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ON A CLASS OF INFINITE WORDS
WITH BOUNDED REPETITIONS (*)

by Anton CERNY (*)
Communicated by J. BERSTEL

Abstract. — The well-known séquence of Thue and Morse contains no factor of the form xvxvx,
x being a letter and v a word. In the present paper an analogical property of a class of séquences
called generaiized words of Thue-Morse is proved.

Résumé. — La suite bien connue de Thue et Morse ne contient pas de facteur de la forme
xvxvx, avec x une lettre et v un mot. Dans le présent article, nous démontrons une propriété
analogue pour une classe de suite appelées mots de Thue-Morse généralisés.

1. INTRODUCTION

Axel Thue in his remarkable works [Th 06], [Th 12] on infinité séquences
of symbols has shown the existence of infinité words over three-letter alphabet
without squares of non-empty words as factors. The construction of such a
word in [Th 12] is based on an infinité séquence t over the two-letter alphabet

{0, 1}, not containing a factor of the form xvxvx, x being a letter and v a
word. The z-th symbol of t can be described as the parity of occurrences of

the symbol 1 in binary notation of the natural number i (however, this is not
the way of its description in [Th 12]). The same séquence t appears in the

work of Morse [Mo 21] on symbolic dynamics. Therefore we shall call t the

séquence of Thue-Morse.

(*) Received December 1983, revised February 1985.
(*) The presented results have been achieved during the author's stay at the Institut de

Programmation, Université P. et M. Curie, Paris-VI.
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338 A. CERNY

In the sensé of Cobham [Co 72], t is a simple example of a uniform tag

séquence. In [CKM-FR 80], where some algebraic properties of uniform
tag séquences are investigated, generalized séquences of Thue-Morse are
introduced. In such a generalized séquence the i-th symbol dénotes the parity
of occurrences of some fixed factor w over {0, 1} in binary notation of L
(In fact, a slightly stronger generalization is given in [CKM-FR 80]). In this
paper we show that in such generalized words of Thue-Morse all the factors
are of a bounded power. More precisely, there are no factors of the form:

(xi;)2|w|x.

2. NOTATIONS AND DEFINITIONS

Let A* be the f ree monoid generated by a finite alphabet A9 with the
neutral element E. Let A+

 =A*-{E}. Let Am be the set of all infinité (to the
right) séquences of éléments of A. Let ACO = A* KJA™. The éléments of A™
will be called words (finite or infinité). A word xeA* is a factor of a word
yeA00, iff y = zxt for some zeA*, teAœ. x is called initial/terminal/ {proper}
factor of y iff z = e /t = s/ {zt^e}. The length |x | of a finite word x is the
number of its symbols, | s | = 0.

Let (p:A*^>B* be a morphism of monoids. cp can be extended to the
mapping (p : ,4e0 -• B™ satisfying:

for all x e i * , yeB™. <p is called prolongatie in aeA iff (p(a) = ax for some
xeA + . In this case for each n^O cpn(a) is a proper initial factor of <pn + 1(a).
There exists a limit:

z= l im <pn

such that each <p"{a) is an initial factor of z. Moreover, z is a fixpoint of (p,

i. e. q>(z) = z. A morphism cp is called m-uniform for some m^O iff | cp(b) \~m

for all beA.

Let \i:Al-*Aj be a mapping, i, j ^ l . \i can be extended to the mapping

u(x0x1x2. . . H

where:

for all k ^ 0. This extension is called (i, j)-substitution.
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ON A CLASS OF INFINITE WORDS 339

We follow [Co 72] where two devices for formai description of infinité
words are used — uniform tag Systems and sorting automata.

A tag system is a quintuple T=(£, a, a, F, x), where X and F are alphabets,
a :£*-»S* is a morphism prolongable in aeE, x:E*-»F* is a morphism
such that x(S) £ F. The internai /externaî/ tag séquence generated by T are
respectively:

intseqT= lim on(a),
n -» oo

seq r= lim x(a"(a)) = x(intseqr).
n - • oo

The tag System and the corresponding séquences are called m-uniform iff a
is m-uniform.

Let m>0. Dénote [m] = {0,1, . . . ,m — 1}. A sorting automaton over [m] is
a quintuple A — (S, S, s0, F, G), where 5 is a finite set (of states), soeS is the
initial state, 8: S x [m] -> S is the transition function satisfying 8(s0,0) =s0, G
is an alphabet, and F={Fg}geG is a disjoint partition of S. 6 can be extended
to the domain S x [m]* by setting S(s,e)=s, 5(s,X£2) = 5(5(5,x),d) for s e S,
xe[m]*, de [m]. The state /sorting/ séquence of the automaton >1 is defined
by:

smcA=yoyi. . . e S",

where j ^ = 8 (s0, f[m]), f[m] being the m-ary expansion of the integer i (since
3(s0, 0)=5Os there are no problems with leading zéros), and where x,- is the
letter g such that yt e Fg.

Thus the sorting automaton is a slight generalization of the notion of finite
automaton which in fact sorts to two classes of objects (accepted-rejected).

The relation between tag Systems and sorting automata can be expressed
as in the following proposition.

PROPOSITION 1 [Co 72]: Let T=(E, a, a, F, T) be an m-uniform tag Sys-
tem and let A = (S, 8, s0, F, F) be a sorting automaton over [m] such that
8 (s, ï) = i-th symbol of<j(s), so = a, and seFg iffi(s) = g, where se S, ie[m],

Then i
Finally, let us define the generalized words of Thue-Morse. Let

we{0, I}*-0*. Dénote:

the infinité word with the î-th symbol:
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340 A. CERNY

where #w(x) dénotes the number of occurrences of the factor w in the word
x and i[2] is the binary notation of i with at least \w\ leading zéros. For
example, 000010101010101 contains five occurrences of the factor 0101.

From [CKM-FR 80] we know the following important property of the
words aw.

PROPOSITION 2 [CKM-FR 80]: Let w e {0, 1} * - 0*, let \i be a (2f w ' " \ 21 w ')-
substitution on {0, 1 }* defined by:

- . .x2\w\-i_1)=y0yl. . .y2\»\-

(0)mod 2, ïe{0, 1, . . -.21 w

%w(i) = if w ÏS a terminal factor ofi[2] then 1 e/se 0.

As one can easily see, there is exactly one j e {0,1, . . ., 2'w ' — 1} such that
XwÖ)=L

In the case w = 1 we obtain:

a1=t = 0110100110010110. . .

the word of Thue-Morse. It is well known that t does not contain any factor

of the form xvxvx, xe{0, 1}, ve{0, 1 }*. In particular, t contains no cubes

x3 —xxx.

3. PROOF OF THE RESULT

Our goal is to prove the following theorem:

THEOREM 1: aw does not contain any factor of the form:

(xt>)2'w ' x where x e {0,1 }> v e {0,1 }*.

In the case w=\ the theorem states the well-known property of the séquence
of Thue and Morse, thus in the following we consider we{0, 1 }* — 0* to be a
fïxed word of length at least 2.

The proof is based on the method from [Pa 81]. The proof is divided to a
series of lemmas. In the first of them, the minimal sorting automaton for aw

is described. Since the notion of the sorting automaton is derived directly
from the notion of the finite automaton, the results from the theory of finite
automata concerning the minimality can be applied to sorting automata, too.
This fact is used in the proof of the first lemma.

R.AXR.O. Informatique théorique/Theoretical Informaties



ON A CLASS OF INFINITE WORDS 341

LEMMA 1: Let AW = (S, 8, s, (Fo, FJ, {0, 1}) be the sorting automaton over
{0, 1 }, where:

S = { <̂  a ) 0 , < a >x | a is a proper initial factor of w },

I <«*>,• if <ax>£eS,
( a ' ) , . , if ax = w,

< a' yt otherwise,

where i e {0,1}, x G { 0,1}, a' is t/ie longest proper terminal factor of a x,
a proper initial factor of w.

s = 0\ where 0k, k^O is the longest initial factor ofw not containing 1.

>,}, ï = 0, L

Then Aw is minimal among the sorting automata with the sorting séquence
aw.

Proof: By induction on \z\ one can easily show for ze{0, 1}*, Ï = 0, 1:
ô(so,2) = <a>f iff #w(0' w|z) = i (mod 2) and a is the longest terminal factor
of 0'w ' z, being the proper initial factor of w.

The nonequivalence of each pair of distinct states is evident. (Two states
sl5 s2 are equivalent iff for each xe{0, 1}* 8(s l5x)6F0 iff 8 (s2,x)eFo.)

It is sufficient to show the accessibility of each state (from the initial state).
Obviously, each state is accessible from <e>0 or <e>1. On the other hand,
the states <ot0>0, <ao>1, where a0 is the longest proper initial factor of w,
are accessible. Thus it is sufficient to show that < e )t- is accessible from < a0 yh

i = 0, 1. The proof is based on induction. For each oce{O, 1}*, oc^e a word
y e { 0,1 }* is given such that:

>„Y) = <oO,- and |oc'|<|a|.

Let w = ap. We consider several cases.
1. w=lfc, fc^l. Theny-0.
2. w = xkxm, / c = l , m = l ,x,x£{0 s 1}, x^x. Then y = p w.
3. w = xfcxmxs, k, m, x, x like in case 2., se{0, 1 }*.
3.1. |a | = fc. Then y = x*- | a |xm + 1 .
3.2. /c + l ^ | a | = k + m . Then y-xm + f c" ! a | + 1.
3.3. fc + m + l ^ | a | , then y=y where y is the inverse of the first letter

of p. •

Example 1; Let us consider the word w = 010. The transition diagram of
the corresponding minimal sorting automaton A010 is depicted in the follo-
wing figure.
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342 A. CERNY

In the following let T=(S, s, a, {0, 1}, x) be the 2-uniform tag System
corresponding to the automaton A from lemma 1 according to proposition 1.
Hence seqr = s o r t ^ a ^ Dénote:

bw = b(0)b(l)b(2). . . =intseqr = statey4.

LEMMA 2: a is an injective mapping.

Proof: Let sl9 s2eS, sx ^s2, a ^ ) — a (s2). From minimality of the automa-
ton A we get x ( s j#x (s2). Let now à be the rightmost symbol of w and à
its inverse. Since no occurrence of w in the word scanned by A can be
terminated by d, we get:

x(s1)=x(8(s1, d)l

= T(Ô(S2, 3)) since a ^ H c K s i ) ,
= T(S2) — a contradiction. •

To obtain our main resuit we will first investigate the structure of the
word bw; the results for aw will follow directly as can be seen from the

following lemma 4.
Let xeS, x = <a>f. Dénote x = <a>1„ i. Eléments x, yeS will be called

associated (x~y) iff x=y or x=y.

REMARK 1: If for some x, yeS we have x~y and x(x) = x(y) then x = j .

LEMMA 3: For

Proof: Let s e S. The terminal factor of length | w\ — 1 of the words i[2] and
(Ï + 21 w|"1)[2] is the same. Hence S(s,it2]) = <<*>,• for some ( a ^ e S if and
only if 8(s,(z + 2 l w |"1) [ 2 ]) = <a>Jkfor some/ce{0,1}. •
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ON A CLASS OF INFINITE WORDS 343

LEMMA 4: If aw = oc«2|w|. . . for some ^ « 6 ( 0 , 1 } * , then bw = a'(u')2. . .

for some oc', u'eS* such that | a ' | = | a | , |u ' | = |u2 '*1"1) .

Proof: Since j wai wi-i | j s a m u i t jp i e o f ^ l ' 1 , the assertion follows from

lemma 3 and remark 1. •

LEMMA 5: (i) Let r^O. Then:

[x(fe(20) + x(fe(2ï+l))] = [T(fe(2ï + 2 |w i)) + T(b (2 f+ l+2 | w | ) ) ] (mod2).

(ii) For each Ï ' ^ 0 there is exactly one 0 ^ 7 < 2 | w | ~ 2 such that for each

!-1))] (mod 2)

is valid if and only ifk =j. Moreover, j dépends onîy on the value i mod 2' w ' ~1.

Proof: The assertions follow from proposition 2. •

A word x e S * will be called m-block (m^O) iff x = om(d) for some rfeS.
A word xeS* is m-factorizable iff it is a (possible empty) concaténation of
m-blocks. The set of ail m-blocks will be denoted ^ m , the set of all m-
factorizable words will be denoted ^m.

REMARK 2: Each m-block is of length 2m.

Eeach initial factor of bw is of length divisible by 2m iff it is m-factorizable.

An m-block x will be called even/oddf iff for some i^O x = am(b(2i))

REMARK 3: For m ^ 1 each m-block is a concaténation of some even (m — 1)-
block with some odd (m-l)-block.

LEMMA 6: For m^O no m-block can be both even and odd.

Proof: Let for some m, i, k ^ 0 am (b (2 i)) = am (b (2 k + 1)).

1. Let m = | w | — 1. Let j be as in (ii) of lemma 5. Since

z(<jm{b(2i)))=T(om(b(2k+l))), using (i) of lemma 5 we get:

+2m))] (mod 2)

— a contradiction to (ii) of lemma 5.
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344 A. CERNY

2. If m# |w | —1, then by several applications of a or a"1 (lemma 2) one
obtains case 1 (a is injective). •

LEMMA 7: Ifbw = xB . . ., where Beâêm then xe«fm.

Proof: Induction on m. The case m = 0 is evident.
Let m>0. Then B^BOBU where Bo, B1e^m_l, Bo is even. By

induction hypothesis, xe^r
m_1. If x$!Fm then Bo is odd —a contradiction

to lemma 6. •

LEMMA 8: Ifbw = x1u. . . =x2u. . ., where xle^r
m — ̂ r

m + 1 x2e^r
m + x, then

u is a proper initial factor ofboth some even and some odd m-block.
Proof: From the first factorization of bw we obtain the fact that u is an

initial factor of an infinité word beginning by an m-block (since xie^r
m)

which is odd (since xx £<^m + 1). The second factorization implies that u is an
initial factor of an infinité word beginning by an (m + l)-block, hence also
by an even m-block. If |u| = 2m then the first m-block of u is simultaneously
even and odd — a contradiction to lemma 6. •

LEMMA 9: Ifbw = xuBu. . ., B being a word of length divisible by 2m, and

, then ue^m.

Proof: Let ue&m. — #'m. + l9 m'^O. If m'<m then
From lemma 8 and the fact that uG^m- follows u = e hence
contradiction. •

LEMMA 10: bw contains no factors of the farm uBuBu where M e S*,

Proof: Let bw = xuBuBu. . . We use induction on \u\.

1. \u|=0. In this case bw = xBB. . ., from lemma 7 we obtain xe.fm thus

B is both even and odd — a contradiction.
2. | u | > 0. Lemma 7 implies xu e J5r

m, xuBue 3P'm hence u e $F m.
2.1. If B is an even m-block then u can be factorized as u = Cv, ceJ m ,

| u |< |u\ and bw = xCvBCvBCv., ., BCe&m+i— a contradiction to induc-
tion hypothesis.

2.2. If B is an odd m-block then a similar contradiction can be obtained
using the factorization u = vC, Ce$m. •

COROLLARY 1: bw contains no cubes.

Proof: If bw = xv3. . . then (if v^e) v = uB for some BG&0 = S and bw

= xuBuBuB. . .:—a contradiction to lemma 10. •
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LEMMA 11: bw contains no factor of the farm xyBzxyBzx. . . where xeS,

BeMm, zxye@m m = |w|—2.

Proof: If bw contains such a factor then it is of length 2 | w | + l. Let the

first occurrence of x in this factor appears in bw at the place with the index

q. Then for g g / ^ + 21 w |~1 we have b(p) = b(p + $w|"1), hence for no
0^/c<2 | w |~2 the congruence from (ii) of lemma 5 is valid for i = [q/2] — a
contradiction. •

LEMMA 12: bw contains no factor of the farm xyBzxyBzx where XGS,

Proof: lï Be@m then o(B)e@m + 1. Thus if bw contains a factor
xy B zxy B zx for some m, then it contains a similar factor for m +1 .
Lemma 11 now directly implies that bw does not contain a factor xy B zxy B zx

for m ̂  | w | — 2. For m > | w | — 2 we proceed by induction.

Let bw = axyB zxy Bzx. . . for some m > | w | — 2.

1. Let | oc[ be even, i. e. x is an even 0-block. Then y^e otherwise the m-
block zxy would be terminated by an even 0-block. Thus y = dv, deS, veS*,
and:

bw = OixdvBzxdvBzx. . .

From lemma 3 we obtain:

bw = <x xdv BzxdvB zxd!. . .,

where d~d\ From (i) of lemma 5 and from remark 1 we get:

Since a is injective, bw can be factorized as follows:

b^uïx'y'B'z'x'y'B'z'x'. . .,

where a(a') = ot5 G(x')=xd, aO') = ̂  o(B')=B <J(Z') = Z — SL contradiction to
induction hypothesis.

2. If | a | is odd then by factorization z = vd one can obtain a contradiction
analogically to case 1. •
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346 A. CERNY

LEMMA 13: bw contains no factor of the form xyBzxyBzx, where xeS,

Proof: Induction on | zxy |.

1. | zxy | = 1 i. e. z = y = e. The assertion follows from lemma 10.

2. | zxy | > 1. Let bw = axyB zxy Bzx. . . From lemma 7 we obtain

zxye^m. Moreover, \zxy\ is an odd multiple of 2m
5 otherwise B would be

simultaneously odd and even.

2.1. y = vA, A being an even m-block. Then:

bw = axvABzxvABzx. . ., ABe&m + 1, \zxv\<\zxy\,

— a contradiction to induction hypothesis.

2.2. z = Av, Ae&m+l. Then:

&w = a xy BA vxy BA vx. . ., | vxy B | < | A vxy | = | zxy |

— a contradiction to induction hypothesis.

2.3. z — Av, A being an odd m-block. Then:

bw = a xy BA vxy BA vx. . ., BA e $m +15 | vxy | < | zxy |

— a contradiction to induction hypothesis.

2.4. y^vA, Ae&m+1. Then:

— a contradiction to induction hypothesis.

2. 5. zxyeâSm — a contradiction to lemma 12. •

We have now proved the following properties of bw and aw:

THEOREM 2: bw does not contain a factor of the farm xvxvx9 xeS,

Proof: The case v = e follows from corollary 1.

In the case v#e using the factorization v = dz, de&0 = S, zeS*, one obtains
xvxvx~xdzxdzx and lemma 13 implies that such a factor cannot be contained
in bw. M

Now we are able to prove theorem 1. Let us suppose that aw contains a

factor of the form (XÏ?)2'
 w ' x, x e { 0, 1}, i;e {0, 1 }*. Applying lemma 4 twice

(for u = xv and u = ux) we obtain that the corresponding factor of bw has the

form x' v' x' t/ x' — a contradiction to theorem 2. •
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ON A CLASS OF INFINITE WORDS 347

Theorem 1 does not exclude the possibility that aw contains a factor of the
1 I W I

form u2 . Our next goal is to find some necessary conditions for appearing
of such a factor in aw. First we shall describe how do the squares in bw look
like.

LEMMA 14: Let bw = auBu. . ., Be&m, u/e.

Then a,ue^m.

Proof: Let ae#"m,-«fm, + 1. Let m'<m. Lemma 7 implies ue!Fm.. Since
a^^m' + u the first m'-block of u is odd. Since Be&m, + 1, the same block is
even — a contradiction,

Thus m'^m, <xelFm. Lemma 7 implies uefm . •

LEMMA 15: Let bw = auBu. . ., Be$m. Then:

\u\=2q — 2m for some q^m,

Proof: Induction on | u |.
1. If |u| = 0, then|t / |=2m-2m .
2. Let [u|>0. Lemma 14 implies that |w| is divisible by 2m.
2.1. If |w|=2mthen | u | - 2 m + 1 - 2 m .
2.2. Let |u|>2m . Then u = AvC, A, Cefffl, veS*, and

bw = aAvCBAvC. . . Either CB or BA is an (m + l)-block. By induction

hypothesis, for some q^m + l \Av\ = 2q~2m+1 or \vC\=2q-2m + 1. In both
cases |u |=2«-2 m + 1 +2 m = 2«-2m. •

LEMMA 16: Let bw =

| u | = 29 for some q^.

Proof: u = vB for some i;eS*, BeS = &0. Lemma 15 implies |t>| = 2*— 1
for some g^O, hence | u |=2 4 . Let ^ < | w | — 1+m. Since a is injective
(lemma 2) and few = a ( b j , for fc = |w| — l-q (satisfying — m<k<^\w\ — 1)

one obtains |a fc(u)| = 2 | w | - 1 , ak(oL)e^u and ftw = a k (a)a k (u)o k (u) . . . - a

contradiction to (ii) of lemma 5. •

LEMMA 17: Let bw = aiuu. . ., w^e, OLe^r
m — &r

m+1. Then:

Proof: According to lemma 16 \u\ is divisible by 2m. ae^m implies
Since a ^ ^ m + 1 the initial m-block of u is odd, thus u
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348 A. CERNY

Considering iemma 16 it is enough to prove | u | ^ 2 m + | w | ~ 1 . Let
w = 2r + m + | w l " 1

> r^O. Then bw = a'm(bw) = a/u/u'. . ., where |u ' | = 2r + l w | " \

a!e^0 — !Fv Let u''~xv9 xeS, veS*. If r ^ l , then from lemma 3 and (i) of
lemma 5 follows (since the rightmost letter of u' u' has in bw an even index):

bw = oc'xvxv. . . —tx'xvxvx. . . —a contradiction to theorem 1. •

COROLLARY 2: Ifbw = aiuu. . ., u ^ e , O ie f m -< f m + 1 for some m^O, then

the same is true for m = 0.

LEMMA 18: Let bw = auu. . ., w^e, a e ^ , ) - ^ . T/ien eitfcer /or y~a or

for y = oiu:

(mod2 | w |) ,

where d is the inverse of the rightmost digit ofw and v(w) is the integer whose
binary notation is w.

Proof: Lemma 17 implies | u | = 2 ' w '~1. It is easy to see that (ii) of lemma 5
is satisfied only if (*) is valid. •

Our knowledge of the powers in bw and aw can now be summarized in the

following theorems:

THEOREM 3: Ifbw = oiuu. . ., u ^ e , ae^r
m — &m+l9 then:

(i) | u | = 2m + ! w | + 1 andue&m-&m + v

(ii) bw = oi' u' u'. . . for some w'#e5 a/e^r
0 — ̂ r

1 and either for y = a' or f or

(mod2 l w | ) .

THEOREM 4: If aw = a u 2 ' w | . . ., M^£, | a | divisible by 2m and not divisible by

2m + \ then:

(i) |w| = 2m.

(ii) either for z - | a | / 2 m or for z = |a | /2m + 2 ' w | " 1 :

z~v(w) + d (mod2 ! w |) .

Using corollary 2 one can show that h1 1 0 1 does not contain squares, and

consequently that a1101 does not contain a factor of the form M16. On the

other hand for each w of the form lk, k> 1, aw contains the subword 02*

beginning in aw at the place with the index (in binary notation) 1 vv= 1*+1.
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Each aw contains the factor 0 2 | w | ~\ as shown in the following table where

n is a binary notation of such an index in aw that:

a(n+l)a(n ' U

andxe{0, 1}*, k^\.

w

OOx
10x

01 x
10*
010*
Ollk

01 . . .

n

l ' x | 0 1 w

lw
01 | w |w

ww l*"1 w
OllOllw
wOl ww
010000

Remark
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