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THE TOPOLOGICAL STRUCTURE OF ADHERENCES
OF REGULAR LANGUAGES (*) ( " )

by Tom HEAD (l)

Communicated by J.-E. PIN

Abstract. — The topological structure of the adhérence of a regular language is characterized
by afînite invariant structure that can be algorithmically constructed from any automaton recogni-
zing the language. Homeomorphism of the adhérences of regular languages can be decided by
constructing and comparing their associated invariant structures. These results are obtained by
applying concepts and analyses given by R. S. Pierce in his study of zero-dimensional compact
metric spaces offinite type.

Résumé. — La structure topologique de ï'adhérence d'un langage rationnel est caractérisée par
une structure invariante finie qui peut être construite par un algorithme à partir d'un automate
reconnaissant le langage. Vhoméomorphie de deux adhérences de langages rationnels peut être
décidée en construisant et en comparant les structures invariantes qui leur sont associées. Ces
résultats sont obtenus en employant des concepts et analyses développées par R. S. Pierce dans
son étude des espaces métriques compacts de dimension zéro et de type fini.

1. INTRODUCTION

Let A be a fini te non-empty set. Let A* be the set of fini te strings of
éléments of A and A& the set of ail infinité séquences of éléments of A. With
each language L <= A*, Boasson and Nivat [1] have associated a set
Adh L^A& which they have called the adhérence of L. A séquence s is in
Adh L if every finite initial segment of s is an initial segment of some string
in L. Equivalently, an 5 in Am is in Adh L if 5 is in the closure of L taken
with respect to a natural metric topology for A*\JAiù ([1], sec. IV). Since
Adh L is a subset of this metric space, Adh L is itself a metric space. The
purpose of this article is to give incisive descriptions of the topological
structure of the spaces Adh L where L is a regular language.

In section 2 pertinent concepts of gênerai topology are recalled and the
définitions required for the metric space approach to adhérences are given.
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32 T. HEAD

In Theorem 1 the topological spaces that arise as adhérences of arbitrary
languages are characterized abstractly as the zero-dimensional compact metri-
zable spaces and concretely as the closed subspaces of Cantor's ternary set.
These elementary characterizations provide a gênerai context for the detailed
study of the adhérences of regular languages in section 4.

R. S. Pierce has defined and studied zero-dimensional compact metric
spaces of finite type in [5]. This is exactly the class of spaces that arise as
adhérences of regular languages. In section 3 an exposition of selected
concepts from ([5], part I) is given. Some liberties have been taken in this
exposition from the désire to make the spécifie applications given hère quickly
accessible. A finite invariant structure, hère called a structural diagram, is
associated with each space of the type under considération. Pierce's resuit
that the structural diagrams for these spaces characterize their topological
structure is stated without proof. It provides a crutial décision procedure in
section 4.

The critical results of this article are demonstrated in section 4 : For any
regular language L, the topological space Adh L is of finite type and from any
automaton recognizing L the structural diagram of Adh L is algorithmically
constructible (theorem 2). Homeomorphism of adhérences is decidable for
regular languages (theorem 3).

This material was presented at the Ecole de Printemps d'Informatique
Théorique, le Mont Dore, May 1984. A closely related version containing
more expository material concerning the topological aspects of this subject
appears in [2].

2. CHARACTERIZATIONS OF THE SPACES WHICH ARISE AS ADHERENCES

Let A be a finite non-empty set and let A™ = A* U A™. A metric à is defined
on A"° as follows: Let u and v be in A"0. If u = v then d(u, v) = 0. If u^v and
neither u nor v is an initial segment of the other then d{u, v) = 3~n where n is
the least positive integer for which u(n)^v(n). If u^v and one of u and v is
an initial segment of the other then d(u, v) = 3~in+1) where n is the length of
the shorter of u and v,

With respect to the metric d, both A™ and A* are compact ([1], [2]). For
each language L in A*, let L" be the closure of L in Aœ. The adhérence
Adh L of L may be defined to be A™ C\ L~. Since A™ is closed in A00, Adh L
is a closed subset of both Aw and A™. As closed subspaces of the compact
space y4°°, both L~ and Adh L are compact.
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ADHÉRENCES OF REGULAR LANGUAGES 33

Recall that a topological space is zero-dimensional if the space has a basis
consisting of sets each of which is closed as well as open. The collection of
sphères :

S „(M, 3~n) = {v in A™: d(u, v)<3~n} = {v in Aœ

where u is in A™ and n is a positive integer, is a basis for the topology of
A"0. Since for each u in A™, d(u, _) is continuous it follows that each sphère
SM (u, 3"") is both open and closed. Consequently A™ and ail of its subspaces
are zero-dimensional.

Recall that a topological space is perfect if no open subset is a singleton,
i. e. if the space has no isolated points. Suppose now that A contains at least
two éléments. Then each non-empty open subset of Am contains a sphère
SM(u, 3-") = £„(M, 3-n)r)A&^{v in Am:d(u, i;)<3"n}, for some u in A<* and
some positive integer n, and each such sphère has cardinal 2^°.
Consequently Aa is perfect. For each u in A*, {u} is an open subset of A00

and consequently Aœ is not perfect.

The classical example of a perfect zero-dimensional compact space is the
ternary set introduced by G. Cantor. It is the subspace of the closed
interval [0, 1] consisting of those real numbers r possessing a représentation
in the base 3 System of numération for which only the digits 0 and 2 appear.
We will call this space the Cantor space C. The following theorem is a classical
topological characterization of C : Every non-empty perfect zero-dimensional
compact metric space is homeomorphic with the Cantor space. The following
corollary provides a topological characterization of the closed subspaces of C:
Every zero-dimensional compact metric space is homeomorphic with a subspace
ofthe Cantor space. See Hocking and Young ([3], p. 100) for proofs of these
theorems and Willard ([6], p. 315) for historical références.

We have observed that for any finite set A with at least two éléments, A™
is a perfect zero-dimensional compact metric space. Consequently A™ is
homeomorphic with C. Since for any language L in A*, we have observed
that Adh L is zero-dimensional and compact, to conclude that Adh L is
homeomorphic with C it is necessary and sufficient to show that Adh L is
perfect. In this way it can be verified that the Dyck languages and several
other common examples of context-f ree languages have adhérences homeomor-
phic with C. On the other hand Adh a* 6* contains b& and {bm} is an open
set. Thus Adh a*£>* is not homeomorphic with C.

THEOREM 1. — Let S be a topological space. Then the following conditions
are equivalent:

(1) There is a language L over an alphabet A such that S is homeomorphic
with Adh L.
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34 T. HEAD

(2) S is homeomorphic with a closed subset of the Cantor space C.
(3) 5 is zero-dimensionale compact, and metrizable,

Proof. (1 -*2): Let A be a finite non-empty set. After adjoining an addi-
tional symbol to A if necessary, we may assume that A contains at least two
symbols. Then Am is homeomorphic with C. Thus if S is homeomorphic with
Adh L for some L <=>!*, then S is homeomorphic with a closed subset of C.

(2 -> 1): Since C and {0, 2}w are homeomorphic we may suppose that S is
a closed subset of {0, 2}*°. For L = {w in {0, 2}*: there is a v in {0,2}°* for
which uv is in S} we have S = Adh L.

(2 -• 3): C and ail its closed subsets are zero-dimensional, compact, and
metrizable.

(3 -> 2): This follows from the second of the two results stated in the fifth
paragraph of this section, •

3. SPACES OF FINITE TYPE AND THEIR STRUCTURAL DIAGRAMS

Let X be a topological space. Let P (X) be the set of ail subsets of X.
Regard PQQ as an algebra with seven opérations: 0 , X, U, Pi, c, ~» '* The
first five opérations are the usual Boolean opérations: 0 and Xare the nullary
opérations of specifying the empty set and the universal set X for P (X), U
and H are the binary opérations of union and intersection, and c is the
unary opération of complémentation. The final two opérations are unary.
For each FinP(X):

Y' is the topological closure of Y; and
Y' is the topological derivative of Y which may be defined by Y' = {y in

Y:y is in (Y\{j})~}. Equivalently, 7' is the set of all points in Y that are
not isolated.

By a subalgebra of P (X) we mean a family of subsets of X that is closed
under the seven opérations of P (X). From the nature of nullary opérations
every subalgebra must contain {0, X}. Since the intersection of every collec-
tion of subalgebras is a subalgebra, P (X) contains a unique minimal subalge-
bra that necessarily contains {0, X}. Let B(X) be the minimal subalgebra of

DÉFINITION : A topological space X is of finite type if B (X) is finite.
Let X be a topological space of finite type. Then B(X) is a finite Boolean

algebra with the two additional unary opérations ~ and '. As such, B(X) has
atomSy i. e. minimal non-empty subsets, and consists of 2" subsets where n is
the number of its atoms. Let A (X) be the set of atoms of B (X).
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ADHÉRENCES OF REGULAR LANGUAGES 35

LEMMA 1 : Let A and B in A(X) and suppose that A^B and B<=A . Then
A = B.

Proof: Let S = {Y in B(X) ; either Y contains both A and B or Y contains
neither}. Apparently 0 and X are in S. It is likewise elementary to verify
that S is closed under U» H, c» ~> and '. Consequently S is a subalgebra of
B(X) and, by the minimality ofB(X), S = B(X). Since A (resp. B) is in B(X)
and A^A (resp. B^B) it follows that B^A (resp. A^B). •

We pro vide A (X) with a partial order g by defining, for A and 5 in A (X),
yl^Bif^czB". The required anti-symmetry of ^ is provided by lemma 1.
With each A in A (X) we associate the cardinal number, Card A9 of the subset
A of X

DÉFINITION: Let X be a topological space of finite type. The structural
diagram of X is the partially ordered set A (X) together with the function
Card: A(X)-> the set of those cardinal numbers which do not exceed the
cardinal of X

Spaces X and Y as in this définition have isomorphic structural diagrams if
there is a bijection i: A(X) -> A(Y) for which, for each 4 in A(X), Card
,4 = Card i (A) and, for each A and £ in A (X), ^ ^ B if and only if i (A) g i (£).

In accordance with this isomorphism concept we consider a structural
diagram to be merely a Hasse diagram with cardinal numbers attached to its
nodes, i. e. we do not attend to the fact that each node represents a subspace
of the original space. Thus comparing structural diagrams is a purely finitary
activity.

The following theorem assures us of the importance of the structural
diagram concept. It is also the key to deciding homeomorphism of adhérences
of regular languages as is shown in section 4. For a proof of this theorem
see [5]. A major aspect of the proof is treated in [2].

The Structure Theorem of R. S. Pierce. Let X and Y be zero-dimensional
compact metric spaces of finite type. Then X and Y are homeomorphic if
and only if they have isomorphic structural diagrams.

4. THE TOPOLOGICAL STRUCTURE OF ADHERENCES OF REGULAR LANGUAGES

Let i b e a finite non-empty set and let L^A* be a regular language. Let
G = (S, A, £, s0, F) be a deterministic automaton that recognizes L, where S
is the finite set of states, E^S x AxS is the set of edges, s0 is the initial
state, and F^S is the set of final states. Without loss of the generality of L
we assume that s0 cannot be entered, i. e. that there is no edge of the form
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(s, a, s0) in E. We dispose of the states and edges of G that are useless for
the investigation of the structure of Adh L: Delete from S any state that is
not accessible from s0. Delete any state s^s0 from S for which the language
accepted by the automaton (S, A, £, s, F) is finite. Finally, delete from E all
edges in which deleted states occur. Let 5 and E now dénote the sets of
states and edges after these deletions have been made. Let H = (S, A, E,
s0, S) and let L (H) be the language recognized by H. Observe first that, due
to the way deletions of states and edges were made, L(H) consists of the
initial segments of the séquences in Adh L. (L(H) is the center of L as defined
in ([1], Def. 3)). Observe second that the infinité séquences in Adh L are
precisely the séquences which are labels of infinité paths in H that start
from s0.

We have not yet reduced the set S of states sufficiently to allow the clearest
exposition of our results. Notice that no difficulty is introduced if instead of
demanding £<=S xAxS in the définition of a finite automaton we demand
only that £ be a finite subset of S x A+ x S. From this point on we employ
this slightly more libéral concept of a finite automaton.

Relative to any linear ordering of iS\{s0} carry out the following deletions
and insertions for each s^s0: If there is no proper loop at s, i. e. if there is
no string u in A+ that labels a path that begins at s and ends at 5, delete s
from S. For each s that is so deleted, carry out the following insertions and
deletions from E: If (pu ul9 s), . . ., (pm, um s) are all the edges ending at s
and (s, vu qx)y . . ., (s, vn, qn) are all the edges beginning at s then add to E
the edges (ph utvp q3) for l ^ i ^ m and l < j ^ n . After these additions are
made, delete all edges from E in which s occurs. Now let S and E dénote
the sets of states and edges after these deletions and insertions have been
made. With these new settings of S and £, let H = (S, A9 E, s0, S). The new
L(H) may be smaller than the previous version due to the deletion of this
last set of states. However, the language of initial segments of this new L (H)
is identical with the previous version (i. e. the center is unchanged), and
Adh L may still be described as the set of infinité séquences in A which are
labels of paths in H that start from s0.

The automaton H = (S, A, £, s0, S) is now the tooi we need for the
computation of the structural diagram of the topological space Adh L. We
begin by imitating the construction of the algebra P (X) in section 3 with X
replaced by T=S\{s0}. Let P(7) be the set of all subsets of T. Regard P(7)
as an algebra with the seven opérations: 0 , T, U, O, c, K> and D. The first
five opérations are the usual Boolean opérations. The final two are unary.
For each Y in P(T) we define:
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YK= {s in T: Y is accessible from s, i. e. there is a path in H beginning at s
and ending at a state in Y}.

YD={s in Y: there are at least two infinité paths beginning at s and
eventually passing only through states in Y}.

Notice that since there is a loop at every state in T, it follows that if s is
in YK then there is an infinité séquence v that labels a path that begins at s
and is frequently in Y.

The seven opération algebra P(7) must contain a unique minimal subalge-
bra that necessarily contains {0 , T}. Let D(T) be the minimal subalgebra of
P(T). Then D(T) is a finite Boolean algebra with two additional unary
opérations K and D, As such it has atoms and consists of 2" subsets where n
is the number of its atoms. Let C(7) be the set of atoms of D(T). An exact
parallel of the proof of lemma 1 establishes the following resuit.

LEMMA 2: Let A and B be in C(T) and suppose that A<=BK and B^AK.
Then A = 5. •

We pro vide C(T) with a, partial order ^ by defining, for A and B in C(T),
A^B if A^BK, The required anti-symmetry of ^ is provided by lemma 2.

For each s in T, let In(s) = {u in Adh L: the path in H beginning at s0

and labeled by u passes frequently, L e. infinitely often, through 5}. For each
subset X of T, let In(JÏ)= U {In(s): s in X}. We have defined a function
In:P(T) ->P(AdhL). Although In is not a morphism of P(7) into
P(Adh L), we will show that when we restrict the domain of In to the
subalgebra D (T) we obtain a morphism In : D (T) -• P Adh L that maps D (T)
isomorphically onto B(Adh L). The following concept and lemma will be
convenient for demonstrating this isomorphism.

A subset X of the set T is coherent if, for any pair /?, q of mutually
accessible states of /ƒ, either both p and q lie in X or neither lies in X. The
family of coherent subsets of T is easily verified to be a subalgebra of P(T)
and consequently by the minimality of D(T) we have:

LEMMA 3: Each set in D(7) is coherent. •
This lemma has the following helpful conséquence: for any X in D(7), if

an infinité path is frequently in X then it is eventually in X.

PROPOSITION: In: D(T)-»>P(Adh L) is a morphism of seven opération alge-
bras that maps D(7) isomorphically onto B(Adh L).

Proof: Let X and Y be in D(7). Apparently In (0) = 0 , In(T)=Adh L,
and In(XUy) = In(-X)UIn(y). That In(XO Y)gln(X) H In (Y) is also
immediately clear. Suppose w is in In (JQ O In (Y)- Such a w is frequently in
both .Y and Y and therefore eventualy in both X and Y. Then u is eventually in
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Y. Consequently ln(X) D In ( F) g In (X H Y) and the the desired equaiity
follows. Again by the cohérence of X, every u in Adh L must lie in precisely
one of In(X) and In (Xe) and consequently ln(Xc)^ln{X)c.

Each of the four inclusions required to verify In (XK) = In (X) ~ and
In(X£>) = In(X)/ is given in a separate paragraph:

In (X*)gIn(J*Q~: Let u be in In(X*). Then there exists a state/? in XK for
which: (1) w = u0ut u2. . .M,.. . . where u0 labels a path from s0 to p and, for
ï ^ l , Wf labels a non-null loop from/? to p; and (2) there is an infinité path
beginning at /?, labelled by a séquence t?, which is eventually in X Consequen-
tly for any open subset of Adh L that contains u there is a sufficiently large
Ï so that u0u1u2, . . w£ t> lies in the open set. Since, for ail 7 §; 0, u0u1u2. . . w, 1?
lies in In(X), M is in In(X)~.

IntSO'sInt-X*): Let M be in In(X)~. Let /? be a state for which u is in
In(/?). Then u = uQv where u0 labels a path from s0 to p and v labels an
infinité path that is frequently at p. Since u is in In(X)~ there is a séquence w
for which uow is in In(X). Then w labels a path that begins at p and is
eventually in X Consequently, /? is in X* and w is in In(X*).

In(XX))gIn(X)/: Let w be in In(XD). Then there exists a state/? in XD^X
for which: (1) u = u0u1u2. . .ut. . . where w0 labels a path from s0 to p, and
for f̂  1, uf labels a non-null loop from p to /?; and (2) there are infinité paths
beginning at /?, labeled by distinct séquences v and w, which lie entirely in X
Consequently for any open subset of Adh L that contains u there is a
sufficiently large i so that uoulu2. . ,utv and uoutu2. . .utw lie in the open
set. Since at least one of these séquences is different from u, the open set
cannot be a singleton. Thus u is not isolated in In(X)> i. e. u is in In(X)'.

In PO'g In (X1*): Let u be in In(X)7. Then there exists a state/? in X for
which: (1) u — uov where u0 labels a path from s0 to p and u labels an infinité
path lying entirely in X; and (2) there is a séquence uow in In(X) for which
w0 w 7e u. Then t> and w label distinct paths beginning at p and passing only
through states in X Consequently p is in Xö and u is is Ii^X0).

The vérification that In is a morphism is now complete. The image of In
is a subalgebra of P(Adh L) and therefore must contain the minimal subalge-
bra of P(Adh L) which is B(Adh L). The complete inverse image of
B(Adh L) with respect to In is a subalgebra of D(T) and therefore must be
D(T) itself by the minimality of D(T). Thus the image of In is B(Adh L).

From the constructions that lead to the spécifie form of H = (S, A, E,
sOi S) in use hère, for every s in T=S\{s0}, s is accessible from s0 by a path
with some label u in A+, and there is a proper loop at s labeled with some
label v in A+. Consequently uvm is in In (s) which is therefore not empty. It
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follows that the only subset X of T for which In (X) = 0 is X= 0. Since In is
a homomorphism of Boolean algebras, it follows that In is an injective
function. •

THEOREM 2: The adhérence of a regular language is a zero-dimensional
compact metric space offînite type and Us structural diagram is algorithmically
constructible.

Proof: Let L be a regular language. From section 2 Adh L is a zero-
dimensional compact metric space. From a deterministic automaton
recognizing L construct the automaton H = (S, A, E, s0, S) as specified in
this section. By proposition 1 the function In provides an isomorphism of
D(T) with B(Adh L) where T=5\{s 0 }. Since D(7) is finite, B(Adh L) is
finite and Adh L is of finite type.

The construction of the structural diagram of Adh L is outlined as follows:
Construct D(T). Since In maps D(T) isomorphically onto B(Adh L), it
follows that In also maps the partially ordered set C ( T) isomorphically onto
the partially ordered set A (Adh L). From D(T) construct C(7). Apply In to
C(7) to produce the partially ordered set A (Adh L). In the remaining
paragraph we consider the details:

For p in T let Lp and Lpp be the languages recognized by (S, A, E,
so> {P}) anc* (S, A, £, p, {/?}), respectively. The languages Lp and Lpp may be
expressed as regular expressions and consequently In (p) = Lp L£p is expressible
in terms of regular expressions. Thus, for each X in D(T),
In (X) = U {Lp L£p: p in X} where all the Lp and Lpp are regular expressions.
From such a représentation of In(X), Card In(X) is easily read off. (We
remark that it is also not difficult to compute the required cardinals directly
from C(T), consulting H only to détermine the exact value of the finite
cardinals). •

THEOREM 3: Homeomorphism of adhérences is decidable for regular lan-
guages.

Proof: Let M and N be constructively given regular languages. Construct
the structural diagrams of Adh M and Adh N as in theorem 2. Détermine
whether these structural diagrams are isomorphic. By the Structure Theorem
of R. S. Pierce) Adh M and Adh N are homeomorphic precisely if these
structural diagrams are isomorphic. G

THEOREM 4: Every zero-dimensional compact metrizable space of finite type
is homeomorphic with the adhérence of a regular language. The language may
be chosen to be two-testable in the strict sence.

vol 20, n° 1, 1986



40 T. HEAD

DISCUSSION: Let the structural diagram of such a space be given. Construct
the underlying multi-graph of an automaton as follows: Direct the edges of
the Hasse diagram underlying the structural diagram from smaller to larger.
To each node of the diagram attach a simple directed loop involving no
other node. At those nodes for which the associated cardinal number in the
structural diagram is 2N , attach a second simple directed loop. Adjoin a
new node s0 (to be used as a start state). Treat the nodes for which the
associated cardinal is finite as follows: Let p be a node for which the asso-
ciated cardinal is the positive integer n. Insert n distinct edges from s0 to the
node p. Treat any additional minimal node q as follows: Insert one edge from
s0 to q.

We now have the underlying directed multi-graph of the automaton we
require. There is great freedom in choosing an alphabet and in assigning
symbols of the alphabet to edges. At one extreme one can use a different
symbol for every edge of the directed graph, thus using an alphabet equal in
size to the number of edges. This choice insures that the language generated
will be two-testable in the strict sense as defined in [4], p. 17. At the other
extreme one can use a two symbol alphabet, say A = {a, b}, and associate
with the edges not single symbols but strings from Ak where k is chosen as
required by the largest outdegree occurring at the nodes of the directed graph.
Let all states be final states. Whichever choice is made, the adhérence of the
language recognized by such an automaton is homeomorphic with the original
space since our construction procedure has guaranteed that they have isomor-
phic structural diagrams. See [2] for further details. Q
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