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FPOL SYSTEMS GENERATING
COUNTING LANGUAGES (%)

by A. EnrenreucHT (1) and G. Rozenserc (2)

Communicated by W. Brauer

Abstract. — Counting languages are the languages of the form {a;‘ ay...a}|tz2,n= 1} where
ay, ..., a,areletters no two consecutive of which are identical. They possess a *‘clean structure’ in the
sense that if an arbitrary word from such a language is cut in t subwords of equal length then no two
consecutive subwords contain an occurrence of the same letter. It is shown that whenever an FPOL
system G is such that its language contains a ‘‘dense enough’ subset of a counting language then the
whole language of G cannot have such a clean structure.

Résumé. — Les langages « comptants » sont les langages de la forme {a'll aj...al|t22,n21},0u
a,, ..., a, sont des lettres, et deux lettres consécutives étant différentes. Ils possédent une « bonne
structure », en ce sens que si un mot quelconque d’un tel langage est divisé en t facteurs de méme
longueur, alors deux facteurs consécutifs ne contiennent pas d’occurrence d’une méme lettre. On montre
que, siun system FPOL G est tel que son langage contient un sous-ensemble d’un langage comptant qui
est « assez dense » alors le langage de G complet ne peut pas avoir cette « bonne structure ».

1. INTRODUCTION

One of the important research areas within formal language theory is the
investigation of the combinatorial structure of a single language within a given
language family. Here one aims at a result of the form “‘if K is a language from a
given language family X, then if K contains a string o satisfying a property W,
then K also contains a set of strings A4 satisfying a property W,” or in more
general form “‘if K contains a subset K, satisfying a property W, then K also
contains a subset K , satisfying a property W,”. A classical example of this kindis
the celebrated ‘‘pumping lemma” for context free languages: it says that if a
context free language K contains a ‘‘long enough” word o then it also contains
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162 A. EHRENFEUCHT, G. ROZENBERG

an infinite subset A related in a very specific way to a. Results of this form shed
some light on the generating abilities (restrictions) of grammars defining a given
class of languages. They are simply *trade-off” results: if some *‘structure” is
present in a language then also another structure must be present in the same
language.

In this paper we establish a result a result in this direction for the class of
languages generated by OL systems without erasing productions and with finite
axiom sets (called FPOL systems). One of the most popular types of languages
(serving as examples of strict inclusions of some classes of languages in others) in
formal language theory are t-counting languages (which form a subclass of the so
called bounded languages). Those are languages of the form { a} aj}. . .a}|n21}
where t=2and a,, ..., a, are letters no two consecutive of which are identical.
They possess a ‘‘clean structure’ in the sense that if an arbitrary word from such
a language is cut into t subwords of equal length then no two consecutive
subwords share an occurrence of a common letter. We demonstrate that if an
FPOL system G is such that its language contains a ‘“dense enough” subset of a
counting language, then the whole language cannot have such a clean structure
(or even a structure ‘‘approximating” it ). Thus again a result in this line: if
certain words are in the language from the given class, then other words must
also be in the same language.

Certainly there are very few results like this for the class of FPOL languages
and we believe that this result together with its proof sheds some new light on the
structure of derivations in FPOL systems. Since t-counting languages are
obviously EPOL languages, our main result points out a special role (that of a
» garbage collector”) that the mechanism of nonterminals plays in defining
languages of L systems.

Perhaps it is also worthwhile to mention that results like this are especially
valuable in the theory of L forms where one is really interested in the structure of

“all sentential forms” that a given system can generate. In particular our result is
used in [3].

II. PRELIMINARIES

We assume the reader to be familiar with rudiments of formal language theory
and in particular with the rudiments of the theory of L systems (see, e. g.,[2]). We
use a rather standard terminology and perhaps only the following notation
requires an explanation.

(1) N, N* and N (¢) denote the set of nonnegative integers, positive integers
and positive integers larger than t, respectively.

R.A.L.R.O. Informatique théorique/Theoretical Informatics



FPOL SYSTEMS GENERATING COUNTING LANGUAGES 163

(2) For a finite set Z, # Z denotes its cardinality.

(3) If ais a word over X then alph o denotes the set of all letters from X that
occur in a, pref, (o) denotes the prefix of o of the length k and suf, (o) denotes the
suffix of a of the length k. | & | denotes the length of o and # , « denotes the number
of occurrences of the letter a in «.

(4) If K is a language then:
alph K=\ alpha,  ALPH(K)={alph a|aeK}

aeK
and

less,K=#{|a| | aeK and |a| < ¢}.

(5) In our notation we often identify a singleton set with its element.

To establish the basic notation for this paper we recall now the definition of an
FPOL system.

DeriniTiON: (1) An FPOL systemis a construct G=(X, P, A) where Z is a finite
nonempty alphabet, P is a finite set of productions, each of the form a — « with
aeX, aeX? satisfying the condition:

(Va);Fa),+[a — o is in P].

A is a finite nonempty set (of axioms), ASZ™.
(2) Given words x, ye =+ we say that x directly derives yin Gif x=a, . . .a,and
y=o,...0, wherea, - o, ..., a, > a, are productions from P. We write then

X=y.
G

(3) For a positive integer m we say that x derives y in m steps if there exist
Xgs .. .5 X, such that:

Xo = Xy, Xy = Xy, ce b
G G G

m and Xp=).

We denote it by x = y. If x=y or there exists an m such that x = y then we say
G G

that x derives y in G and denote it by x 2 .
G

(4) The language of G, denoted as L(G), is defined by:

LG)={aeX* |Aw),w=o}. O
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164 A. EHRENFEUCHT, G. ROZENBERG

DerFiniTION: Let G=(Z, P, 4) be an FPOL system.
(1) Let xeX*. Then G,=(Z, P, o).
(2) Let ne N*. Then

L"(G)={0eL(G): (Aw),[w=a} and L"G,a)=L"(G,).

(3) inf GSX where aeinf G if and only if {aeL(G) : acalph a } is infinite;
elements of inf G are called infinite letters (in G).

(4) fin G=XN\Jnf G; elements of fin G are called finite letters (in G).

(5) mult Geinf G where aemult G if and only if:

(V 1)y, Qo) [# s a>n];

elements of mult G are called multiple letters (in G).

(6) copy G={meN*|(Ba);, [a"eL(G)]}.

(7) The growth relation of G, denoted as f;, is a function from N* into finite
subsets of N* defined by f;(n)={|a| | aeL(n, G)}.

(7.1) If there exists a polynomial ® such that:
(Vn)y+(Vv m)fG(n) [m<®(n)],

then we say that f; is of polynomial type; otherwise f; is exponential.
(7.2) If there exists a constant C such that:

(Vn) 3 m)rc,(n) [m<C],

then we can say that f; is limited.
(7.3) If (V n)y- [# f; (n)=1], then we can say that f; is deterministic. [

III. AUXILIARY RESULTS

In this section we investigate certain aspects of derivations in FPOL systems in
general and in the so called t-balanced FPOL systems in particular.

DeriNiTION: Let 2 be a finite alphabet.
(1) LetaeX* and let t be a positive integer t = 2. A t-disjoint decomposition of
o is a vector (o, ..., o, )suchthata,, ..., a,€Z*, a,...a,=aand, for every i
in{1,...,t—1}, alph o;nalph o;, , =D.
(2) Let KX ™ andlet t be a positive integer, t > 2. We say that K is t-balanced
1

if there exist positive rational numbers c,, ..., ¢, with ) ¢;=1 and a positive
i=1
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FPOL SYSTEMS GENERATING COUNTING LANGUAGES 165

integer d such that for every a in K there exists a t-disjoint decompo-
sition (&, ...,a,) of o such that, for every ie{l,..., t},
¢;.lo|—d=|a;| Sc¢;. la| +d. Insuch a case we also say that K is (v, d)-balanced
and that (o, ..., o,) is a (v, d)-balanced decomposition of «, where
v=(Cy, ..., C,)

(3) An FPOL system G is t-balanced if L(G) is t-balanced. [

The following three lemmas describe the basic property of growth relations of
t-balanced FPOL systems.

LemMma 1; If G=(Z, P, A) is a t-balanced FPOL system with t =3, then there
exists a positive integer k, such that, for every a in T and for every positive integer
n, # f5 (n)<k.

Proof: Clearly it suffices to show that for every a in I there exists a positive
integer k, such that, for every positive integer n, # f; (n)<k,.

Let v=(cy, ...,¢,) and d be such that L(G) is (v, d)-balanced. Let
Cmp=min{c,, ..., c,}.Ifae T theneitheracinf Goraefin G. We will consider
these cases separately.

(1) Let aeinf G.

In this case we will prove the result by contradiction. Thus let us assume that:

there does not exist a positive integer k, such that, for every positive integer n,

# fo,(n)<k,. (%)

Then we proceed as follows.

(i.1) There exist a positive integer n,, a positive integer r larger than #X and
wordsw,, ..., w,in L™ (G )such that,foreveryiin{1, ..., t}andforeveryjin
{1, .. r=1}, cilwyyq | >c;|w;]| +24d.

This is proved as follows.

Clearly it suffices to show (i.1) with ¢, replaced by ¢

Let us take ah arbitrary n and let f; (n)= {xy, ..., x,} where elements
Xy, ..., Xg are arranged in the increasing order. Let x; , ..., x; be the longest
subsequence of x;, ..., x defined as follows: x, =x;,andfor 1< j<r—1,i;,,is
the smallest index with the property that:

min*

X X >—.
1 i C.

Ifr< #X then s< #X(2d/c,,;,). Since n was arbitrary, if we set k, equal to the
smallest positive integer larger than (#X (2d/c,;,))+ 1 then we get that, for every
positive integer n, # fs,(n)<k,, which contradicts (x).
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166 A. EHRENFEUCHT, G. ROZENBERG

(i.2) Leta=o, ao, be a word in L (G) that is long enough, meaning that, for
everyie{1,...,t},|a|c;>3|w,|+5d where w,, ..., w,is a sequence (in the
order of increasing length) from (i.1) for some fixed n, and r. Let:

Br=a,w a,eL"(G, a),

B, =%, w,d,eL"(G, o),

where @,, a, are some fixed words such that:
o, € L%(G, a,) and a,eL™(G, a,).

Let, for each ie{l,...,r}, B; (1], ..., B; [1) be a (v, d)-balanced
decomposition of B,.

Since | B;| = |a|and t =3 the condition on the length of o assures us that either
w; is contained in the word resulting from B; by cutting off its prefix (B; [1])
(pref,,)+24(B: [2])) or w; is contained in the word resulting from B; by cutting off
its suffix (suf|,, | ;24(B; [t —11)) (B;[£]). Because these two cases are symmetric we
assume the first one.

Since, for each ie{1, ...,r—1},
2d 2d -
(Wi | —lw;|> > [Bisal—1B:l > .

‘min ‘min

Consequently |B;, 4 [1]] —|B;[1]|>0 and so B, [1] results from B, [1] by
catenating to B;[1] a nonempty prefix of B; [2]. Also:

[B, (1] =B ]| =(cy- (1o, 0y | + |w,|)+d)
—(01(|&1 C_3(2| +lw, [)=d)=c,(lw,| = |w; |)+2d= |w,| +24d.

Thus in constructing consecutively B, [1], B3 [1], ..., B, [1] we use nonempty
subwords of a prefix of §, [2] and we never reach the occurrence of w, indicated
by the equality B, =a, w, a,. However r> #ZX and so at least two nonempty
subwords used in the process of constructing f, [1], B3 [1], .. ., B, [1] contain an
occurrence of the same letter. This implies that there existsajin {2, ..., r—1 }
such that:

alph (B; [11) nalph (8; [2])#®

which contradicts the fact that (B; [1], ..., B; [f]) is a (v, d)-balanced
decomposition of B;.
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FPOL SYSTEMS GENERATING COUNTING LANGUAGES 167

Thus we have shown that (%) does not hold.
(i) Let aefinG.
Let Z be the set of all words o such that alph o < inf G and there exists a word f

in L(G)such that B = a.and alph B ~ fin G # Q. Note that Z is a finite set and so if
we set. : ’

s=max{|a| | aeZ},

r=#{BeL(G)|alph Bnfin G£D}+ #Z,
and

k=max {k,|beinfG},
then # f; (n)<1+r+k® for every n20. O

LEMMA 2 : Let G be a t-balanced FPOL system with t = 3 and let aemult G.
Then f; is deterministic. -

Proof: Let G=(Z, P, A). Clearly there exists a letter b in X which for any m can
derive a word f such that # , f>m. So let k, be the constant from the statement
of lemma 1 and let B be a word such that b derives B(in some e steps) and
# B>k,

Now we prove the lemma by contradiction as follows. If the lemma is not true
then there exist a positive integer n, and words a,, a, in L™ (G,) such that
| o, | # | o, |. But then the number of words of different lengths that B can derive in
n, steps is larger than k,, and consequently # f; (e +no)> ko, which contradicts
lemma 1. [

LemMA 3: Let G be an FPOL system such that f; is deterministic and copy G is
an infinite set. Then f; is exponential.

Proof: Let G=(Z, P, A), let P be a set of productions containing precisely one
production for every ae X such that FgP and let ®e A. Consider the DOL
system G=(Z, P, ). Since fc is deterministic, f;=f;. Note that there are
arbitrarily large integers m dividing all numbers f; (n) provided that n=n,, for
suitably thosen m.

The lemma follows now by the following easy to prove property of DOL
growth functions. Assume that a DOL growth function fnot identically zero has
the following property. For every positive integer m, there are integers my=m
and n, such that m, divides f (n) wherever n=n,. Then f'is not of polynomial
type. U

vol. 15, n°2, 1981



168 A. EHRENFEUCHT, G. ROZENBERG

After we have established the basic properties of growth relations of
t-balanced FPOL systems we move to investigate the structure of ¢-balanced
FPOL systems the languages of which contain counting languages. Those
counting languages are defined now.

DeriniTiON: Let ¢ be a positive integer, t =2. A language M over X is called a
t-counting language if M={a}aj...a}|n2z1}, where for ie{l, ..., t},
a;eZ and a;#a;,, for je{l, ..., t—1}. We also say that a; and a,,, are
neighbors in M. []

To prove our main theorem we need the following transformation of an FPOL
system.

DermiTioN: Let G=(Z, P, A) be an FPOL system and k a positive integer. The
k-decomposition of G is a set ¥={G,, ..., G,} of FPOL systems (called
components) such that, for every ie{1, ..., k}, G,=(Z, P¥, A;) where 4,=A4
- and A;={a|laeL"*(G)} for ie{2, ..., k}, and (a > «)e P* if and only if

K
a=o.

k
If follows directly from the above definition that L(G)= \U L(G;), where
i=1

%={Gy, ..., G} is a k-decomposition of G.

A particular kind of decomposition will be useful for our purposes. It is defined
as follows. Let G=(Z, h, A) be an FPOL system. We say that G is well-sliced if:
(1) for every a in Z and every k, 1=1,

ALPH (L¥(G,))=ALPH(L'(G,))

and moreover if x is a word such that | x| =2 and # alph x =1 then x € L*(G,) if
and only there exists a word y such that | y| =2, alph x=alph y and ye L'(G,);

(2) for every ain X if \J L"(G,) is finite then

nx1

U L"G,)={ala=a}.

nz1

The proof of the following result is rather standard (see, e.g.,[1]) and soitis
omitted. (By a well-sliced decomposition of an FPOL system we understand a
decomposition each component of which is well-sliced.)

LeEmMA 4: For every FPOL system there exists a well-sliced decomposition. [J
We are ready now to prove the main result of this paper.

R.A.I.LR.O. Informatique théorique/Theoretical Informatics
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THEOREM 1: Let t = 3, M be a t-counting language, G be a t-balanced FPOL

systemand K = M ~ L(G). There exists a constant C such thatless , K < C.log, q
for every positive integer q.

Proof: Let G=(Z, P, A) and A=alph M. By lemma 4 there exists a well-sliced
decomposition of G and since it suffices to prove the theorem for a single
component of such a decomposition let us assume that G is well-sliced.

Since the result holds trivially when K is finite, let us assume that K is infinite.

(1) For every letter b in A there exists a multiple letter a and a word o in { b }*

+

such that a = «. This is obvious.

+

(2) If aemult G, beA, ae{b}* and a= «a then:

(1) fs, is either constant or exponential,

(ii) fg, is either constant or exponential, and

(i) f;, is constant if and only if f; is constant.

We prove (2) as follows.

By Lemma 2, is deterministic and because G is well-sliced, for every positive
integer n, lef; (n) if and only if b'e L"(G ).

Let t=>b", b, ... be such that i;= f; (j).

If T contains infinitely many different words then G, satisfies the assumptions
of lemma 3 and so f; is exponential.

Otherwise, because G is well-sliced, f; is a constant function.

Thus (i) is proved. But a derives strings ‘‘through” b and so a and b must have
the same type of growth. Consequently (i) implies (ii) and (iii).

(3) Either, for every bin A, f; is a constant function, or, for every bin A, fg, is
exponential.

This is proved as follows.

Let be A. From (1) and (2) it follows that f; is either constant or exponential.
Now let a be a neighbor of b (in M). Then if we take a word o from K of the form
...a"b" ... (orsymmetrically ... b"a" ...)and will derive in G words from it in
such a way that each occurrence of b in « will produce the same subtree, then if b
is not of the same type as a, we obtain a word B in L(G) that is not t-balanced; a
contradiction. Consequently any two neighbors in M must have the same type of
growth and (3) holds. ‘

(4) It is not true that f; is constant for every ain A. We prove it by showing
that if f; is constant for every a in A then the fact that K is infinite leads to a
contradiction.
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170 A. EHRENFEUCHT, G. ROZENBERG

Since K is infinite we can choose « in K which is arbitrarily long, €. g., so long
that each derivation graph for a in G is such that on each path in it there exists a
label that appears at least twice. In a derivation graph corresponding to a
derivation of o from o in A we choose a path p=e,, ¢,, ... as follows:

ey is an occurrence in @ such that no other occurrence in @ contributes a longer
subword to a,

e;+, 1s a direct descendant of e¢; such that no other direct descendant of e;
contributes a longer subword to a.

Now, on p we choose the first (from e,) label o that repeats itself on p. Then we
take the first repetition of ¢ on p (and we let B, B to be the words such that the
contribution of the first ¢ on p to the level on which the first repetition
of o on p occurs is BO'B where the indicated occurrence of ¢ is the occurrence of o
on p). )

The situation is illustrated by the following figure:
>\

|
| the path p
1

Now we proceed as follows.
(i) BB#A.

We prove it by contradiction. To this aim assume that BE:A.

+

(i.1) Then every label p on p that repeats itself must be such that p = SpE
implies 85 =A.
This is seen as follows.
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Since G is well-sliced, 6 = o, 6 = {p and p = ppy for some words ¢, {, p,
such that alph u;=alph 85.

Then:
6 = Lol = (Dppul® o @pOpuppphg®
o = o = L = e -
cT e - = Lot =
c = o© = o = G -
for some words C(”,E“), c(Z)’Z(Z), e H(”, T u(z), ﬁ(z), .. where all the

words pV p®, n® @ are nonempty if 85 is nonempty. Consequently if
88#A then there exists a positive integer [, such that # f; (I)>k,, which
contradicts lemma 1 (where k, is the constant from the statement of lemma 1).

Thus (i.1) holds.

But (i.1) implies that o cannot be longer than a fixed a priori constant; since o
was an arbitrary word in K this contradicts the fact that K is infinite.

Thus indeed BP # A and (i) holds.
(ii) Since G is well-sliced, c = yoy for some words v, y such that alph yy =alph

Bﬁ and ¢ =« for some neA*. Since we have assumed that fg, is constant for
every a in A, f; is constant.
Then:
c = = 1 = 71? = 710 =
o = Yoy = YUy = @03 o
o = yoy = yDyopy) = y@yDOpyhy@ -

oyt gt (1) (2

c = yoy = yYVyoyy'? = y®yDyoyyhy®

= ,Y(3).Y(2).Y(l)n?(l)?(z)?ﬂ) =

where all yy, YD y®, ..., oV, ... are nonempty words.

Since f;; is constant, the above implies that there exists a positive integer I such
that # f; (I)>k, which contradicts lemma 1 (where k, is the constant from the
statement of lemma 1).
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172 A. EHRENFEUCHT, G. ROZENBERG

Consequently it cannot be true that f;; is constant for every ain A, and so (4)
holds.

(5) f, is exponential for every b in A. This follows directly from (3) and (4).
(6) There exists a positive integer constant s, such that in every derivation
without repetitions (in its trace) of a word from k, already after s, steps an
intermediate word contains an occurrence of a multiple letter a for which there

+
exist b in A and o in {b}* such that a = o. This is obvious.

(7) Now we complete the proof of the theorem as follows: less, K< U, +U,,
where U, is the number of all the words from K of length not larger than q that
are obtained by a derivation without a repetition which does not take more than
S, steps, and U , is the number of all the words from K of length not larger than g
that are obtained by a derivation without a repetition which takes more than s,
steps.

The following graphic represents the situation:

see X ese

——
see

cen X

x

|
1
}
!
1
!
1
|
!
1
!
|
|
1
|
!
[
|
|

-

SO+1 Sq S

where s is the number of steps (in derivations without repetitions) required to
derive a word in K and [ is the length of a word in K [so that the point (i, j) is on
the graphic if in i steps one can derive a word from K of length j].

From (2), (5) and (6) it follows that for i> s, all the points (i, j) are above the
exponential line u* for some constant u> 1. But then lemma 1 implies that there
exists a constant h, such that (note that s,=log, g):

less, KSU,+U,<hyse+h, log, g.
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Since log, g=log, q/log, u

9

less, K <hy.so+h, log, q/log, usC.log, q

for a suitable constant C.
Thus the theorem holds. [

Asacorollary of the above theorem we get the following result which turns out
to be useful in the theory of EOL forms (see [3]).

CoOROLLARY 1: Let G be an FPOL system such that L (G) contains {a" b"
c"|n=1}. Then for no finite language F, L(G)\F is 3-balanced.

Proof: Directly from theorem 1. O
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