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FINITENESS RESULTS
ON REWRITING SYSTEMS (%)

by Jean-Claude RaouLt ()

Communicated by M. NIVAT

Résumé. — Etant donné un systéme de récriture de termes du premier ordre noetherien et confluent,
on considére la relation d’équiralence engendrée, et on prouve que le probléme de la finitude d’une classe
(oude toutes les classes) est indécidable, sauf si I’on se restreint aux termes sans variables. En revanche,
la finitude du nombre de classes est décidable.

Abstract. — Given a rewriting system on terms of first order which is known to be noetherian and
confluent, it is proved that deciding the finiteness of the equiralence classes is impossible, unless we
restrict attention to variable-free terms. On the other hand, one can decide whether the number of
classes is finite.

I. INTRODUCTION

Term rewriting systems frequently occur in the operational semantics of
programming languages. They model ALGOL’s copy rule, and in this respect, it
is interesting to know whether they satisfy the **Church-Rosser’ property. More
generally, they model the computation of a program, represented as a term
written over a given alphabet; in this case, the computation is hoped to terminate
(the rewriting rule is hoped to be noetherian) and this fact is known to be
undecidable (cf. [3]). So let us suppose now the rewriting rule to be noetherian,
and ask ifit is decidable that any term computes to a finite number of results only
(¢f- also [5]). The answer to this question is no. as is shown below (cf. theorem 1).

From another point of view, grammars over the free monoid generated by a
finite alphabet can be generalized into grammars over the free algebra generated
by a finite graded alphabet. All questions relevant to the previous case may be
asked again, for instance:

— isitdecidable, given the rules and an axiom, that the generated language is
finite 2 The answer is yes (cf. theorem 2);

— isit decidable, under the same assumptions that the generated language is
rational ? No general answer has been given as yet (to the knowledge of the
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374 J-C RAOULT

author) but a particular case is more tractable: if the number of equivalence
classes is finite, then each class is rational. That last condition is decidable for a
“Church-Rosser” relation.

II. CONFLUENT AND NCETHERIAN PRECONGRUENCES

Let F=F,+F,+...+F,+... be a denumerable disjoint union of sets. An
F-algebra is a set D together with a k-ary function f, : D¥ — D for each k and
feF,. Asubalgebra is a subset closed under the functions f;,. The product D x D’
of two F-algebras is again an F-algebra, in which the functions f;, are applied
componentwise:

fbe'((dl’dll)7 .. a(dk7d;())=(fD(d19 . 'adk)LfD'(d’ls .. sdl’())'
A relation RS D x D’ is compatible when R is a subalgebra of D x D"
d;Rd; for 1<isk = fy(dy,....d) Rfp(di,...,d}).

A mapping o:D — D’ between two algebras is a morphism when
{(d,do); de D} is a compatible relation.

Given a set X, the free F-algebra over X is denoted by M (F, X) and its
elements are called terms. A subterm of t is t itself, or if t=ft,...t, then a
subterm of one of the t,’s. Terms can be considered as labelled trees, and
subterms can be addressed, like subtrees, by occurrences: an occurrence is a word
ue N* and the term t/u is defined by induction on ¢ and u. If u=¢ then t/u=t,
elseu=ku'(ke N)andift=ft,...t,and 1 Sk<nthent/u=t,/u’; otherwise, t/u
does not exist.

DEFINITION 1: A relation — over M (F, X ) is called a precongruence when it is
reflexive, compatible and invariant under substitution:

(i) t » tforall t in M(F,X);
@) t; » t/(1Zigk) = fty...t, > fty...t; for all k and fin F;
(i) t > t' =(to) > (t'o)forall o : M(F,X) > M(F,X).

It is easy to check that the intersection of a family of precongruences is again a
precongruence, so that.

PrOPOSITION 1: The set of all precongruences over M (F, X ) is a complete lattice
with respect to set inclusion.

Beware that the I. u. b. is indeed the intersection, and that the g.1. b. contains
the union, but can be strictly greater.
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FINITENESS RESULTS ON REWRITING SYSTEMS 375

Hence, given a relation S, one can define the precongruence — (or —)
S

generated by S, and the precongruence induced by S, respectively as the smallest
precongruence containing S, and the greatest precongruence contained in S.
The congruence generated by Sis the (reflexive) symmetric and transitive closure

* *
of — and is denoted by «> (or <> ). One can prove by induction on the structure
N N

of the terms (cf. [6]) that t — ¢’ is equivalent to:
N

dceM(F,X),x{,...,x,€X, g, > d,,...,g, = d,€S,

G4,...,0, substitutions, such that:
t=c[gl 0-l/xh .. ‘9gn Gn/xn]
and:
t'=cld, o,/x,,...,d, 0,/x,).

Thus ¢t — t’ means that t rewrites in ¢’ in one step of n simultaneous and
N

disjoint applications of the rules of S. When n=1, we say that t — t’ is a single
N

rewriting. Of course the single rewritings and the whole precongruence have the
same reflexive and transitive closure.

DEFINITION 2: Given a relation — over M (F,X)and a subset Eof M (F, X),a

term t of E is extremal in E when t ' &t'€E imply t'=t.

PROPOSITION 2: The following assertions are equivalent:
* * * *
(i) every infinite chain ty, — t, = ... — t, — ... is eventually constant;

(ii) every non-empty set E contains an element extremal in E.
A relation satisfying these assertions is called a noetherian relation [1].

Proof: (i) = (ii), suppose that the non-empty set E contains no extremal
element, and construct by induction a chain:

to >t > ... 2>, > ...

Indeed, since ¢, is not extremal, there exists in E an element ¢, , #t, such that
t, = t,+. The chain got in this way is not eventually constant.

" (i1) = (i) is clear.
DEFINITION 3: A relation — is said to be confluent when for all ty, t,, t5:
(t; > t, and t, > t3) implies 31, (1, = 1, and t; = 1,).

vol. 15, n°4, 1981



376 J-C RAOULT

ProrosITION 3: Let S be a relation over M (F,X). If — is noetherian, the
N

Jfollowing assertions are equivalent:

(i) — is confluent;
S

(i) V 1y, tyy b, (t Bty &ty Bty)=>T1,, (1, D1, &ty 5 1,);

(iii) every term t rewrites into a unique extremal t called the irreducible (or
normal) form of t

Proof: (i) = (ii) is clear.

(i1) = (ii1): since — is noetherian, every term admits at least one irreducible

N
form. Let M denote the set of those which admit more than one, and t an element
of M. Then t admits at least two irreducible forms ¢, and ¢, and we have:

From (ii), we deduce the existence of u and its irreducible form u.Since t is
extremal in M, ¢, is not in M, hence t, =u Similarly, ¢, is not in M, hence
t, =u .Thus ¢ admits a unique irreducible form: ¢ is not in M .Hence M =Q

(iii) = (i): take t, for t, in definition 3.

See [2] for another proof.

III. THE FINITENESS OF THE CLASSES

DEFINITION 4: A term s overlaps a term ¢ if there exist substitutions o and 7, and
a subterm u of t (u not a variable) such that:

UGC=srt.
Given a relation S over M (F, X) one can prove that a sufficient condition
for — to be confluent is that the left-hand sides of S do not overlap one another
N

(see for instance [4, 2, 6]) but this condition is by no means necessary as is shown
by the simple example:

S={fa > b,fb > b,a > b}.

R.A.LR.O. Informatique théorique/Theoretical Informatics
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THEOREM 1: The problem of determining, given a finite Sc M (F,X)?* and
*

te M(F,X), whether the congruence class [tls of t modulo < is finite is
N

undecidable, even if — is noetherign and the left-hand sides of S cannot overlap
S
*

(and in particular, — is confluent). It is also undecidable whether all the classes are
N
Sfinite.
The proof uses the two following lemmas.

LEMMA 1: Let S be a finite relation over M (F,X) with — noetherian and
S

confluent. Then [t]; infinite <> there existsaco-chain ... - t, = ... > t, > t
with distinct t;’s.
<= : clear.

= : note that:

(1) Since S is finite, only a finite number of terms s satisfy s — ¢,
s

£
(2) se[t] < s — t [from proposition 3 (iii)].

Apply Koenig’s lemma to the relation sR tiff t — s & t #s, and get an infinite
co-chain ... —» t, » ... — t. No two t;’s can be equal because — is acyclic,
N
hence the result.
Recall that a Turing machine is defined by a finite set Q of states, the position

of a head on an input-output tape, a finite tape alphabet 4 and a finite set of
quintuples:

(‘La,q,,a/,e)eQXAxQXAX { _1’ +1},

meaning: the machine in state g reading symbol a goes in state q’, overprints a’
and moves its head left or right if e=—1 or +1.

LEMME 2: A Turing machine can be simulated by a rewriting system S such that

- ~ ! is noetherian and the right-hand sides of S do not overlap (hence — ™' is
S

N
confluent). Furthermore all the terms in S contain at most one occurrence of each

variable.
Proof: We begin by coding the machine in much the same way as in [3]. The
tape of the 7M is assumed to be filled with blanks except for a finite portion.
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378 J-C RAOULT

* . PR
a|--- a; an

[/

Take Fy=d, where d¢ A, F, =Q+ A+ A4 +{g} where g¢ 4 is meant to be a
left marker, and 4 = {a;aeA}.

The symbol b e A denotes the blank. A configuration ¢ such as the one pictured
in figure 1 can be represented by theset 7 (¢) of terms of the form (parentheses are
omitted for easier reading):

gbb...ba,...qa;...a,b...bd

Figure 1

(the barred symbols indicate that the head is on their left).

Each quintuple is represented by a finite number of rewriting rules according
to the following algorithm. Call R the set of rewriting rules and:

— initialize R to the empty set;

— forall(q,a,q’,a’, 1) add to R the rule gax — a’q’x and if a=b add also
gd — a’q'd, extending the workspace on the right;

— for all (g,a,q',a’, —1) add to R the finite set
{cqax — q'ca'x;ce A} + {ggax — gq'ba’'x} that last rule extending the
workspace on the left; if a=b the head of the Turing machine may be
on a square corresponding with d, so add to R also the set

{cqd > q'ca’d;ce A} +{gqd - gq'a'd}.

Now we define the rewriting system S, by adding one argument to the
function g, which will indicate the rule in S which has just been applied. Let n be
the number of rules of R and set:

Fo={d, 0}, Fi=A+A+{g,1,...,n}, F;=Q.

With rule number i of R, of the form uqv — u’q’v’ associate the rule of S,
written in a tree-like form:

u—q—v - u'—q'—v'.
I l
y i
I
y

Notice that the length of the first argument of q is incremented by 1 each time a

rule of S is applied; hence — ~! is noetherian. The first argument of q behaves
N

R.A.LR.O. Informatique théorique/Theoretical Informatics



FINITENESS RESULTS ON REWRITING SYSTEMS 379

like a write-only stack, and the top symbol indicates the last rule which has been
applied. The symbols on the right of g are barred but those on the left are not, so
that no overlapping is possible. Finally, variables x and y occur only once in
each term of S.
With a configuration c¢ is now associated a set of terms of the form:
g—b—...—a,—... —ai_l—(lj—ai— N —5,,—5— .. .B—d,

S

where se M ({0,1,...,n}, D).

CLaM: Given a configuration ¢ and a term t in 1(c), there is a one-to-one
correspondence between the transitions ¢ — ¢’ of the Turing machine and the
single rewritings t — t', with t'e T(c').

S
The proof is an easy but tedious argument by cases on the quintuple.

To prove the theorem, consider a Turing machine starting in state g on an
initial configuration ¢=a,...a, with its head pointing on the square a;.
Associate with it the rewriting system S as in lemma 2, and the term:

t=g—a,—...—a;_1,—q—a;— ... —a,—d.

0

Then [t]s is finite if and only if there is no infinite chain:

to"tty 57y T, T
s

N N N

Since — ~! is noetherian and confluent, t can be computed in a finite amount
N

of time, so that deciding whether there exists such an infinite chain is equivalent
to deciding whether the Turing machine halts on input c; this is impossible. This
proves the first assertion of the theorem.

*

As for the second, we shall show that all the equivalence classes under < are
N

finite if and only if the Turing machine halts on every initial configuration c. The
““only i part is clear since shall be finite in particular the classes of the terms
representing the initial configurations of the machine. To prove the converse,
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we prove that if there exists one term the class of which is infinite, then the Turing
machine does not halt on some initial configuration. Associate with each term ¢
the set OC(¢) of all occurences of binary symbols q.

LEMMA 3: For two terms t and t’ such that t — t', the sets OC(t) and OC(t')
s

are isomorphic.

Proof: Either the occurrence u of g has not been rewritten, and u i— u; or the
occurrence has been rewritten by a rule simulating a right move of the head, and
u— u l; or again, the occurrence has been rewritten by a rule simulating a left
move, hence u=u'1, and u — u’.

If we identify the corresponding occurrences and since there is only a finite
number of them, the term ¢ admits an infinite number of rewritings if and only if
one of the occurrences in OC (1) is rewritten an infinite number of times This
occurrence can be associated with a subterm of t of the form:

ay—...—0j-y—q—a;—...—a,—Xx,
|
ky
|

i
-
I
y
where x and y are subterms of t, and n and m are maximal. Then the term:

g—a,—...—a;_,—q—a;—...—a,—d,

represents a configuration of the Turing machine, and is rewritten infinitely
often. This concludes the proof of theorem 1.

The situation is different if S contains only ground terms, i.e. terms which
contain no variable, or egquivalently if no substitution is allowed.

R.A.LR.O. Informatique théorique/Theoretical Informatics
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LEMMA 4: Given arelation — with finite image (i.e. { s; t — s} is finite for all t),

*
and a term t, there exists an infinite number of elements s such that t — s if and

only if there exists an infinite chain:

t—=>1 - ...t - ...
with distinct t,’s.
Proof: Construct the tree of all sequences t — t, = ... — t,, such that the
father of the sequence above is the sequence t - t; - ... —> t,, ,. Thetreeis

finitely branching. Prune all subtrees whose root occurs already somewhere in
the tree either less deep or at the same depth but on the left. The remaining tree
contains an infinite number of distinct nodes, hence has a branch of infinite
length (Koenig's lemma).
QED.
LEMMA 5: Let — be a precongruence generated by a finite system

S={g, » d,,...,g, = d,} of ground terms. There exists an infinite number of
X
terms s such that t — s if and only if there exist two terms t, and t,, two

occurrences u, teN* v#¢, and a rule g, - d, such that:

* *
t_>t1 _’tz and tl/u=d,&t2/ul'=g,_

Proof: The sufficiency is clear. The converse is proved by induction on the
cardinality n of S. It is trivially true for n=0. If n#0, there exists an infinite
sequence of single rewritings:

=ty >t > ...
with distinct t,’s.
We shall prove the intermediate result that there exists an occurrence u and a

subsequence of single rewritings such that the image of the subsequence under
the occurrence u is of the for.n:

d - ... >t — ...

Indeed, either ¢, =d, for some k and i, and the result is true for u=¢ and the
subsequence starting at ¢ ; or else t=ft,...t, and one t, admits an infinite
sequence of rewritings. By induction on | ¢ | there exists a subsequence of infinite
rewritings, and an occurrence u of t, such that the image of the subsequence
under the occurrence u is:

d - ...->t,—> ...

vol. 15, n°4, 1981



382 J-C RAOULT

This is also the image of the same subsequence of rewritings of ¢ under the
occurrence ju. So is proved the intermediate result.

If the precongruence generated by S—{ g, — d, } has a reflexive and transitive
closure of infinite image, the result is true by induction on n. Otherwise, since the
sequence contains an infinite number of distinct terms, the rule g; — d; must be
applied. Ifan all instances ¢, — ¢, , ; of thisrule, t, =g, the subsequence contains
only a finite number of distinct terms. Therefore:

Jk, v, t/v=g, &r#e.

THEOREM 2: Given a finite rewriting system S of ground terms, and the generated
congruence, one can decide whether the congruence class of a term t is finite. It is
also decidable whether all classes are finite.

*
Proof: From lemma 5, the class [t]={s; t < s} is infinite if and only if there
S

exist two terms f, and t,, (wo occurrences u and v(r#¢€) and a rule
g, = d,eSu S~ ! such that

* *
t—t, —t, &t,/u=d, &t,/uv=g,.
Sus™! Sus™!

The algorithm consists of finding the terms ¢, and ¢, (if they exist) in the
following way. Generate the tree of single rewritings of t for SUS™!' by
successive depths When a term is encountered which has already been seen, it is
omitted together with the whole subtree of which it is the root. If [t] is finite, the
algorithm terminates. With each node of the tree is associated the pair (u, i) of the
occurrence u and the number i of the rule of S which has just been applied, and it
is compared to the pairs which have already been computed on the same branch.
If [¢] is infinite, there must exist two pairs (u,, i) and (u,,i) with:

U,=u, v (v#¢)

and the algorithm terminates also in this case.

To prove the second assertion, notice that if there exists an infinite congruence
class [t], there exist two terms ¢, and t,, two occurrences u, r € N*(r#¢) and a
rule g, —» d,eSu S™! such that

* *
t——t,—t, &t /u=d; &t,/uv=g,.
sus™! sus™!
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Applying the same lemma to ¢t} =t,/u=d,, t=t,/u, u'=¢ and v’ =r we see
that the class [d ] is infinite. Hence it suffices to run the algorithm above on the
terms d,, . ..,d,.

IV. A REVIEW ON RATIONAL FORESTS

As is the case with languages in a free monoid, the rational forests can be
characterized by accepting devices (finite automata), generating devices (linear
grammars), or by purely algebraic means (finite index congruences). In this
section, these three possibilities are defined and proved equivalent.

DEFINITION 4: A finite ascending F-automaton is a finite F-algebra Q of states
together with a subset P<Q of final states.

Since 7 (F)is a free F-algebra, there exists a unique morphism p : 7 (F) — Q.
A term t is accepted by the automaton Q when ¢ p is a final state.

DEFINITION 5: A finite descending F-automaton is a finite set Q of states together
with a relation fj, £Q x Q" lor all f € F, where n is the arity ol J

Weshallnoteq/f(q,,...,q,)instead ol {¢,q,, .. .,q,)€ ]y 1tisalso possible to
write (¢, - . -,4,)€Jo(q), and then J, is considered as a function Q — 22 .There
may exist several n-tuples (¢, . . .,q,) Butif for all state ¢ there is a unique n-
tuple (¢4, - . .,q,) such that ¢qj (¢,, - - -,q,) the automaton is deterministic.

HaeFy, ug < Q is merely a subset of Q: the domain of ay .1f g € 4y ones writes
qag 1, and says that a erases ¢. This delinition is extended inductively: the term
t=jt,...t, erases the stale ¢ when there exists ¢/ (g,,...,q,) and t, erases
q,(1=i<n).Aset Loltlermsisaccepted by the descending automaton starting at
a (finite) subset P ol initial states if and only it L is the set of terms which erase at
least one state of P.

DEFINITION 6: A rational grammar is a finite subset GES X x M (F,X) in
which X is a finite set of nullary constants called non-terminals.

If a term t contains a non-terminal x, then this term will be rewritten into a
term ¢’ obtained from ¢ by replacing x by one of its corresponding right-hand
sides in G. The relation generated in this way is a left-precongruence, according
to the following definition.

DEFINITION 7: A relation — over M (F, X) is a left-precongruence when it is
reflexive and compatible:

(i) t > t for all te M(F,X);

(i) t, » t/(1<ign) = ft,...t, = fty...t,, for all n and all fe F,.
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384 J-C RAOULT

A left-congruence is a left-precongruence which is also an equivalence relation.
Thus if - denotes the left-precongruence generated by G over M (F, X), then

the language L (G, Y ) generated by G from the set of axioms ¥ £ X is the set of
*

terms t€ M (F) such that x — ¢ for some xe } (the star denotes the transitive
G

closure).

One can check, by adding a suitable number of new non-terminals (in fact one
for each subterm of the right-hand sides of G), that one can define a new
grammar G’ of the following type:

x")f,VI"'yn’ x’.)llEX’ jEFm

c zeX, aekF,,

’
z—a

This simpler grammar generates nevertheless the same language from the
same set of starting axioms.

Example:

x = f(z,y)+b,

{x_}j(g(xvx)’.}')ﬁ}-b, G’ y—‘)g(u,x)'}'b,
y—bg(a,x)"'b, Z_’g(x,x),

u— a.

ProrosiTiON 4: Let L be a subset of M(F). The following assertions are
equivalent:

(i) L=L(G,Y) for some rational grammar G;

(i1) L is accepted by a finite descending F-automaton;

(ii1) L is accepted by a finite ascending F-automaton;

(iv) L is a union of equivalence classes for a left-congruence of finite index.

We prove (iv) < (iii) = (i) = (i) = (iii).

(iv) <= (iii): let ~ denote the left-congruence, and:

u: M(F)—> M(F)/~

be the projection onto the finite quotient. In order to define a finite automaton
accepting L, set Q =M (F)/~. The assumption that L is a union of equivalence
classes for ~ implies that there exists a (finite) subset P<Q such that L=P p~?,
ortelL < tpeP.
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FINITENESS RESULTS ON REWRITING SYSTEMS 385

Conversely, any finite ascending F-automaton p : M (F) — Q defines a left-
precongruence over M (F) : t~t’ iff t p=t" p. The accepted set L of terms is

Pu'=) gu ', i.e. a finite union of equivalence classes.
qepP

(iii) = (ii): .simple duality transforms an ascending automaton into a
descending one: the sets of states are isomorphic, the set of initial states of the
descending automaton corresponds to the set of final states of the ascending
automaton. For the transitions of the descending automaton, set:

qu(qls"'7Qn) lff q:jQ(qls"'vqn)’

in the ascending automaton.

Clearly t erases g in the descending automaton if and only if ¢ is accepted (with
final state g) by the ascending automaton.

(i1) = (i) by a classical argument: let X be a set of non-terminals isomorphic
with Q, and x, be the non-terminal associated with g. Define the following
grammar:

(x, =[xy - X,)EG <= qfo(dys - 240

for all n-ary symbols f, and all n>0. If aeF,,. then:

(x, = a)e G <> a erases q in the finite automaton.

It is easily checked by induction on the structure of t that ¢ erases q if and only
if te L(G, x,); so that if Y X is the set of non-terminals associated with the
initial states of Q, then:

L=L(G,Y).
(i) = (iii): Let the grammar G be of the simple form:

“ ey

G x_)fyl"'yn,

z — a.

X,}’.'eXs f‘ebFn’

zeX, aeF,,

where X is the finite set of non-terminals.

Define a finite F-algebra Q, the elements of which are all subsets g X,
endowed with the following operations:

ap={xeX;x - aisin G} forall aeF,,
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386 J-C RAOULT
and:

fo@y,---,q,) ={xeX;3y,€qy,...,3y,€q,, x > fy;...y,isin G},

for all fe F,. There exists a unique morphism p : M (F) — Q. Let us check by
*

induction on the structure of ¢ that xe ¢ p if and only if x — . In fact, it is the
G

definition of ¢, if te Fo, and if t=ft,. . .t,, then:

Xetp < xe€fo(typn,...,t, 1), because p is a morphism.

< (x> fy;...y,)€G &y;et;p for all i, by definition of f,.

%
< (x> fy;.-.-.y.)€G &y; — t;, by induction hypothesis.
G

*
< X > t.
G

Therefore Q accepts the set L(G, Y) if the set of final statesis Y. W

Note that the finite F-algebra Q defined above is also a (F + X)-algebra in
which:

xo={x} forall xeX.

Therefore p can be extended into a morphism M (F, X) — Q which is again
denoted by p. Therelationt p=t' pisaleft-congruence over M (F, X ) which has
a finite index, and L is invariant under its restriction to M (F):

V t,t'e M (F), (teL &tp=t'p) = t'el.

As is the case with monoids, there is a coarsest such left-congruence:

PROPOSITION 5: Let L be a subset of M (F). Then L is rational if and only if the
following left-congruence has a finite index:

t~t" iff YV ceM(F,X), V¥V xeX, c[t/x]eL < c[t'/x]eL.

Furthermore the quotient M (F)/ ~ is the smallest F-automaton accepting L.
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Proof: Let S denote the set of all left-congruence over M (F, X ) such that L is
invariant under their restriction to M (F). Then ~ € S (take c=x), and any left-
congruence = in S is contained in ~ : =€ S = = < ~ . Thus there is a unique
surjective morphism M (F)/= — M (F)/~ such that the following triangle
commutes:

L M(F)/=
M(F)\
M(F)/~

This proves the last assertion of the proposition. The first one follows
immediately since M (F)/~ is finite if M (F)/ = is finite. W

If one wishes to consider congruences instead of left-congruences, the situation
is nearly the same.

ProPOSITION 6: Let ~ be a left-congruence over M (F, X)), and ~ be the induced
congruence. Then ~ has afinite index if ~ has afinite index. The converse is true
when X is finite.

Proof: Since t~t" = t~t’, the direct assertion is clear. Conversely consider
the mapping:

M(F,X)xM(F,X)* - M(F,X) -» M(F,X)/~,

(o) to P [to]..

If t~t',then t c~t' o, hence t c~t' o, hence [t 6]. =[t' o].. And if for all
xeX,x o~x o' (shortly o~c')thent c~t ¢’ because ~ is a left congruence.
So that the above mapping factors through:

(M(F,X)/~)x(M(F/x)/~)* - M(F,X)/~.
Each class of congruence in M (F, X )/~ thus appears as a function:
(s : (M(F,X)/~)" > M(F,X)/~,

which is easily checked to be injective. If X is finite, the set of functions
(T(F,X)/~)" - T(F,X)/~ is finite, hence the result. M

COROLLARY: Let I. e M(F,X) where X is a finite set of variables. Then L is
rational if and only if either of the following equivalences has a finite index:
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(i) t~t"iff VeceM(F,X)Y xeX, c[t/x]eL < c[t'/x]eL;
(i) t~t"iff Vce M(F,X)VY xe XY o substitution,

c[to/x]eL < c[t' o/x]eL.

The congruence (ii) corresponds, for trees, to the syntactic congruence in the
monoids.

V. THE FINITENESS OF THE NUMBER OF CLASSES

The aim of the present section is to prove the following theorem.

THEOREM 3: Given a finite relation S over M (F, X) such that — is noetherian
% S
and confluent, one can decide whether the congruence < has a finite index, if in the
N

left-hand sides of S, each variable occurs at most once.

Proof: Since — is noetherian and confluent, each class contains a unique
N

extremal term r such that:

* * .
§S—>t< s>t (cf prop.3).

The problem is now reduced to deciding whether there is a finite number of
extremal terms. Turning things around, a term ¢ is not extremal when there
exists a term ¢ containing a variable x, a substitution ¢ and a left-hand side g
of S such that:

t=clg o/x].

This is the classical problem of recognizing the ‘‘pattern” g in the text t, and
can be done with the help of a finite automaton (as in [7]).

For our purpose we shall use the following (F + X )-automaton. Define:

E={teM(F,X); t is a subterm of a left-hand side of S };

Q=2F, the set of subsets of E.

Since S is finite, E —hence Q — are also finite. Give Q the structure ofa (F + X)-
algebra: for all fe F+ X:

— iffeF,+X, thenfy=En{f};
— else fo(qy - - > qa)={ft;- - - t,€ E; (Vi) tiEQiUX}UU(‘L'ﬁG),

where G is the set of all left-hand sides of S.
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PROPOSITION 7: The image t p of a term te M (F, X) in the (F + X )-algebra Q
defined above is the set:

tp={seE;3o,t=s0}U{qeG;3¢ 0, t=clgo/x]}.

Proof by induction on the structure of t: if te Fy+ X, then tQ={t} or Q
according as t belongs to E or not, and the proposition holds. If t=ft,.. .t,,
then tp=fy(t, p,...,t, 1) and the definition of f, yields:

tu={fs,...s,eE(Vi)siepu X Jo Ut pnG,

Thus set p if and only if one of the following conditions is met:

(1) set;pn G for some i. In that case 3 ¢;, o,€t;,=c;[s 5,/x] by induction,
and the variable x may be chosen so that it does not appear in any ¢, for j#i.
Then t=c[s o;/x] with ¢=/t,...t,_Citisy...1;

(2) s=fs,...s,and for all i, s;et,p or s;€ X, i.e..

Vi 3o, t;=s;

G;

(ifs;€ X, then 5, is defined by t,=s; ;). Since the term s € E is a subterm of a term
in G, each variable x € X occurs in at most one s;. Define the substitution ¢ by:
x o=x o, for all x occurring in s.
x o=Xx otherwise.
Then r=sc. N

Choose, for final states in P all subsets of E which do not contain any g€ G:
P={qSEqnG=0}.

Then tpeP if, and only if, ¢t is irreducible. The following proposition
concludes the proof of theorem 3.

PROPOSITION 8: A4 finite automaton with n states accepts an infinity of terms in
M (F, X) where F and X are finite, if and only if it accepts a term the depth d of
which satisfies:

nsd<2n.

Proof classical: 1f a term t is accepted, of depth d satisfying n<d <2n, then
there exists a chain of subterms of length d, that is a sequence:

E=50,S1s+++sSis -+ ->Sj5 554
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where s, is a subterm of s;_, and s;#s; ,, for 1 <i<d. There are more than n
subterms so that there exist two subterms s;#s, with s; p=s, u. Intuitively the
subterm s; can replace s; arbitrarily many times without changing ¢ p. Precisely
define:

b N

Figure 2
— t’ such that t=1t'[s;/x], and

— " such that s;=s"[s,/x], where x does not occur in ¢ (cf. fig. 2).
Then:

ty=t"[s"/x]...[s"/x][s;/x],

n times

is accepted by the automaton for all ne N.

Conversely suppose an infinite number of terms is accepted, and in particular,
since F+ X is finite, a term ¢ of depth at least n. Consider a chain:

t:S()-~Sl7 <o s Sy

where s, is a subterm of s; (1 Zi § n), and of no other subterm of s; _,: for some
feF,s,_;=f(...s;...). Since there are only n states, s; p=s; i for some i<j.
Associate with f the term ¢’ obtained by replacing in ¢ the subterm s; by s;, and
write t R t’. Since t’ contains less symbols from F than t’, R is noetherian.
Hence there exists a term ¢ with t R* ¢, such that t Ru is impossible. In ¢, all

chains of subterms have length less than n. Consider the last replacement: s R .
There exists ce M (F, X) with:

s=cls;/x] & f=c[sj/x].
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-~ |
1]

Figure 3
Define s’ as the term such that s, =s’[s;/x]. The longest chain of subterms of s
is:
S=S0,81s 3858, 3Sps ey Sy,
where i +d —j <n since if is the length of a chain of subterms of ¢, viz the chain:
505 sSio138jy - e3Spy ey Sq.

In particular j —i <n.Replacing s, by s, in t and iterating [(2n —d) /(j — i)] times
yields a term of depth in [n, 2n[, accepted by Q. W

To prove the theorem, construct the automaton as in proposition 7, and run it
on the terms of depth d satisfying n<d<2n. Since there exists only a finite
number of such terms, the automaton stops with the answer
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