S.A. GREIBACH

C. WRATHALL
Single-tape reset machines

Informatique théorique et applications ,tome 20,n° 1 (1986), p. 55-77
<http://www.numdam.org/item?id=ITA_1986__20_1_55 0>

© AFCET, 1986, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1986__20_1_55_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 20, n° 1, 1986, p. 55a 77)

SINGLE-TAPE RESET MACHINES (*)

by S. A. GreiacH (') and C. WRATHALL (?)

Communicated by J. GALLIER

Abstract. — A reset tape can be written on once from left to right and then reread once, from
left to right. A circular tape can be written once from left to right and then reread from left to
right an arbitrary number of times. A writing circular tape is a circular tape which can be
overprinted but not extended. An on-line nondeterministic Turing machine with one writing circular
tape can accept any recursively enumerable set. A complete diagram is given and established for
proper inclusions and equivalences among all other classes of nondeterministic on-line machines
with one reset or circular or writing circular tape with or without restriction to finite-delay and
with or without reinitialization. These classes are incomparable to the class of linear context-free
languages.

Résumé. - Une classe d’automates non-déterministes qui parcourent le ruban mémoire seulement
de gauche a droite est considérée. Un automate a un « reset » peut écrire une fois, et ensuite relire
le ruban une seule fois, sans modifier le contenu de sa mémoire. Un automate a « mémoire
circulaire » peut relire plusieurs fois, également sans modifier le contenu de sa mémoire. Enfin, un
automate & « mémoire circulaire réécrivable » peut modifier le contenu du ruban mémoire, mais
non sa longueur; sans restriction, il peut reconnaitre tout langage recursivement énumeérable.

Nous étudions ces automates avec ou sans la restriction de « délai fini », et avec ou sans
« recommencement ». Les inclusions strictes et les équivalences entre ces familles de langages sont
démontrées, et représentées par un diagramme complet. Chacune de ces classes (sauf la famille de
langages recursivement énumérables) et la famille des langages linéaires sont incompara-
bles.

1. INTRODUCTION

One of the long-standing themes of research in formal language theory is
the study of the generative power of specific languages under specified sets
of operations. Perhaps the richest source of interesting examples in this area
has been models of computation obtained by placing restrictions on Turing
machines. Restrictions have been placed on resources such as time and space,
and also on the access of the machine to its data, that is, on the type of
storage tape allowed. Examples of this type of restriction include pushdown

{*) Received August 1984, revised April 1985.

This research was supported in part by the National Science Foundation under Grants No.
MCS78-04725, MCS77-11360 and MCS83-12472.

(') Department of Computer Science, University of California at Los Angeles, Los Angeles,
Ca. 90024, U.S.A.

(%) Department of Mathematics, University of California at Santa Barbara, Santa Barbara,
Ca. 93106, U.S.A.

Informatique théorique et Applications/Theoretical Informatics and Applications
ISSN en cours 86/01 5523/$ 4.30/© Gauthier-Villars.

56 S. A. GREIBACH, C. WRATHALL

stores, finite-turn pushdown stores and stacks. In a previous paper [3], the
concept of a reset tape was introduced. In this paper we study on-line
nondeterministic machines with a one-way tape that is either a reset tape or
a simple extension of a reset tape.

A machine can write only once (say from left to right) on a reset tape and
then can reread the tape only once, also from left to right. A reset tape is thus
similar to a single-turn pushdown store, but instead of changing direction, the
head is reset to the beginning of the tape for the second sweep.

If we allow the working tape to be reread any finite number of times, that
is, the working tape head to be reset as desired from the right end of the
tape to the left end, we have a circular tape, for we can envision the right
end of the tape to be pasted to the left end. Thus in a circular tape the string
written on the tape during the first pass can be reread any number of times,
always from left to right. If we now allow the symbols on the circular tape
to be overprinted, we obtain a writing circular tape; the length of tape
available in any computation is determined by the string written in the first
pass and, although the contents of the tape can be changed, the tape can
only be accessed by sweeping from left to right. The model can also be
extended by allowing reinitialization of the tape, that is, the tape is instanta-
neously erased and the computation can continue with an empty tape of the
same type.

Machines with multiple tapes of these types were examined in the previous
paper [3]. Any such machine can be simulated nondeterministically without
loss of time by one with three (but not two [9]) reset tapes. For fixed k=1,
machines with a single circular tape that is restricted to k sweeps accept the
class of languages that has been studied under the names “k-equal matrix
languages™ [13, 15] and ““k-right linear simple matrix languages’ [16], and as
the class derived by certain homomorphic replications of regular sets [14].

In this paper, we study the inclusions among families of languages accepted
by on-line nondeterministic machines with one of these tapes, with or without
restrictions on the time, and with or without reinitialization. In all cases,
acceptance is by both final state and “empty store”; that is, the machine
must be in a final state and the head on the work tape must be at the right
end of the string written on the tape.

Each of these types of tapes can be described by a language which captures
the essence of the restriction on access involved and which moreover is in a
certain sense a generator of all the languages definable by that type of one-
way machine. The language corresponding to a reset tape is

COPY ={ww: we{a b}*};

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 57
to a circular tape,
COPY ={(wc): k20, we{a, b}*};
and to a writing circular tape,

SHIFT={e} U {<{xy, X, >¢c{Xy, X30¢C...

Xy XmrypC:m21, x;€{a, b}*,

xi|= ... =|xa|}

where {x, y) is a parallel encoding of equal-length strings. The class of
languages accepted by nondeterministic finite-delay machines with a single
tape of one of the three types is exactly the semiAFL (family of languages
closed under nonerasing finite-state transductions) generated by the language
corresponding to the tape. If the time restriction is dropped one has the full
semiAFL (semiAFL closed under arbitrary homomorphism) generated by the
appropriate language. Allowing the machine to reinitialize the tape when it
reaches the right end gives rise to the AFL (semiAFL closed under Kleene*) or
full AFL (full semiAFL closed under Kleene*) generated by the corresponding
language.

In this paper we describe and study the families of languages accepted by
these various types of one-way nondeterministic machines in terms of the
semiAFL and AFL operations and the languages involved. For example, we
use .# (COPY) for the family of languages accepted by one-way nondetermi-
nistic machines with a single reset tape and finite delay. Section 2 reviews
the basic notation and definitions used.

The inclusions and noninclusions among these classes of languages are
examined in section 3. For machines with one reset tape, the finite-delay
restriction causes no loss of power (theorem 3. 1 a). An on-line nondeterminis-
tic Turing machine with one writing circular tape can accept any recursively
enumerable set (theorem 3.1b). Otherwise, no inclusions hold except as
implied by the definitions of the machines involved, and all such inclusions
are proper. A complete diagram (fig. 1) is given and established for proper
inclusions and equivalences among all these classes. For example, the
semiAFLs form a strict hierarchy as the type of storage is extended from a
reset tape to a circular tape to a writing circular tape, and, except as noted
above, the restriction to finite delay is a restriction in power and the extension
to reinitialization is an extension.

The action of a single-turn pushdown store can be described by the
language PAL= { wew® : we{a, b}*} consisting of center-marked palindro-
mes; that is, the class of linear context-free languages is the (full) semiAFL
generated by PAL U {e}. The language COPY is not a (linear) context-free

vol. 20, n° 1, 1986

58 S. A. GREIBACH, C. WRATHALL

F(SHIFT) H(*COPY)
7 8 9 10
M (SHIFT) “JU(*COPY) A (+COPY)
3 4 5 6

/

M (*CoPY) F(copY)

(COPY)

language, nor can PAL be accepted by a machine with a single-reset tape.
Section 4 contains a proof that PAL cannot be recognized either by a machine
with a circular tape or by a finite-delay machine with a single writing circular
tape.

2. PRELIMINARIES

This section contains a review of some basic definitions and notation.

For an alphabet (set of symbols) X, Z* denotes the free monoid generated
by X, with identity e (the empty word); £* =2*— {e}. The length of a string
x€X* is the number of occurrences of symbols in x and is denoted by |x|.
The reversal of x=a,...a,(a;€X)is x®=a,. ..a,. For strings w, x, y and z,
if w=xy then x is a prefix of w and y is a suffix of w, and if w=xyz then y
is a factor of w.

A language is a subset of £* for some finite alphabet X. In addition to
union (\U) and intersection (() of languages, we make use of the following
operations:

(a) concatenation: L, L,={xy: xeL,, yeL,};

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 59

(b) Kleene*: L*={x,...x,: n=0, each x;,eL};

(c¢) homomorphic image: h(L;)={h(x) : xe L, } and inverse homomorphic
image h ™' (L,)={yeZ*: h(y)eL,} where h: =* > A* is a (monoid) homo-
morphism, L, € Z* and L, € A*.

In (¢), if h(a)#e for each aeX then h is a nonerasing homomorphism. A
language L is bounded if there exist r=0 and strings wy, ..., w, such that
L < wk...w¥ (For a string w, w* is used to abbreviate { w }*.)

A semiAFL (full semiAFL) is a family of languages containing at least one
nonempty language and closed under the operations of intersection with
regular sets, union, inverse homomorphism and nonerasing homomorphism
(resp., arbitrary homomorphism). An AFL (full AFL) is a semiAFL (resp.,
full semiAFL) that is additionally closed under product of languages and
Kleene*. For a language L, .# (L) denotes the smallest ssmiAFL containing
L and .Z (L), the smallest full semiAFL containing L. Similarly, % (L) and
% (L) denote, respectively, the smallest AFL and full AFL containing L.

A homomorphism 4 : £* — A* is said to perform linear erasing on L, < *
if there is some constant k such that whenever |x| =k and xeL,, then
|x| £ k|h(x)|- Let .4“™(L) denote the smallest semiAFL containing L that
is also closed under “linear erasing”: if L, e #“N(L) and h performs linear
erasing on L,, then h(L,)e . #"™(L).

We define:
COPY = {ww: we{a, b}*}
and
COPY = {(wc) : k=20, we{a, b}*}.
The language SHIFT can be defined as follows. Let:
Zo={a, b} x{a, b}={la, a], [a, b), [b, a), [b, b]}.

For strings x=x,...x,and y=y,. ..y, with x, y,e{a, b} (so n=|x|=|yp|),
let <{x, y>=I[xy, y1] [X5 ¥5). . .[Xp .- Then SHIFT < (£, U {c})* is the
language

SHIFT={e} U {{wy, wydc{w,, wydc...c{ Wy, Wy rc:m=1,

wie{a b}* |w|=|wyl=" .. =|Wnss |}

For the homomorphism & : {a, b, ¢ }* = (£, U { ¢ })* determined by defining
h(a)=[a, a, h(b)=[b, b], h(c)=c, we have *COPY =h"'(SHIFT), so
*COPY e . (SHIFT). Note also that COPY is a member of .# (*COPY).

vol. 20, n° 1, 1986

60 S. A. GREIBACH, C. WRATHALL

We can now express the families of languages accepted by one-way nonde-
terministic machines with one working tape of the given kind in terms of the
semiAFL and AFL operators and the languages above:

A (COPY), reset tape, finite delay;

Z (COPY), reset tape, finite delay, with reinitialization;
M (COPY), reset tape;

% (COPY), reset tape, with reinitialization;

A (*COPY), circular tape, finite delay;

F (*COPY), circular tape, finite delay with reinitialization;
M (*COPY), circular tape;

% (*COPY), circular tape, with reinitialization;

4/ (SHIFT), writing circular tape, finite delay;

Z (SHIFT), writing circular tape, finite delay, with reinitialization;
A (SHIFT), writing circular tape;

% (SHIFT), writing circular tape, with reinitialization.

Further explanation of the relationship between one-way nondeterministic
machines and semiAFL and AFL generators and how to compute these
generators can be found in [6, 17].

3. NON-INCLUSION RESULTS

There are twelve apparent classes determined by the three generators
(COPY, *COPY, SHIFT) and the four operators (/#, %, M, F), but three
pairs of these classes are in fact equal. For machines with oné reset tape,
requiring operation with finite delay (i.e., “quasirealtime”) does not cause
any decrease in their power of acceptance, whether or not reinitialization of
the tape is allowed between resets. Also, machines with one writing circular
tape can perform any effective computation if sufficient time is allowed.

THEOREM 3. 1:

(1) # (COPY) =4 (COPY) and % (COPY)=% (COPY).

(2) 4 (SHIFT) =% (SHIFT) is the class of all recursively enumerable lan-
guages.

Proof: (1) A simple variation of the construction given in [7] for linear
context-free languages (i. e., for one-turn pushdown automata) can be used
to convert any machine with one reset tape to a nondeterministic machine,
also with one reset tape, that operates with finite delay, so that

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 61

M (COPY) < .4 (COPY). It follows from general principles [6, 8] that the
AFL generated by COPY must also be full: # (COPY) < % (COPY).

(2) Certainly each language in % (SHIFT) is recursively enumerable. On
the other hand, any recursively enumerable language is the set accepted by
some Turing machine with one-way input and a single one-way infinite tape.
Such a machine M can be simulated by a machine M’ that has a writing
circular tape: M’ begins its computations by guessing the amount of tape M
will need and then makes successive sweeps of that portion of its tape while
following a computation of M on the input. Thus any recursively enumerable
language can be accepted by a nondeterministic machine with one writing
circular tape that operates without time bound, and so is a member of
A (SHIFT). (In contrast, a deterministic machine with a circular tape can
use only linear space in any accepting computation.) []

Since it is clear that any member of &% (SHIFT) or & (*COPY) must be a
recursive set, the following corollary to theorem 3.1 is immediate.

COROLLARY 3.2:
& (SHIFT) = M (SHIFT) and % (*COPY) = M (SHIFT).

Consider now the remaining eight classes, lying strictly below .# (SHIFT).
The inclusions among them that follow from their definitions are shown in
figure 1. We will see that all the inclusions shown (by upward lines) are proper
and that each pair of classes with no obvious inclusion (e. g., .# (*COPY) and
& (COPY)) are in fact noncomparable classes.

The following technical lemma is useful for extending negative results, of
the form L¢.%, from semiAFLs to AFLs. '

LemMma 3.3 [2,8,11]: Suppose & is a semiAFL (full semiAFL) containing
{e} and L is a language in F (&) (resp., F (&)).

(1) If L, has the property that whenever AB = L,, either A or B is finite,
then L,e &.

(2) If Li,={0"x1": xeL,, n21} for some language L, = X" where
0,1¢%, then L,e¥. [

We now proceed to identify some limits on the power of machines with
the three types of tapes. Let 3-COPY={(uc)’:ue{a, b}*},
E={a"b":n21} and C,= {ucudvcv : u, ve{a, b}* }. Notice that 3-COPY
is a restriction of *COPY, E is a restriction of COPY and C, is similar
to (COPY)2. Theorems 3.4-3.6 show that 3-COPY ¢ % (COPY),
(cEd)* ¢ 4 (*COPY) and C, ¢ # (SHIFT). These facts will form the basis
for deriving complete information about non-inclusions among the classes.

vol. 20, n° 1, 1986

62 S. A. GREIBACH, C. WRATHALL

First, we show that a machine with one reset tape cannot check equality
of three strings, even if reinitializations of the tape are allowed and (by virtue
of theorem 3. 1) no time bound is imposed.

THEOREM 3.4: The language 3-COPY = {(uc)®: ue{a, b}*} does not
belong to & (COPY).

Proof: The language 3-COPY has the property used in lemma 3.3(1): if
AB < 3-COPY then either A or B is finite (and in fact must consist of at
most one element). It is straightforward to derive an intercalation theorem
for .# (COPY) from which it will follow that 3-COPY ¢ .# (COPY); hence
from lemma 3.3, 3-COPY ¢4 (# (COPY))=% (COPY). More general
versions of this fact have been given by Ibarra ([16] theorem 2.3) and by
Ginsburg and Spanier ([14], p. 387). O

" Machines with one nonwriting circular tape that operate without time
bound have more power than might appear from their definition. The class
A (*COPY), for example, is closed under concatenation of languages, and
also under the operation “chevron” of lemma 3. 3(2), which takes a language
L% to {0"x1": xeL,n=1} when 0, 1¢X. Simple constructions using
machines with two-track work tapes can be used to show these closure
properties. That .# (*COPY) is not closed under Kleene* is a consequence
of the following theorem.

THEOREM 3.5: Let E={a"b": n=1}. Then (c Ed)* ¢ .4 (*COPY).

Proof: Suppose (cEd)* is accepted by a nondeterministic machine M with
one nonwriting circular tape that operates without time bound. The “blocks”
of a word in (cEd)* are its subwords of the form ca"b"d. M operates by
sweeping its worktape while reading the symbols in a block, and the proof
focuses on the state of M at the start and end of such sweeps during accepting
computations. We may assume that at least one input symbol is read during
each sweep. Call the sweep in which the first b of a block is read, the “center
sweep” for that block. '

We note first that not too many resets can be made while reading one
block (claim 1); otherwise, the finite control of M would allow the sweeps of
the worktape to be repeated, contradicting the fact that E contains no infinite
regular set. Also, at least one reset must be made while reading a sufficiently
long block (claim 2), or else a dlfferent worktape could be used to allow M
to accept a block not in E.

In order to find a contradiction, we consider an accepting computation on
a word with a large number of long blocks. For such a word, there must be
two blocks for which the sweeps of the worktape do not overlap such that

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 63

exactly the same input is read from the blocks in all but the center sweeps.
However, there is a linear constraint (claim 3) relating the total length of a
block and the input read outside the center sweep, and we can force this to
be violated by arranging for one block to be much longer than the other.

Let T be the tape alphabet of M and let k, be the size of its state set. For
yel'™ let S(y) be the set of pairs of states (p, g) such that (for some input)
M can completely scan y on its worktape, beginning in state p and ending in
state g. Define a relation =on I'* by: y, =y, if and only if S(y,)=S (y,).
Clearly = is a right-invariant equivalence relation of finite index, say k,.

Let ky=ko+4, ky=1+k; (1+ko)*2 and k,=2(1+ko)2* .

If x = xy then for any computation C of M given work tape xyz and for
any n=0 there is a computation C’ of M given work tape x)"z such that C’
contains the same number of sweeps of the work tape as C and each sweep
begins and ends in the same state in C as it does in C’. In particular, if C is
an accepting computation then C’ is also accepting.

CrLamM 1: In any accepting computation on a word w, M makes at most
k,—1 resets while reading each block of w.

Proof: Suppose that during an accepting computation with work tape y,
M makes r resets while reading a block ca"b"d. Since some input must be
read during each sweep of the work tape, M must then have made at least
r—3 full sweeps of y while only a’s and b’s are being read. If r=k, then
r—3=ky+1 so two of these sweeps begin in the same state, say the j-th and
k-th sweeps, k>j. That part of the input, v#e, read from the start of the
j-th sweep up to the start of the k-th sweep can then be deleted or repeated
without affecting the computation during the other blocks. Hence a" b" = xvy,
v#e, and for all m >0, M accepts a word with a block cxv™ yd, so xv*y < E,
which is impossible.

CLamM 2: In any accepting computation on a word w, M makes at least one
reset while reading each block ca"b"d of w for which n>kyk,.

Proof: Suppose that there is an accepting computation with work tape y
in which no reset is made while a block ca"b"d is read. Since the index
of = is k,; and M has k,, states, if n>kq k, then there must be a decomposition
Y=Y, Y, V3 such that (i) y, = y, y, and (ii) during computation on this block
M reads input a®, s> 0, while scanning y, and is in the same state when it
enters y, and when it enters y;. But then y, y; =y,y,y,; and there is an
accepting computation of M with work tape y, y; on an input that contains
{using (ii)] a subword ca”" " *b"d¢cEd.

vol. 20, n° 1, 1986

64 S. A. GREIBACH, C. WRATHALL

CLaM 3: Suppose in an accepting computation M reads a"*b" " during the
center sweep of its work tape for a block ca"b"d. Then s=[(n—t)/k,].

Proof: Consider an accepting computation with work tape y in which
ca"b"d is the i—th block of the input and during the center sweep for the
i—th block, M reads a" *b""' (and possibly ¢ or d). Notice that s is the
number of a’s read from the i—th block before the center sweep. The claim
is clearly true if n—t <k, so let m=|(n—t)/k;] and assume m=1.

For a prefix y, of y, let y(y,) be the sequence of states (from this accepting

computation) in which M leaves y, during its sweeps of y while reading the
i—th block (i.e., y(y,) is the i—th block crossing sequence at the end of y,).

The length of each such sequence is at most k, since (from claim 1) fewer
than k, resets are made while the i—th block is being read. Define an
equivalence relation E; on prefixes of y by: y, E;y; iff y,=y; and
¥(¥1)=y (7). The index of E; is then at most k,; (1 +ko)2=k;—1.

Divide the n—tb’s read during the center sweep for the i—th block into
sections of length m, the last section containing at most mb’s. To each of
the first k5 sections (k; <(n—t)/m) associate that prefix y* of y such that
y=)'y"” and M’s head is on the first symbol of y’* as it begins to read that
section. Since the index of E; is less than k;, two of these associated prefixes
of y must be equivalent under E; (possibly they are also equal). Therefore

there is a decomposition y=y, y, y; such that y, =y, y, and y(y,)=y (», y>),

and b*™, k=1, is read while y, is scanned during the center sweep for the
i—th block. It follows that there is an accepting computation of M with
work tape y,y,y,y; (since y;=y,y,) in which, during the sweeps of the
work tape corresponding to those for the i—th block, input ca*b’d is read
with u<n+s and v=n+km. For the bounds on u and v, we observe that (1)
while reading a’s from the i—th block, M scans a prefix of y, during the
center sweep and the second y, need only cause it to read double the number
of a’s read up to that point; and (2) since y(y,)=y(y,»,), M can repeat,
while scanning the second y, in the center sweep, the steps that read b*™. Thus,
M accepts a word with a block ca*b’d, so u=v and therefore n+km <n+s, or
s=km=m, as desired.

Now consider an accepting computation of M on a word

w=ca" b"d...cab"d

for which r=k,, n;>kok, and n,;,, =(ks+1)n,;_, +k;. Since n, ;>kyk,,
from claim 2 at least one reset is made while each even-numbered block is
read, so the sweeps of the work tape while blocks 2i—1 and 2i+1 are read

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 65

do not overlap. For 1<i<[r/2], let a,,;_, be the sequence of states in which
M begins the sweeps of its work tape during which symbols from block 2i—1
are read, followed by the state in which the last such sweep is ended. From
claim 1, each such sequence has length at most k,+1. Since
[r/210 =2(1/2) k,= (1 +ky)*2*!, two of these sequences must be identical, say
those for the j-th and k-th blocks, where j, k are odd and j<k—2.

Since o;=a,, for each i, the i—th sweep in which symbols of block j are
read and the i—th sweep in which symbols of block k are read must begin
in the same state and lead to the same state for beginning the next sweep.
Hence the i—th sweep for block j can be substituted for the i—th sweep for
block k and an accepting computation will result. If the i —th sweep for one
block reads input in ca*, a®, b* or b*d then exactly the same input must be
read in the i—th sweep for the other; otherwise substitution of one sweep
for the other will cause M to accept an input with a block not in ¢ Ed. For
the same reason, if the i—th sweep for block j reads input in ca* b*, a* b*
or a* b* d then the corresponding sweep for block k must read input of the
same form. (Input in ca™ b* d is not possible since n,> kg k,.) Therefore there
exist s, t <n; such that for both blocks j and k, M reads sa’s up to the center
sweep and tb’s after the center sweep, and (in particular) reads g™ *b"~*
during the center sweep for the k-th block. From claim 3, then, s=
l(m—t)/ks] so nj2|(m—t)/k;). But since t<n; and kzj+2, n—t=
me—n;Zn; . ,—n; and n;,,—n;Zky(n;+1) so |(m,—1t)/k;|=n;+1, a contra-
diction. [

The following lemma will be used in showing that:

C,={ucudvcv : u, ve{a, b)*}

cannot be accepted by any finite-delay machine with one writing circular
tape. It also reveals that, although M (*COPY) is closed under concatenation,
A (*COPY) is not.

LEMMA 3.6: Suppose A,, A, By, B, X%, ¢¢%, and Le.# (*COPY)
satisfies B, ¢ B, € L < A, ¢ A,. Then either (i) there is a regular set R, such
that B, € R, & A,, or (ii) there is a regular set R, such that B, € R, € A,.
Hence if L=A, ¢ A, then at least one of A, A, is a regular set.

Proof: Suppose L is accepted by a nondeterministic finite-delay machine M
with one nonwriting circular tape. Let k be such that M takes at most km
steps to read m =1 input symbols.

For t2=1 define L,={u,eZ™: there exists some u, such that M accepts
u, ¢u, given a work tape of length at most ¢ }. Notice that L, = A4, and each
L, is a regular set.

vol. 20, n° 1, 1986

66 S. A. GREIBACH, C. WRATHALL

Define R,={u,eX™: there exists some u, such that M accepts u, ¢u,
without making a reset while reading u, }, so R, = 4,. Also, R, is a regular
set: if u,eR, then there are strings u, and y such that M accepts u, ¢u,
with work tape y in a computation in which no reset is made while u, is
being read and at most g resets are made while u, is being read, where g is
the size of the state set of M. Therefore there is a finite-state machine that,
given u,, can (by keeping track of a g-tuple of states of M) guess successive
symbols of a string y and test whether there is some u, such that M accepts
u, ¢u, given y without making a reset while reading u,.

Now, if B, € R, then (ii) is true since R, € 4, is a regular set. If B, £ R,
then let v be some string in B, —R,, and let 1=k |v|. In this case, B; < L, so
since L, & A, is regular, (i) is true. To see that B, < L, consider any string
ueB,. Then u ¢veL so there is an accepting computation of M on u ¢v
given some work tape y, but v¢ R, so M makes at least one reset while
reading v. Since M takes at most 1=k |v| steps to read v, it follows that
|¥| <7 thus M accepts u ¢v given a work tape of length at most 1, so
uelL. [

TueoreM 3.7: Let C,={ucu:uef{a, b}*}, C,=C,dC, and
V,={0"wl1":n21, weC,}. Then (i) C,¢#(SHIFT) and (ii)
V,¢ % (SHIFT).

Proof: (i) Suppose otherwise, that C, is accepted by a finite-delay machine
M with one writing circular tape. Let o be such that M takes at most an
steps to read n=1 input symbols. Let B be such that for each m=1 there are
less than 28 ™ tape configurations of M with a work tape of length at most
m (where a tape configuration consists of a state, a work-tape string and a
position on the work tape).

For u, ve{a, b}"*, let w(u, v)=ucudvcve C, and let m (u, v) be the length
of a shortest work tape used by M in an accepting computation on w (i, v).

Some inputs must require long worktapes, in order for M to distinguish
among them. In particular, there are infinite sets U and V such that for ue U
and veV, m(u, v) grows linearly with |w(u, v) | With a long worktape, the
number of resets M makes cannot be too large (because the time is bounded),
and we are able to conclude that a fixed number of resets is used to accept
strings w(u, v) for ueU, veV. However, lemma 3.6 then implies that C,
contains an infinite regular set, a contradiction.

For strings u, #u,, M cannot reach to same tape configuration (from its
initial configuration) after reading u, and reading u,, or else M would accept
a string not in L. There are 2" strings of length n but less than 2f®/®=2"
tape configurations of M with a worktape of length at most n/f; it follows
that for each n=1, there is a string u(n) of length n such that for every

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 67

ve{a, b}*, m(u(n), v)>n/p. Similarly, for each n=1 there is a string v (n)
of length n such that for every ue{a, b}*, m(u, v(n))>n/B. Let
U={um:nz1}and V= {v(n): n=1}; then ueU and ve V imply:

m (u, v)>(1/B) max {|u|, |v|} = (1/7B)|w(u, v) |
Let Cy={ucu:ueU} and C,={vcv: veV}.

Let S be the set of strings in C, that are accepted by M in a computation
with fewer than 7of resets. A machine that accepts S with a nonwriting
circular tape can be constructed from M, so S e .# (*COPY). Suppose ueU
and veV and consider any accepting computation of M on w(u, v). If the
number of resets made is ¢, then the number of steps is bounded below
by (t+1)m (4, v)>(t+1)|w(u, v)|/7B and bounded above by o|w(u, v)| so
t+1<7aP; hence S includes the set {w(u, v):ueU, veV}. Thus
CydC,cScC,dC, with Cy and C, infinite, so (from lemma 3.6) C,
must contain an infinite regular set.

(i) From lemma 3.3, if V,e% (SHIFT)=% (# (SHIFT)) then V,, and
hence C,, would be in # (SHIFT), contradicting (i). [

From corollary 3.2 and theorems 3. 4-3. 6 and the properties of the classes,
the following conclusions can be drawn:

(a) 3-COPY e . (*COPY)-# (COPY);

(b) (cEd)* € F (COPY)-.4 (*COPY);

(¢) SHIFT e . (SHIFT)-% (*COPY);

(d) C,e(A (*COPY) N\ & (COPY))-.# (SHIFT);

(€) V,e . (*COPY)-% (SHIFT).

The ten inclusions shown in figure 1 are therefore all proper: numbers (1)
and (6) because of (a); (2), (5) and (9) from (b); (3) and (8) from (c); (4) and
(7) from (d); and (10) from (e). The three upper rows of the diagram contain
classes that are not comparable: from (c) and (e), & (SHIFT) and & (*COPY)
are incomparable; from (b)-(e), the three classes .# (SHIFT), .# (*COPY)
and £ (*COPY) are mutually incomparable; and from (a) and (b),
A (*COPY) and & (COPY) are incomparable. Finally, & (COPY) is not
comparable to either .#(*COPY) or .# (SHIFT), from (a), and (b) and
(d); # (SHIFT) and % (*COPY) are incomparable, from (c) and (d); and
& (SHIFT) and .# (*COPY) are incomparable, from (c) and (e). Thus, no
inclusions hold among the classes except as shown in figure 1, and each of
the inclusions shown is proper.

It is not difficult to show that the languages C, and V, belong to
AN (*COPY), i.e., they can be defined from *COPY using lincar-erasing

vol. 20, n° 1, 1986

68 S. A. GREIBACH, C. WRATHALL

homomorphisms (and the semiAFL operations). Therefore:

M (SHIFT) < 4" (SHIFT) < . (SHIFT),
and /4 (*COPY) ¢ 4™ (*COPY); similar statements hold for the AFLs
determined by the languages. Whether the inclusion between .#™ (*COPY)
and .# (*COPY) is proper remains open. Since, from theorem 1,
A (COPY) = .4 (COPY), certainly:

4. PALINDROMES

This section is devoted to showing that the set of palindromes
PAL={wcw® : we{a, b}*} cannot be accepted either by a machine with
one non-writing circular tape or by a finite-delay machine with one writing
circular tape, even if reinitialization of the tape is allowed. The class .# (PAL)
of linear context-free languages is therefore incomparable to the classes
between .# (COPY) and & (SHIFT). A technical result on bounded sets and
noncommuting words leads to a proof that no unbounded set of palindromes
can belong to the closure of the regular sets under homomorphic duplication.
This fact, in turn, is the basis for the proof that PAL does not belong to
&% (SHIFT).

LeMMA 4. 1: Consider an alphabet T and strings u, ve L*.

(1) [1, 12). If {u, v}* is not freely generated by u and v then there exists
reX* such that u, ver*.

(2) [5). If uw#vu and W < £* has the property that any string in {u, v}* is
a factor of some string in W, then W is an unbounded set.

LemMMA 4.2: Suppose s, teX* are distinct strings of the same length and
B < X* is a bounded set. There exist x, y, ©, 1€{s, t}* such that

(®) xy#yx,
and

(ii) for any z, Z7e B and w, w e{x, y}* if zowt is a prefix of 2 cw’ 1 then
w=w'"

Proof: Let n=|s|=|t|=1. Since s#t also stts so from lemma 4.1(2)
there is a string @€ {s, t }* such that ¢ is not a factor of any string in B. Let
m=max {|¢|, 4} and define:

x=tsst

y=stts

c=@sts

T=1".

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 69

Note that o is not a factor of any string in B, and |xt|=|yt|>|c].

Since s#t and they have the same length, xy #yx so (i) holds and {x, y }*
is freely generated by x and y. For (ii), suppose that zowtv=z ow’'1 for
some v, where z, z’e B and w, w e{x, y}*; we must show that w=w’. Since
o is not a factor of z/, | zo|>|z’| and hence:

|wt|=|zowtv|—

Zo|=|v|+(|zo|-|zZD+(wr|—|c])>]|v]

It is convenient to distinguish five cases for |v|. In all but the first case
(v=e), a contradiction will be found.

(1) If v=e then zow=2z" o w’ with (say) | w= | w I Since x, y freely generate
{x, y}*, w=ww for some we{x, y}* and zo=2z"ow. If w+#e then it ends
with x or with y; however, the suffix of ¢ of length 37 is sts, which is not a
suffix of x or y, so in fact w=e and w=w".

(2) If 0<|v|<n then v is a suffix of T=¢", hence of t, so write t=uv,
u#e. Then zowtm=zow " 'u=zcow " ?u(vu) so t=vu=uv and
zowv=z ow'. Applying lemma 4. 1(1) to the equation t=uv=vu, there is a
primitive string (i. €., one that is not a proper power of another string) r such
that ¢, u, ver™. Consider now the possible final segments (x or y) of w and
w’ -in each case we find that s and ¢ must be equal.

(2.1) w=w; x, w=wx: the suffix of zocwv=zow, tsstv of length 4n is
usstv, which must be equal to x, the suffix of z’ow’ of the same length.
Cancelling u from the left and t=uv from the right we have ssv=wvss. Since v
is a power of the primitive string r, this implies [using lemma 4.1(1)] that
ser® so (since |s|=t|), s=t.

(2.2) w=w, x, w'=w]y: the suffix of zowv of length n is uv=t and the
suffix of z’ o w’ of length nis s, so s=t.

(2.3) w=w; y, w'=w] x: taking the suffixes of length 2r and cancelling v
from the right, we have us=su. Since uer™ and r is primitive, s is also a
power of r [by lemma 4.1(1)] so s=t.

(2.4) w=w, y, w'=w)} y: taking the suffixes of length n+|v
again follows that s=t.

, su=wvs and it

(3) If n<|v| <2n, then, since zowtv=zcw t" 2¢2, v=t, t where t, is a
suffix of ¢ say t=t,t;. Cancelling v from the right, we have
zoWtm=z' oW ™ 2, =2 G W t,(t; t,)"? $O t=t,t,=t,1, and
zowtt; =z ow’. If w’ ends with y then the suffix of length n of z"’ow’ is s,
but the suffix of length n of zowtt, is t,¢t;=t, so s=¢. If w'=w]x and
w=w, x then zow, tssttt, =z o w] tsst so (taking the suffixes of iength 2n
and cancelling ¢ from the right) ¢,¢t, =s and s=¢. If w'=wjx and w=w, y

vol. 20, n° 1, 1986

70 S. A. GREIBACH, C. WRATHALL

then (taking the suffixes of length 3n) t,stt; =sst so t,st;=ss. From this
equation we see that t, is a prefix of s and ¢, is a suffix of s, so since
, we have s=t,t,=t.

(4) If 2n<|v|<mn=|t| then (from zowtv=z'ocwt") for some j,
0<j<m—3, v=t,/*? where t=t,t;. Write t=t5t¢ with |t5|=|t;]. Cancel-
ling the suffixes of length mn, we have zowt/*2t,=2z"ow’. The suffix of w’
of length 2 n is therefore (4 t5)?, but w’ ends with st or ts so s=t=t4ts.

(5) If |v| 2| | then t is a suffix of v, say v=0, 7. As noted above, |v|<|w’'t|
so v, is a suffix of w’: write w’=wuv, with we{x, y }* and u a prefix of x or
of y, so that zowt=2z o wu. Since , u is thus a suffix of
t=1t" The overlap this implies between x or y and t* forces s and t to be
equal. If |u|=2n then u=t,t'*? where 0<j<1 and t=tgt,, so the prefix of
u of length 2n is (t,tg)% Since u is a prefix of x=tsst or of y=stts, it
follows that s=t=t,ts. If n<|u|<2n then u=tyt where t=t,,t, so (from
zowt=z'cwu) zowt™ %t,,=2"ow. Taking the suffixes of length 2n from
each side, (tgt,,)? is equal to either st or ts, so s=t=t, Lyor Finally, if |u|<n
then t =uu for some v and zowt™ ‘u=z"ocw, so s=t=uu. []

Let Zpup denote the class of languages formed by homomorphic duplica-
tions of regular sets, that is, languages of the form {h, (x)...h(x): xeR}
for some k>0, homomorphisms h,, ..., h, and regular set R. The class
ZLpup 1s equal to the class of equal matrix languages [13], and to the union
of the full semiAFLS generated by the languages:

k-COPY ={(wc)*: we{a, b}*}, k=0.

LeMMA 4.3: Any subset of PAL that belongs to ¥ nyp is bounded.

Proof: Suppose L, belongs to #,, and is a subset of PAL. Let
L,={w: wewrheL,}. It will be shown that if L, is unbounded then there is
an a-transducer M such that PAL=M(L,). But £ is closed under a-
transductions, so this contradicts the fact that PAL does not belong to
Zpup [10] and hence L, and L, are bounded.

Since Lo€ L pyp, also L, € Lpyp so write Ly ={h,(z)...hy(z) : zeR} for
a regular set R and homomorphisms h,, ..., hy. If L, is unbounded then so
is some #;(R) so let P=min{i: h;(R) is unbounded }.

Since hp(R) is unbounded, there exist strings ug, o, to, v; such that ug { s,,
to }* v, € R and hp(sy), hp(ty) do not commute [3]. Let u; =uq S Ly, S =50 tos
ty=tS0, S=hp(s,) and t=hp(t,). Then hp(u,)#e, |s|=|t| and s#t. Let
Ri=u,{s, t;}7v, & R Notice that if eeh;(R,) then h;(R;)={e}. The
bounded set hy (R,)...hp_; (R){hp(u,)} is therefore contained in a set B
of the form B=z{ ...z} for r=1 and nonempty strings z,, . . ., z,. Applying

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 71

lemma 2 to s, t and B, we obtain strings x, y, o, 1€{s, t}" ={hp(s)),
hp(t;) }* with the following properties:

(a) for any we{x, y}* there is a unique decomposition w=w, .. .w, with
n=1and we{x, y};

(b) for any z, z’eB, any w, we{x, y}" and any o, o’€{a, b}* if
zowta=z ow 1o’ then w=w’;
and

(c) for any we{x, y}* there exist ze B and we{a, b}* such that
zowiwel,.

The a-transducer M that produces PAL from L, operates as follows. Given
a string wew®, M looks for and erases a prefix of w in z{ ...z’ followed by
the marking string o. It then decodes a string in {x, y }*, putting out a for
x and b for y. When the other marking string t is encountered, it is erased
along with any other letters before the center c¢. This process is reversed for
wXR, resulting in output of the form ucu®.

Let Q={po, - - > Pr» 90> d1> 92> G2 41> do> Bp» - - -» Po} and let H be the
set of transitions on Q given by:
H={(pi-1, 2 & p), (Pi» 2 & p) : 1Si<r}
U{@. o, & 90), (40, X, @, 41), (4o, ¥, b, 41),
(91> %> @, 91), (41> ¥, by 41), (415 T € 42),
(2 a, & q2), (92, b, € q3), (42, ¢, ¢, §y),
(A2 a, €, 43), (2, b, €, G), (G2, T5, €, G4y),
(@1 X%, a, 41), 1> Y55 b, 41), (@1 X5 @, o),
(41> Y&, b, 4o, (do> 0%, €, B,) }
U{®. 2%, e,), (Bir 21, e,p;_y): 1<isr}.

Let M be the a-transducer with state set Q, transitions H, initial state p, and
single accepting state j,. M can only reach its accepting state on input of
the form o, caf with o, =zco w1, and a, =2z cw 1B, where z, z’€ B and w,
we{x, y}*. The output produced from such an input is u, cuX where, for
f(@)=x and f(b)=y, w=f (u,) and w'=f (u,). By property (a), u, and u,
are uniquely determined by w and w’, respectively. Using property (c), it
follows easily that PAL € M (Ly). On the other hand, if a; =o, then [by
property (b)] w=w’ and so u, =u,; hence M (L,) < PAL. []

The following property of .4 (*COPY) allows us (since PAL has no infinite
regular subset) to conclude from the previous lemma that no unbounded
subset of PAL can be in .# (*COPY).

vol. 20, n° 1, 1986

72 S. A. GREIBACH, C. WRATHALL

LEMMA 4.4: If L is a language in 4 (*COPY) and L has no infinite regular
subset then L is in £ pyp-

Proof: Let L be a language in .#Z (*COPY) and let M be a nondeterministic
machine with one nonwriting circular tape that accepts L. We may assume
that M never makes a complete sweep of its work tape without reading input.
Suppose M has k states. If for every x in L, M accepts x with fewer than k
resets then M can be converted to a machine limited to k resets and so
L=L (M) is in the full semiAFL generated by k-COPY. Otherwise let x be
some string such that M makes at least k resets in an accepting computation
on x and consider the sequence of states reached by M just before the resets.
Two of the states in this sequence must be the same, so x can be written as
uvy for some strings u, v, y, and uv* y is contained in L. The string v cannot
be empty since M reads at least one input symbol between resets, so L
contains an infinite regular set. []

THEOREM 4. 5: Any subset of PAL that belongs to ./ (*COPY) is bounded.
CoroOLLARY: PAL¢.% (*COPY).
THEOREM 4.6: PAL does not belong to & (SHIFT).

Proof: 1t is sufficient to show that PAL ¢ .# (SHIFT): by virtue of lemma
3.1(1), if PAL € % (SHIFT) then PAL e .# (SHIFT).

Suppose that PAL is accepted by a machine M with one writing circular
tape that accepts in linear time. There is an unbounded subset of L (M) for
which the length of the worktape used in accepting grows at least linearly
and so (since the time is bounded) the number of resets made cannot be
large; but M restricted to a fixed number of resets can be simulated without
writing on the worktape and hence accepts (by theorem 4.5) a bounded
language.

Let o, B be constants such that each string in PAL of length n is accepted
by M in some computation of at most an steps, and M has fewer than 2P ™
tape configurations with a worktape of length at most m. For ue{a, b}* let
m(u) be the length of a shortest worktape used by M in an accepting
computation on ucu® of at most o(2|u|+1) steps.

For nx1, let Um)={ue{a, b} : |u|=n+1, m@u)>n/B}, and Ilet
W={ucu® : ue U(n), n=1}. Then the cardinality of U (n) is greater than 2™
otherwise there would be strings u; #u, (of length n+1) such that during
accepting computations, M reached the same tape configuration (with a
worktape of length at most n/B) after reading u, and after reading u,. It
follows that for each n>2, there are more than 2"~ ! strings in W of length
2n+1, and therefore W cannot be a bounded set.

Informatique théorique et Applications/Theoretical Informatics and A pplications

SINGLE-TAPE RESET MACHINES 73

Let L = PAL be the set of strings accepted by M in computations with at
most 5 af-2 resets, so Le .4 (*COPY). From theorem 4. 5, then, L is bounded
and so W& L; let n21 and ue U(n) be such that ucu®¢ L. Since ucu®¢ L,
M makes at least 5Saff sweeps of its worktape in any accepting computation
on ucu®, so ajucu®|=(5aB)m(u), or, since |u|=n+1, 2n+3=(5B)m (u).
Since ue U(n), m (u)>n/P so 2n+3>5n, a contradiction. []

ACKNOWLEDGMENTS

The authors wish to thank J. Berstel for his help in proving lemma 4. 2.

APPENDIX

For completeness, we present here a proof, based on the work of Klingens-
tein [10] that PAL does not belong to #pp. This fact will follow from the
theorem below on the structure of the Parikh images of bounded languages
in Zpup- (Basic information on these notions may be found in [14].)

NOTATION:

(1) For strings x, y : x ! y if x is a subsequence of y.

(2) If h=(hy, ..., h) is a sequence of homomorphisms and x is a string
then h(x)=h, (x)...h(x). Let &, denote the class of languages of the form
{(hy, ..., h)(x) : xeR} where R is a regular set.

(3) For p=(py, ..., poeN, Ap)=#{i: 1Zi<t, p;#0} is the number of
nonzero entries in p, and for 1 <j <A (p), [p, j] is the index of the j-th nonzero
entry in p. For ¢eN' and P a finite subset of N
L(c, P)={c+ Y k,.p:k,20} is the linear set with constant ¢ and set of

peP

periods P.

DerFinNiTION: A set P = N’ is s-interlaced if A(p)<s for each pe P and there
exist a linear order < on P and for each peP an increasing function

il .., M)} > {1, ..., s} satisfying for all p, geP and all i, j:if
either f, (i) <f, () or p<q and f, (i) =1, (j) then [p, i} <[q, j].
THEOREM: Let ay, ..., a, be distinct letters and let : {ay, ..., a,}* > N*

be the function taking a; to the vector with 1 in the i-th position and zeros
elsewhere. If L < a¥...a¥ and Le R, then (L) is equal to a finite union of
linear sets, each with an s-interlaced set of periods.

Proof: Fix a sequence of homomorphisms h=(h, ..., h), each
h,:2* > {ay, ..., a}* Let ® be the following property of subsets of

vol. 20, n° 1, 1986

74 S. A. GREIBACH, C. WRATHALL

T*: ®(U)<>there exist n=0; ¢, ..., c,eN; Py, ..., P, N% an order
< that is linear on each P; and, for each pe U P;, an increasing function f,:

!

{1, ...,2@}—>{1,...,s} and a string w,eU; such that
Yy(U)= U L(c; P; and for all i:

i=1

(a) for all p, ge P; and all j, k if either f,(j) < f, (k) or p<q and f, ()= f, (k)
then [p, j1<I[g, k]; and

(b) for all pe P; and all j, 1<jSA(p), ag, 5 by (W)

Note that if ® (U) holds, then (in particular) yA(U) is a finite union of

linear sets L (c;, P;), each P; s-interlaced [by (a)]. It therefore suffices to show
that ®(R) holds whenever R is a regular subset of X* and h(R)=af...af.
This is proved by induction on the structure of R. If R is a finite set then
{e, -y ¢y }=Vh(R) and P, =... =P, = serve to establish ®(R). If R is
equal to R;\UR,, R;R, or Rf and h(R) caf...af then also h(R,),
h(R,) € a¥...a}. Suppose, then that ®(R,) and ®(R,) hold—we will see
that ®(R) does as well. Let ¢y, ...,c, P, ..., P, <, and functions f, and
strings w, (pe U Py verify ®(R,), and similarly d;, ..., d,, @y, -5 Qs
<, and f, w, (pe U Q) for ®(R,).
If R=R, UR, then:

VHR)=WhRYUWE (R)= < U LG P,~)> u(

i=1

~ L(dj’ Q_]))

J

and this representation serves for @ (R), with < = < U <, and the functions
S, and strings w, within each P, and Q;.

If R=R, R, then Yh(R)=VYh(R,)+VYh(R,)=\UL(c;+d;, P;\UQ)). Let
i,j
<=<,U<,U{ 9 :peUP, qeUQ;} and associate f, and w, with
i j

pe(UPY)U(UQ). For ®(R), it is enough to show that each P;\UQ;
i J

satisfies (a) and (b). Since c;e L (c;, P;) € Vh(R,), let x, € R, be a string such
that yh(x,)=c; similarly let x, € R, be such that d;=Vyh(x,). Now (a) is
satisfied (by the induction hypothesis) if p, ge P; or p, geQ;. For pe P, and
q€Q;, note that w,w,e R, R,=R. If f, () < f, (k) then:

agp, 1 Agg, 10 | by, (Wp)bs g (W) lh(w,w,)eat. . .aF

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 75

so [p, 1=Z]q, k]. Iffq(l)<fp (k) then again ay, ;q;,, 4 }h(wp wp) so [g, [1=[p, k].
Also, p<gq (but g « p) and if f, ()= f, (k)= f then

Aip, 114 (g.k)]hf (wp wq) th(“fp Wq)

so [p, [[<[q, k]. For (b), if pe P; then w,x,€R and if p € Q; then x; w,eR;
in either case the condition on location of letters remains true.

Finally, suppose R=R¥, h(R) S af ... af. In this case there are indices
1<i(1)<... Zi(s)<tsuchthat h;(R,) € af{;. (This follows from the observa-
tions that if q, [h;(x) and a, | h;(y) then a,a,q, | hh (xyx), and if a, h;(x)
and g, | h;,;(y) then g, a, | h(xy).) For ce{c;, ..., c,} let w.eR, be a string
such that yh(w,)=c. Since h(w)eay,...af, A()<s. Let f:
{1, ..., x()} = {1, ..., s} be the increasing function defined by f, (j)=min
{i:a, ohw)} Let Q={c,, ..., c,} UUP. For J= {1, ..., n}, let

d;= Y cjand Q,={¢;: jeJ} U U Pj, with d, the zero vector and Q,=(.
jed jelJ

Then Yh(R)= \U L (d;, Q,) and this representation serves for ®(R), with any
J

order on Q and functions f, and strings w,, ge Q. Either by the definition
above or because ®(R)) holds, for each qgeQ,
fo{lL, ..., M@} - {1, ..., s} is an increasing function and w, is a string
in R, < R such that ay y lhy g (w,), 1<j<A(g), so that (b) is satisfied. For

p, 9€Q, if f,(D=f, (k) then
A1p, 1 %q, 1 'hfp oW By, (Wy) th(w,w,)
and w, w,€R? = R so [p, []<[g, k]; hence also (a) is satisfied. [

CororrarY: PAL ¢ Zpup.
Proof: If PALe€ ¥pyp then for some s=2, PALe %, Since %, is a full
semiAFL, also:

L={a'Ma3?®. . .a""a"® ... a3V :n@@=0}

belongs to #,, where t=s2°"2. From the theorem, ¥ (L)= \U L(c;, P;) where
i=1

each P, is s-interlaced, say by way of an order < and functions

£l .., AMp)} = {1, ..., s}. From the form of strings in L we see that

each P, € V(L) and therefore for pe P, A (p) is even and

b, 1+, AP)+1—j]1=2t+1, 1<j=M(p).
vol. 20, n° 1, 1986

76 S. A. GREIBACH, C. WRATHALL

We may assume that A (p) >0.

For each i, let Q; ; U ... \UQ,; , be the partition of P; induced by the
equivalence relation: p=gq if f,=f,. There are 2°"!'—1 increasing functions
from sets {1, ...,21}, 1<I<SLs/24, to {1, ...,s}, so m(H<2"'—1.
Also, all the vectors in Q; ; have the same set of nonzero coordinates: suppose
fo=/, and (say) p<gq. Then for all [, f,()= f, (D) so [p,1=<[g, 1], and

LA@+1-D=fA(@+1-D)
so [p, A(p)+1—=101=Z[q, A(g)+1—1] and therefore

[, 1=2t+1—[p, A(P)+1-1221t+1—[g, AMg)+1—-1=lq, I].
Now, let o be larger than any entry in the constants c¢,, ..., ¢, and
consider the vector g with all entries equal to «. Since ge{ (L) there is some
m (i)
i such that ge L (c;, Py, so there exist k,e N such that g=c;,+ > (Y, k,p).
Jj=1 peQ;;j
From the remark above, each inner sum contributes nonzero entries to a set
of at most s coordinates of g—c;. Since all the entires in g—c; are nonzero,
at least 2t/s of the inner sums must be nonzero and so
m@=2t/s=2"'>m@@. 0O

REFERENCES

1. E. K. BLum, A Note on Free Subsemigroups with Two Generators, Bull. Amer.
Math. Soc., Vol. 71, 1965, pp. 678-679.
. L. BoassoN and M. NivaT, Sur diverses familles de langages fermés par transduction
rationnelle, Acta Inf., Vol. 2, 1973, pp. 180-188.
. R. Book, S. GremacH and C. WrATHALL, Reset Machines, J. Comput. Syst. Sc.,
Vol. 19, 1979, pp. 256-276.
. S. GinsBurG and E. H. Seanier, Bounded Regular Sets, Proc. Amer. Math. Soc.,
Vol. 17, 1966, pp. 1043-1049.
. S. GinseurG and E. H. Spanier, Bounded Algol-Like Languages, Trans. Amer.
Math. Soc., Vol. 113, 1964, pp. 333-368.
. S. GinsBurG and S. GrEiBAcH, Principal AFL, J. Comput. Syst. Sc., Vol. 4, 1970,
pp- 308-338.
. S. GremBacH, Erasable Context-Free Languages, Inf. Control, Vol. 29, 1975,
pp. 301-326.
. S. GreBAcH, Erasing in Context-Free AFLs, Inf. Control, Vol. 21, 1972, pp. 436-
465.
. R. HuLL, Reset Languages, Ph. D. dissertation, University of California at
Berkeley, 1979.
10. K. KLINGENSTEIN, Structures of Bounded Languages in Certain Families of Lan-
guages, Ph. D. dissertation, University of California at Berkeley, 1975.
11. M. Larreux, Cénes rationnels commutativement clos, R.A.LR.O.-Informatique
théorique, Vol. 11, 1977, pp. 29-51.
12. M. LotHaIrg, ed., Combinatorics on Words, Addison-Wesley, Reading, Mass.,
1982.

HOWN

o 0 NN N W

Informatique théorique et Applications/Theoretical Informatics and Applications

SINGLE-TAPE RESET MACHINES 77

13. R. SiromoNEY, On Equal Matrix Languages, Inf. Control, Vol. 14, 1969, pp. 135-
151

14. S. GinssUrG and E. H. Spanier, AFL with the Semilinear Property, J. Comput.
Syst. Sc., Vol. 5, 1971, pp. 365-396.

15. R. SiRoMONEY, Finite-Turn Checking Automata, J. Comput. Syst. Sc., Vol. 5, 1971,
pp. 549-559.

16. O. IsarraA, Simple Matrix Languages, Inf. Control, Vol. 17, 1970, pp. 359-3%94.

17. S. GinssurG and S. GreisacH, On AFL Generators for Finitely Encoded AFA, J.
Comput. Syst. Sc., Vol. 7, 1973, pp. 1-27.

18. F.-J. BRANDENBURG, Multiple Equality Sets and Post Machines, J. Comput. Syst.
Sc., Vol. 21, 1980, pp. 292-316.

vol. 20, n° 1, 1986

