&)).

(1) If Lt has the property that whenever AB g Lu either A or B is finit e,

(2) If L1 = {0BxlB : XGL2, n ^ l } for some language L2 g L+ where
0, 1£S, thenL^^. •

We now proceed to identify some limits on the power of machines with
the three types of tapes. Let 3-COPY = {[ucf : M G { Ö , O } * } 5

E={anbn : n ^ l } and C2 = {ucudvcv : u, ve{a, b}+ }. Notice that 3-COPY
is a restriction of *COPY, £ is a restriction of COPY and C2 is similar
to ( COPY )2. Theorems 3.4-3.6 show that 3 - COPY $ ̂  ( COPY ),
(c£<0+<M(*COPY) and C2£.#(SHIFT). These facts will form the basis
for deriving complete information about non-inclusions among the classes.
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62 S. A. GREIBACH, C. WRATHALL

First, we show that a machine with one reset tape cannot check equaiity
of three strings, even if reinitializations of the tape are allowed and (by virtue
of theorem 3.1) no time bound is imposed.

THEOREM 3.4: The language 3-COPY= {(uc)3 : ue{a, fc}*} does not
belong to ^(COPY).

Proof: The language 3-COPY has the property used in lemma 3.3(1): if
AB <= 3-COPY then either A or B is finite (and in fact must consist of at
most one element). It is straightforward to dérive an intercalation theorem
for ^(COPY) from which it will follow that 3-COPY <£^(COPY); hence
from lemma 3.3, 3-COPY£^(^(COPY))=^(COPY). More gênerai
versions of this fact have been given by ïbarra ([16] theorem 2.3) and by
Ginsburg and Spanier ([14], p. 387). •

Machines with one nonwriting circular tape that operate without time
bound have more power than might appear from their définition. The class
^(*COPY), for example, is closed under concaténation of languages, and
also under the opération "chevron" of lemma 3. 3(2), which takes a language
L g S + to {Onxl":xGL, n ^ l } when 0, 1 £L. Simple constructions using
machines with two-track work tapes can be used to show these closure
properties. That ^#(*COPY) is not closed under Kleene* is a conséquence
of the following theorem.

THEOREM 3. 5: Let £ - {anbn : n^ 1}. Then (cEd)+

Proof: Suppose (cEd)+ is accepted by a nondeterministic machine M with
one nonwriting circular tape that opérâtes without time bound. The "blocks"
of a word in (cEd)+ are its subwords of the form canbnd. M opérâtes by
sweeping its worktape while reading the symbols in a block, and the proof
focuses on the state of M at the start and end of such sweeps during accepting
computations. We may assume that at least one input symbol is read during
each sweep. Call the sweep in which the first b of a block is read, the "center
sweep" for that block.

We note first that not too many resets can be made while reading one
block (claim 1); otherwise, the finite control of M would allow the sweeps of
the worktape to be repeated, contradicting the fact that E contains no infinité
regular set. Also, at least one reset must be made while reading a sufficiently
long block (claim 2), or else a different worktape could be used to allow M
to accept a block not in E.

In order to find a contradiction, we consider an accepting computation on
a word with a large number of long blocks. For such a word, there must be
two blocks for which the sweeps of the worktape do not overlap such that
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SINGLE-TAPE RESET MACHINES 63

exactly the same input is read from the blocks in all but the center sweeps.
However, there is a linear constraint (claim 3) relating the total length of a
block and the input read outside the center sweep, and we can force this to
be violated by arranging for one block to be much longer than the other.

Let F be the tape alphabet of M and let k0 be the size of its state set. For
yeF + let S(y) be the set of pairs of states (/?, q) such that (for some input)
M can completely scan y on its worktape, beginning in state p and ending in
state q. Define a relation = on F + by: yx = y2 if and only if S(yl) = S(y2).
Clearly = is a right-invariant équivalence relation of fini te index, say kv

Let/c2 = /c0 + 4, k3=l+kx(l+k0p and k4 = 2(l+ko)
k2 + 1.

If x = xy then for any computation C of M given work tape xyz and for
any n ̂  0 there is a computation C' of M given work tape xyn z such that O
contains the same number of sweeps of the work tape as C and each sweep
begins and ends in the same state in C as it does in C\ In particular, if C is
an accepting computation then C' is also accepting.

CLAIM 1: In any accepting computation on a word w, M makes at most
k2 — 1 resets while reading each block ofw.

Proof: Suppose that during an accepting computation with work tape y,
M makes r resets while reading a block canbnd. Since some input must be
read during each sweep of the work tape, M must then have made at least
r — 3 full sweeps of y while only a's and Vs are being read. If r^k2 then
r—3^fco+ 1 so two of these sweeps begin in the same state, say the j-th and
k-th sweeps, k>j. That part of the input, v^e, read from the start of the
y'-th sweep up to the start of the k-th sweep can then be deleted or repeated
without affecting the computation during the other blocks. Hence an bn = xvy,
v^e, and for all m^O, M accepts a word with a block cxvmyd, so xv*y c= E,
which is impossible.

CLAIM 2: In any accepting computation on a word w, M makes at least one
reset while reading each block canbnd of w for which n>kokv

Proof: Suppose that there is an accepting computation with work tape y
in which no reset is made while a block canbnd is read. Since the index
of = is kx and M has k0 states, if n>k0 kx then there must be a décomposition
y=yly2y3 such that (i) yt = yxy2 and (ii) during computation on this block
M reads input as

7 s>0, while scanning y2 and is in the same state when it
enters y2 and when it enters y3. But then y1y3 =^1^23^3 and there is an
accepting computation of M with work tape yYy% on an input that contains
[using (ii)] a subword can~sbnd$cEd.
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6 4 S. A. GREIBACH, C. WRATHALL

CLAIM 3: Suppose in an accepting computation M reads an~sbn~t during the
center sweep of its work tape for a block canbnd. Then s^[(n — t)/k3l

Proof: Consider an accepting computation with work tape y in which
canbnd is the i — th block of the input and during the center sweep for the
i —th block, M reads an~sbn~t (and possibly c or d). Notice that s is the
number of a' s read from the i — th block bef ore the center sweep. The claim
is clearly true if n — t<k3, so let m = [(n-0/^3J and assume m^L

For a prefix yx of yy let yCyJ be the séquence of states (from this accepting

computation) in which M leaves yx during its sweeps of y while reading the
i — th block (i. e., Y(J>I) is the i — th block crossing séquence at the end of yx).

The length of each such séquence is at most k2 since (from ciaim 1) fewer
than k2 resets are made while the i — th block is being read. Define an
équivalence relation E( on préfixes of y by: yiE(y{ if f yx^y\ and

^ ï O i ) - The index of Et is then at most kx (1 + kop = k3-1.

Divide the n — tb' s read during the center sweep for the i — th block into
sections of length m, the last section containing at most mb's. To each of
the first k3 sections (k3t^(n — i)/m) associate that prefix/ of y such that
y—y'y" and Mf s head is on the first symbol of y" as it begins to read that
section. Since the index of Et is less than /c3, two of these associated préfixes
of y must be equivalent under Et (possibly they are also equal). Therefore
there is a décomposition y=y! y 2)^3 s u ch that y\=yiy2

 a nd yO>i)=>; (yiJ^X
and bkm, /c^l , is read while y2 is scanned during the center sweep for the
i —th block. It follows that there is an accepting computation of M with
work tape yxy2y2yz (since y1=yly2) in which, during the sweeps of the
work tape corresponding to those for the i — th block, input cau bv d is read
with u-^n + s and v^n + km. For the bounds on u and v, we observe that (1)
while reading a' s from the i —th block, M scans a prefix of yt dur ing the
center sweep and the second y2 need only cause it to read double the number
of a's read up to that point; and (2) since y_(yi) = y_(yiy2\ M can repeat,
while scanning the second y2 in the center sweep, the steps that read bkm. Thus,
M accepts a word with a block cau bvd,sou = v and therefore n 4- km ̂  n 4- s, or
s^/cm^m, as desired.

Now consider an accepting computation of M on a word

for which r^fe4, ni>koki and n2i + 1^(k3 + \)n2i-i + k3. Since n2i>kokl9

from claim 2 at least one reset is made while each even-numbered block is
read, so the sweeps of the work tape while blocks 2 i — 1 and 2 i +1 are read

Informatique théorique et Applications/Theoretical Informaties and Applications



SINGLE-TAPE RESET MACHINES 6 5

do not overlap. For l^i^fr/21, let a2i-_i be the séquence of states in which
M begins the sweeps of its work tape during which symbols from block 2 i— 1
are read, followed by the state in which the last such sweep is ended. From
claim 1, each such séquence has length at most k2 + \. Since
fr/21Ö^(l/2)fc4 = (l+fc0)

fc2 + 1, two of these séquences must be identical, say
those for thej-th and /c-th blocks, wherej, k are odd andj^fc — 2.

Since aJ- = ak, for each i, the i — th sweep in which symbols of block j are
read and the f —th sweep in which symbols of block k are read must begin
in the same state and lead to the same state for beginning the next sweep.
Hence the i — th sweep for block j can be substituted for the f —th sweep for
block k and an accepting computation will result. If the i — th sweep for one
block reads input in ca*, a + , b+ or b*d then exactly the same input must be
read in the i — th sweep for the other; otherwise substitution of one sweep
for the other will cause M to accept an input with a block not in cEd. For
the same reason, if the / — th sweep for block j reads input in ca+ b+, a+ b +

or a+ b+ d then the corresponding sweep for block k must read input of the
same form. (Input in ca+ b+ d is not possible since nk>k0 kv) Therefore there
exist s, t^rij such that for both blocks j and k, M reads sa's up to the center
sweep and tb's after the center sweep, and (in particular) reads a"k~sbnk~t

during the center sweep for the /c-th block. From claim 3, then, s ^
l(nk — t)/k3l so rij^[(nk — t)/k3\. But since t^n5 and k^Zj + 2, nk — t7t

nk — nj^nj+2 — nj a n <i nj+2~nj = ̂ 3(nj^~^) s o [(nk~t)/^3l = nj~^^^ a contra-
diction. •

The following lemma will be used in showing that:

C2= {ucudvcv : u, ve{a, b)+]

cannot be accepted by any finite-delay machine with one writing circular
tape. It also reveals that, although ^#(*COPY) is closed under concaténation,
^(*COPY) is not.

LEMMA 3.6: Suppose Au A2, Bt, B 2 i E + , ^ 2 , and Le^(*COPY)
satisfies Bx $B2^ L <^ Ax $A2, Then either (i) there is a regular set Rt such
that BJL <= Ri E Au or (ii) there is a regular set R2 such that B2 g R2 <= A2.
Hence if L = At £A2 then at least one of' Au A2 is a regular set.

Proof: Suppose L is accepted by a nondeterministic finite-delay machine M
with one nonwriting circular tape. Let k be such that M takes at most km
steps to read m g; 1 input symbols.

For t^l define L,= {u1e2 + : there exists some u2 such that M accepts
u1 <j:u2 given a work tape of length at most t}. Notice that Lt g Ax and each
Lt is a regular set.
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Define R 2 = { u 2 e S + : there exists some i/x such that M accepts ux

without making a reset while reading u2}, so R2 Ü ^2- Also, R2 is a regular
set: if u2eR2 then there are strings ux and j ; such that M accepts t^ $u2

with work tape 7 in a computation in which no reset is made while u2 is
being read and at most q resets are made while ut is being read, where q is
the size of the state set of M. Therefore there is a finite-state machine that,
given w2, can (by keeping track of a #-tuple of states of M) guess successive
symbols of a string y and test whether there is some u1 such that M accepts
ui $U2 given y without making a reset while reading u2.

Now, if B2 g R2 then (ii) is true since R2 g /12 is a regular set. If B2 $ £ 2

then let v be some string in B2~R2i and let x = /c | v|. In this case, Bx <= LT so
since LT <= ̂ 4X is regular, (i) is true. To see that B1 <= LTS consider any string
ue i^ . Then ufiveL so there is an accepting computation of M on u$v
given some work tape y, but f £R2 so M makes at least one reset while
reading v, Since M takes at most x = k | v | steps to read 1?, it follows that
| y | :g x; thus M accepts u $ v given a work tape of length at most 1, so
ueLx. •

THEOREM 3.7: Let C : = { ucu : M e {a, b}+ }5 C2 = C1dC1 and

V2={Ottw\n:n^U weC2}. Then (i) C2$Ji (SHIFT) anrf (ii)

Proof: (i) Suppose otherwise, that C2 is accepted by a finite-delay machine
M with one writing circular tape. Let a be such that M takes at most an
steps to read n^ 1 input symbols. Let p be such that for each m^ 1 there are
less than 2P m tape configurations of M with a work tape of length at most
m (where a tape configuration consists of a state, a work-tape string and a
position on the work tape).

For w, ve{a, b} + , let w(w, v) = ucudvcveC2 and let m(w, u) be the length
of a shortest work tape used by M in an accepting computation on w (u, v).

Some inputs must require long worktapes, in order for M to distinguish
among them. In particular, there are infinité sets U and V such that f or u G U
and veV9 m(u, v) grows linearly with |w(u, u)|. With a long worktape, the
number of resets M makes cannot be too large (because the time is bounded),
and we are able to conclude that a fixed number of resets is used to accept
strings w(«, v) for UGU, VGV. However, lemma 3.6 then implies that Cx

contains an infinité regular set, a contradiction.
For strings uxi^u2, M cannot reach to same tape configuration (from its

initial configuration) after reading ut and reading w2, or else M would accept
a string not in L. There are 2" strings of length n but less than 2P<"/P) = 2W

tape configurations of M with a worktape of length at most n/P; it follows
that for each n ^ l , there is a string u(n) of length n such that for every
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ve{a, b}+, m(u(ri), v)>nffi. Similarly, for each n ^ l there is a string v(n)
of length n such that for every ue{a, b}*, m(u, v(n))>n/fi. Let
U= {u (n) : n ̂  1} and V= { v (n) : n ̂  1}; then wet/ and veV imply:

m(u,ü)>(l/P)max{|ii|, | i ; | } ^ (1/7P)|w(11,1;)|.

Let Cc/= {ucu : UGU} and C^= {uci; : VGV}.

Let 5 be the set of strings in C2 that are accepted by M in a computation
with fewer than 7o$ resets. A machine that accepts S with a nonwriting
circular tape can be constructed from M, so Se^(*COPY). Suppose ueU
and veV and consider any accepting computation of M on w(u, v). If the
number of resets made is t, then the number of steps is bounded below
by (£-f l)m(u, v)>{t+\)\ xv(u, P ) | / 7 P and bounded above by OC|W(M, V)\ SO

t + 1 < 7 ap; hence 5 includes the set { w (u, v) : u e U, v e V}. Thus
CvdCv g 5 g CidC! with Q, and CK infinité, so (from lemma 3.6) Cx

must contain an infinité regular set.

(ii) From lemma 3.3, if V2 e & (SHIFT) = ̂ {Ji (SHIFT)) then V29 and
hence C2, would be in Jt (SHIFT), contradicting (i). •

From corollary 3.2 and theorems 3.4-3.6 and the properties of the classes,
the following conclusions can be drawn:

(a) 3-COPYe^(*COPY)-^(COPY);
(b) (cEd)+e&r(COFY)~tJ(*COFY);
(c) SHIFT6t^(SHIFT)-e#

r(*COPY);
(d) C2e(^(*COPY) n ^ ( C O P Y ) ) - ^ (SHIFT);
(e) F2e^(*COPY)-J^(SHIFT).

The ten inclusions shown in figure 1 are therefore all proper: numbers (1)
and (6) because of (a); (2), (5) and (9) from (&); (3) and (8) from (c); (4) and
(7) from (d); and (10) from (e). The three upper rows of the diagram contain
classes that are not comparable: from (c) and (e), ̂ (SHIFT) and Jr(*COPY)
are incomparable; from (b)-(e\ the three classes M (SHIFT), ^(*COPY)
and J^(*COPY) are mutualiy incomparable; and from (a) and (b),
^(*COPY) and J^(COPY) are incomparable. Finally, J^(COPY) is not
comparable to either ^(*COPY) or M (SHIFT), from (a), and (b) and
(d); M (SHIFT) and Jr(*COPY) are incomparable, from (c) and (d); and
^ (SHIFT) and ^(*COPY) are incomparable, from (c) and (e). Thus, no
inclusions hold among the classes except as shown in figure 1, and each of
the inclusions shown is proper.

It is not difficult to show that the languages C2 and F2 belong to
^LIN(*COPY), i.e., they can be defined from *COPY using linear-erasing
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homomorphisms (and the semiAFL opérations). Therefore:

M (SHIFT) 5 J?UN (SHIFT) g Jt (SHIFT),
and *Jf(*COPY) 5 ^ L I N (*COPY); similar statements hold for the AFLs
determined by the languages. Whether the inclusion between ^LIN(*COPY)
and Jt (*COPY) is proper remains open. Since, from theorem 1,
J certainly:

4. PALINDROMES

This section is devoted to showing that the set of palindromes
PAL — {wcwR : we{a, b}+ } cannot be accepted either by a machine with
one non-writing circular tape or by a finite-delay machine with one writing
circular tape, even if reinitialization of the tape is allowed. The class ^(PAL)
of linear context-free languages is therefore incomparable to the classes
between ^(COPY) and & (SHIFT). A technical resuit on bounded sets and
noncommuting words leads to a proof that no unbounded set of palindromes
can belong to the closure of the regular sets under homomorphic duplication.
This f act, in turn, is the basis for the proof that PAL does not belong to
^ (SHIFT).

LEMMA 4.1: Consider an alphabet S and strings w, ueL*.
(1) [1, 12]. If {u, v}* is not freely generated by u and v then there exists

re E* such that u, ver*.
(2) [5]. Ifuv^vu and W <= X* has theproperty that any string in {u, v}* is

a factor of some string in W, then W is an unbounded set.

LEMMA 4.2: Suppose s, £e£* are distinct strings of the same length and
5 g l * is a bounded set. There exist x, y9 a, x e {s, t}+ such that

(i) xy^yx,
and

(ii) for any z, z' eB and w, w'e{x, y}+ if z awx is a prefix of z' ow' x then

Proof: Let w=|s | = | t | ^ l . Since s^t also st^ts so from lemma 4.1(2)
there is a string 9 e { s, t }* such that (p is not a factor of any string in B. Let
m = max { | 91, 4} and define:

x = tsst

y = stts

o = <psts

T = tm.
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Note that a is not a factor of any string in B, and | x x | = | y x | > | a | .

Since s # t and they have the same length, xy^yx so (i) holds and {x, y}*
is freely generated by x and y. For (n), suppose that Z<JWTV = Z'OW'T for
some Ü, where z, z'eB and w, w'e{x, y}+; we must show that i^^w'. Since
a is not a factor of z', | z a | > | z' | and hence:

|w'x| = | z awx t ; | — | z ' a | = |u | + ( | z a | — |z / | ) + ( |wx| — | a | ) > | Ü|.

It is convenient to distinguish five cases for \v\. In all but the first case
(v = e), a contradiction will be found.

(1) If v = e then z a w = z ' a w ' with (say) | w' | ̂  | w |. Since x, j freely generate
{x, ƒ}*, w' = ww for some we{x, 3;}* and ZO = Z'GW. If vv^e then it ends
with x or with y; however, the suffix of a of length 3 n is sts, which is not a
suffix of x or yy so in f act w~e and w = w'.

(2) If 0 < I v I < n then v is a suffix of x = tm, hence of t, so write t = uv,
Then z a wtm = z 'aw' tm" 1M = z / a w T 2 « (rw) so t = vu~uv and

> = z'avv'. Applying lemma 4.1(1) to the équation t = uv = vu, there is a
primitive string (i. e., one that is not a proper power of another string) r such
that t, w, vsr+. Consider now the possible final segments (x or y) of w and
w' -in each case we find that s and t must be equal.

(2.1) w = w1x, w/ = w/
1x: the suffix of zawv = zow1tsstv of length An is

usstv, which must be equal to x, the suffix of z'ow' of the same length.
Cancelling u from the left and t = uv from the right we have 551; = vss. Since v
is a power of the primitive string r, this implies [using lemma 4.1(1)] that
ser+ so (since | s\ = 111), s = £.

(2.2) w = w1x, w ' ^ w i j : the suffix of zawi? of length n is uv = t and the
suffix of z' a w' of length n is s, so 5 = t.

(2.3) w = *>!;>, w/ = w/
1x: taking the suffixes of length 2n and cancelling v

f rom the right, we have us = su. Since uer+ and r is primitive, s is also a
power of r [by lemma 4.1(1)] so s = £.

(2.4) w = wl y, w' = wi >>: taking the suffixes of length n + | v |, su = vs and it
again follows that s = t.

(3) If w^ 11?| <2n, then, since ZOXVTV = Z' ow'tm~212, v = t1t where tx is a
suffix of r, say t = t2 tv Cancelling v from the right, we have
zawtm = z'ow'tm~2t2 = z'ow't2(tx t2)

m~2 so t = tl t2 = t2tx and
zowtt1=z'GW'. If w' ends with ƒ then the suffix of length n of z'ow' is s,
but the suffix of length n of z a w ^ is t2t1=t, so s = t. If w' — w^x and
w = w1x then z a w 1 t5sttt1=z /aw /

1 tsst so (taking the suffixes of length 2rc
and cancelling t from the right) t 2 t 1 = s and s = t. If w/ = w'1x and w = w1y
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then (taking the suffixes of length 3 ri) t2stt1=sst so t2st1=ss. From this
équation we see that t2 is a prefix of s and tx is a suffix of s, so since

1*2 | + | fl | = I l | = |S|> W e n a V e S = t2tl=t.

(4) If 2 n ^ \v\ <mn= | T | then (from z a w x ^ z ' a w T ) for some 7,
O^y^m —3, v = t3t

j+2 where t = t4t3. Write t = t5t6 with | t 5 | = | t3 | . Cancel-
ling the suffixes of length mn, we have zowtj+2t5—z' ow'. The suffix of w'
of length 2n is therefore (t6t5)

2, but w' ends with st or ta so s^=t = t6t5.

(5) If 11> | ̂  | T | then T is a suffix of u, say v ~ vx T. AS noted above, 11> | < | w' T |
so ÜX is a suffix of w': write w' = wuvx with w e {x, j> }* and M a prefix of x or
of y, so that z0WT = z ' awu. Since | « | < | X | = | J > | ^ | T | , W is thus a suffix of
x = tm. The overlap this implies between x ot y and t4 forces s and t to be
equal. If | w | ^ 2 n then w = £7tJ + 2 where O^y'^1 and t = tst7, so the prefix of
M of length 2n is (f7 ts)

2. Since M is a prefix of x^tsst or of y~stts, it
follows that s = t = t7ts. If n : g | u | < 2 n then u = t9t where £ = t 1 0 1 9 so (from
ZOWT = Z'owu) zowtm~2tio = z'aw. Taking the suffixes of length 2n from
each side, (?9 t i0)2 is equal to either st or ts, so s = t = t9tl0. Finally, if | « | < n
then t = uu for some u and zawtm~1u = z ' aw, S O 5 = Î = MM. •

Let j£fDUP dénote the class of languages formed by homomorphic duplica-
tions of regular sets, that is, languages of the form {h^ (x). . .hk(x) : xeR}
for some /c>0, homomorphisms hu . . ., hk and regular set R. The class
ifDUP is equal to the class of equal matrix languages [13], and to the union
of the full semiAFLS generated by the languages:

k-COPY = {(wc)k: we{a, b}*}, fc^O.

LEMMA 4. 3: Any subset of PAL that belongs to ifDUP is bounded.

Proof: Suppose Lo belongs to f̂DUP and is a subset of PAL. Let
Lt = {w : wcw R eL 0 } . It will be shown that if L1 is unbounded then there is
an fl-transducer M such that PAL = M(L0). But ̂ fDUP is closed under a-
transductions, so this contradicts the fact that PAL does not belong to
=5fDUP [10] and hence Lx and Lo are bounded.

Since L O G ^ D U P , also L1eJ?Dl]P so write Lx = {h1(z). . .hN(z) : zeR} for
a regular set R and homomorphisms hu . . ., /iN. If Lx is unbounded then so
is some h((R) so let P = min{i : h^R) is unbounded}.

Since hP (R) is unbounded, there exist strings w0) s0, t0, ÜĴ  such that u0 {sOi

to}*vx c i? and hP(s0\ hP(t0) do not commute [3]. Let «1=w050 t0 , s 1 =s o t o ,
fi = fo5o» S = ' I P(SI ) and t = hP(t1), Then hpty^^e, \s\ = \t\ and s^ t . Let
Ki=«i{s i> ^ i } + ^ i E ^ . Notice that if eek^RJ then / i I(^1)= {e}. The
bounded set h1(R1). . . hP_x (Ri){hP(ux)} is therefore contained in a set 2?
of the form B = zx . . . zr

+ for r ^ 1 and nonempty strings zl5 . . ., zr. Applying
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lemma 2 to s, t and B, we obtain strings x, y, a, xe{s, * } + = { ^ P ( S I ) >
^P(*I)} + with t ne following properties:

(a) for any we{x, y}+ there is a unique décomposition vv = w1. . . w„ with
n ^ l and wfe{x, y};

{b) for any z, z'e£, any w, w'e{x, j>} + and any oc, a'e{a, b}* if
zawxa = z /aw /xa' then w = w';
and

(c) for any ive{x, y}+ there exist zefî and we{fl, b}* such that

The a-transducer M that produces PAL from Lo opérâtes as follows. Given
a string wcwR, M looks for and erases a prefix of w in z^. . ,zP

+ followed by
the marking string a. It then décodes a string in {x, y}+ > putting out a for
x and b for y. When the other marking string x is encountered, it is erased
along with any other letters before the center c. This process is reversed for
wR, resulting in output of the form ucuR.

Let Q = {p09 . . ., pr, q0, qu q2> 42> 4n 4o> A, ••-,Po} a n d l e t H be the
set of transitions on Q given by:

U {(pr, a, e9 qo\ (q09 x, a, qj, (q0, y9 b, qx\

(qu x, a, g4), (ql9 y, b, qx\ (ql9 x, e, q2\

(q29 a, e, g2), (q2, 6, e, q2\ (q2, c, c, ^ 2 ) ,

(<?2> ö, e> «2)» Ö2» b9 e, q2)9 (q2, xR, e, 4 J ,

(4ls x^, a, qt\ (qu yR, b, qx)9 (qu xR, a, q0),

(4i, yR> b9 qo\ (q0, a
R, e, pr)}

Let M be the a-transducer with state set Q, transitions H, initial state p0 and
single accepting state p0. M can only reach its accepting state on input of
the form a1 c af with ax = z a w xpx and a2 = z' a w' xP2 where z, z' e B and w,
w'ejx, y}+'. The output produced from such an input is u1cu2 where, for
f(a) = x and f(b)=y> w=f(u1) and w'=/(w2). By property (a), ux and w2

are uniquely determined by w and w', respectively. Using property (c), it
follows easily that PALgM(L0). On the other hand, if OL1 = OL2 then [by
property {b)] w = w' and so ul=u2; hence M(L0) g PAL. D

The following property of ^(*COPY) allows us (since PAL has no infinité
regular subset) to conclude from the previous lemma that no unbounded
subset of PAL can be in ^(*COPY).
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LEMMA 4.4: If L is a language in ̂ ( * C O P Y ) and L has no infinité regular
subset then L is in J5fDUP.

Proof: Let L be a language in ^(*COPY) and let M be a nondeterministic
machine with one nonwriting circular tape that accepts L. We may assume
that M never makes a complete sweep of its work tape without reading input.
Suppose M has k states. If for every x in L, M accepts x with fewer than h
resets then M can be converted to a machine limited to k resets and so
L = L(M) is in the full semiAFL generated by fc-COPY. Otherwise let x be
some string such that M makes at least k resets in an accepting computation
on x and consider the séquence of states reached by M just bef ore the resets.
Two of the states in this séquence must be the same, so x can be written as
uvy for some strings u, v, y, and uv* y is contained in L. The string v cannot
be empty since M reads at least one input symbol between resets, so L
contains an infinité regular set. •

THEOREM 4. 5: Any subset of PAL that belongs to ^f(*COPY) is bounded.

COROLLARY: PAL^^(*COPY).

THEOREM 4. 6: PAL does not belong to ^ (SHIFT).

Proof: It is sufficient to show that PAL $Jt(SHIFT): by virtue of lemma
3.1(1), if PAL e #~ (SHIFT) then PAL e M (SHIFT).

Suppose that PAL is accepted by a machine M with one writing circular
tape that accepts in linear time. There is an unbounded subset of L (M) for
which the length of the worktape used in accepting grows at least linearly
and so (since the time is bounded) the number of resets made cannot be
large; but M restricted to a fixed number of resets can be simulated without
writing on the worktape and hence accepts (by theorem 4.5) a bounded
language.

Let a, P be constants such that each string in PAL of length n is accepted
by M in some computation of at most an steps, and M has fewer than 2Pm

tape configurations with a worktape of length at most m. For we{a, b}+ let
m (u) be the length of a shortest worktape used by M in an accepting
computation on ucuR of at most a (21 u | + 1) steps.

For n ^ l , let U(n)= {ue{a, b}+ : |u| = n + l , m(u)>n/$}, and let
W={ucuR : ueU(n\ n^> 1 }. Then the cardinality of U(n) is greater than 2":
otherwise there would be strings u1¥=u2 (of length w+1) such that during
accepting computations, M reached the same tape configuration (with a
worktape of length at most n/3) after reading wr and after reading w2. It
follows that for each n ^ 2 , there are more than 2""1 strings in W of length
2n + l, and therefore W cannot be a bounded set.
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Let L g PAL be the set of strings accepted by M in computations with at
most 5 otP-2 resets, so L e ^ ( * C O P Y ) . From theorem 4. 5, then, L is bounded
and so W <£ L; iet n ^ l and ueU(n) be such that ucuR$L. Since ucuR$L,
M makes at least 5 ap sweeps of its worktape in any accepting computation
on ucuR, so a |ucuR |^(5ap)m(w), or, since | u | = n + l ,
Since ueU(n), m(u)>n/P so 2 w + 3 > 5 n, a contradiction. •
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APPENDIX

For completeness, we present hère a proof, based on the work of Klingens-
tein [10] that PAL does not belong to J£fDUP. This fact will follow from the
theorem below on the structure of the Parikh images of bounded languages
in =SfDUP. (Basic information on these notions may be found in [14].)

NOTATION:

(1) For strings x, y : x \ y if x is a subsequence of y.

(2) If h = (hu . . ., hs) is a séquence of homomorphisms and x is a string
then h(x) = hx (x). . .hs(x). Let Ms dénote the class of languages of the form
{(hu . . ., hs)(x) : xeR} where R is a regular set.

(3) For p = (pl9 . . .,/>,)eN', \(p) = #{i : l ^ i ^ t , Pt^O} is the number of
nonzero entries in p, and for 1 ̂ j ^ X (p\ \p, j \ is the index of the 7-th nonzero
entry in p. For c e N* and P a finite subset of Mf,
L(c, P) = {c+ Y, kp-P '• kp^Q} is the linear set with constant c and set of

peP

periods P.

DÉFINITION: A set P <= Nr is s-interlaced if X(p)^s for each peP and there
exist a linear order < on P and for each peP an increasing function
/ p : {1, . . ., X(p)} -> { 1, . . ., 5} satisfying for all p, qeP and all i, 7 : if
either fp (i) <fq Q) or p < q and / p (0 -fq (j) then \p9 i] ̂  [q, j \ .

THEOREM: Let al9 . . ., at be distinct letters and let v|/; {au . . ., at}* -> f̂ Jf

6e tfte function taking at to the vector with 1 in the i-th position and zéros
elsewhere. If L <^af. . .a* and Le$s then \|/(L) is equal to a finite union of
linear sets, each with an s-interlaced set of periods.

Proof: Fix a séquence of homomorphisms h = {hly . . ., hs\ each
fc£:S*->{a1, . . . , a t } * . Let 0 be the following property of subsets of
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E* : <D(LO< t̂here exist n^O; cl9 . . ., cfleN'; P l9 . . ., P„ g N(; an order
< that is linear on each Pt; and, for each p e U ̂  an increasing function fp:

i

{1, . . ., X{p)} -> { 1, . . ., s} and a string wpe U; such that
n

\|/fc(l/) = U L(ct, P^ and for ail i:

(a) for ail p,qePt and ail j , fc if either /p 0') < ƒ, (/c) or p < g and fp (ƒ) = fq (k)
then [p, j] S [<?? k]; and

(b) for all pePi and all7, 1 SLj?^X(p\ a[p n I hfpU)(wp).

Note that if d>(U) holds, then (in particular) y\th(U) is a finite union of
linear sets L(ct, Pt), each P( s-interlaced [by (a)]. It therefore suffices to show
that Q>(R) holds whenever R is a regular subset of L* and h(R)<=af.. .at*.
This is proved by induction on the structure of R. If R is a finite set then
{cl9 . . ., cH}=\|/ft(R) and Px— . . . = P„ = 0 serve to establish O(R). If R is

equal to /^ U Ri-> ̂ 1 ̂ 2 o r ^* an<^ ^ (^) = a î • • •a* ^nen a^so ^ (^iX
fc(R2) g af. . .af. Suppose, then that O(RJ and $>{R2) hold-we will see
that <&{R) does as well Let cl9 . . .,c„, P l s . . .,Pn, < j and functions/p and
strings vvp (peUPd verify ^ ( P J , and similarly dl3 . . ., rfm, Qu . . ., öm̂
< 2 and fp wp (p e U ôj) for

(R 2)=( UL(ci5P(.)

and this représentation serves for O(R)> with < = < l U <2 a n c i t n e functions
/p and strings wp within each Pt and Q;-.

If R = RtR2 then # ( P ) = \|//i(R1) + \|//z(P2)= U L f e f ^ , Pt U Qj)- Let

< = < 1 U < 2 U { f e [̂) : pe\JPh qe{jQj} and associate /p and wp with
i J

pe(U^j)U(U6j)- F o r ®W» it is enough to show that each PfUÔ,-
f j

satisfies (a) and (b). Since ctsL(ciy Pt) g vl/ZiCJRJ, let xleR1 be a string such

that y\fh(x1) = ci; similarly let X2GJR2 be such that dj = >tyh(x2). Now (a) is

satisfied (by the induction hypothesis) if p, q^Pt or p, qeQr For pePt and
p note that wpwqeRxR2^R. Iffp(l)< fq(k) then:

aiP, n ai<i, k] ! hfP (o K ) ^ w (w«) ! H(^P w,) e a ? . . . a*
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so \p9 H£[q, k]. lffq(I)<fp(k) then again aiql]a[Ptk] \h(wpwq) so [q9 I\^\p9 k].

Also, p < q (but q<p) and if fp (/) = fq (k) = ƒ then

aiP,i}a[qM \hf(wpwq) \h(xvpwq)

so \p, l\^[q, fc]. For (Z>), if /?ePt- then wpx2eR and if/? e g j then X1WPGR;

in either case the condition on location of letters remains true.

Finally, suppose R — Rf, h(R) <i a1[ . . . af. In this case there are indices
1 ̂  i (O ̂  • • • ̂  i (s) ̂  t such that /i7- (.RJ g afy). (This follows from the observa-
tions that if ak I hj(x) and â  \hj(y) then akaxak \hh(xyx), and if ak l'/i_/(x)
and ^ \hj+i(y) then öfcö, jh(xj).) For ce{c^ ..., cn} lot wceRl be a string

such that y\fh(wc) = c. Since fc(wc)eaf(1). . .a*(s), X(c)^s. Let /c:

{1, . . ., X (c)} -• {1, . . ., s} be the increasing function defined by fc (/) == min

{i:a[cJ]oht(wc)}. Let Q = {cu . . ., cn} U U ^ . F o r J ç { l «}, let

rfj= ^ cy and g j = {cj : 7e J} U U Pp with rf^ the zero vector and Ô9=r0*

Then ^fh(R)= [J L(dj,Qj) and this représentation serves for $>(R), with any
j

order on Q and functions fq and strings wqJ qeQ. Either by the définition
above or because O (Rj) holds, for each q e Q,
fq:{l, . . ., X(q)} -> {1, . . ., 5} is an increasing function and w9 is a string
in i?! i /? such that aiq k] \hf (k)(wq\ l^j<^X(q\ so that (b) is satisfied. For
p, qeQ, iîfp(t)Zfq(k) then

aip, n a^, fc] I ̂ /p « (Wp) fcA (fc) (wfl) ! fc (wp w€)

and w p w f l e i ? i i R so [p, ï\^[q, fc]; hence also (a) is satisfied. Q

COROLLARY: PAL^ifDUP.

Proof: If PALeifD U P then for some s ̂ 2 , P A L e ^ s . Since @s is a full
semiAFL, also:

L={a\{1)a\{2\ . . a ? ^ ^ . . . ^ : n(i)^0}

n

belongs to ̂ s , where t^s2s~2. From the theorem, \|/(L)= U L(chP^) where

each P; is 5-interlaced, say by way of an order < and functions
fp : {1, . . ., X(p)} -• {1, . . ., 5}. From the form of strings in L we see that
each Pt g \|/ (L) and therefore for /? G Pis A- (p) is even and
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We may assume that X (p) > 0.

For each î, let Qt 1 U . . . U Qt, m(o be the^ partition of P{ induced by the
équivalence relation: p = q if fp=fr There are 2s~l — 1 increasing functions
from sets {1, . . ., 2/}, 1 ^ / ^ I_s/2_J, to {1, . . ., s}, so
Also, all the vectors in Qt j have the same set of nonzero coordinates: suppose
fp^fq and (say) p<q. Then for ail /, fp(l) = fq{î) so [p, ï\^[q, /], and

fp(X(p)+l-l)=fq(X(q)+l-l)

so {p, X (/?) + 1 - ï] ̂ • [g, X (q) + 1 - 1 \ and therefore

+l-[q, X(q)+l-ï\ = [q, I\.

Now, let a be larger than any entry in the constants cu . . ., cn and
consider the vector q with ail entries cqual to a. Sincc ge\|/(Z/) thcrc is somc

m(i)

i such that qeL(ci7 Pt), so there exist kpeN such that q = c{+ Y, ( Z ^p/7)-
j = l peQij

From the remark above, each inner sum contributes nonzero entries to a set
of at most s coordinates of q — c{. Since all the entires in q — ct are nonzero,
at least 2t/s of the inner sums must be nonzero and so

1 . D
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