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A THEORY OF COMPLEXITY
OF MONADIC RECURSION SCHEMES (*)

by A. Ja. Dikovsku (%)

Communicated by J.-F. PERROT

Abstract. — Complexity of a monadic recursion scheme is defined through numerical characteristics
of trees representing its computations. A class of such complexity characteristics of trees essentially
unlike the computation time: so called mimeoinvariant complexity measures, is introduced which induce
several dense hierarchies of complexity classes of monadic recursion schemes of unbounded complexity
and infinite hierarchies of bounded complexity classes. Simple conditions are found under which a
Sfunction is a nonreducible upper bound of complexity of a monadic recursion scheme.

Résumé. — On définit la complexité d’un schéma récursif monadique a laide de propriétés
numériques des arbres qui représentent ses calculs. On introduit une classe de telles propriétés de
complexité des arbres, appelées les mesures de complexité miméoinvariantes, qui sont essentiellement
différentes du temps de calcul, et qui induisent plusieurs hiérarchies denses de classes de complexité pour
les schémas récursifs monadiques de complexité non bornée et des hiérarchies infinies de classes de
complexité bornée. On donne des conditions simples qui assurent qu’une fonction est une borne
supérieure irréductible pour la complexité d’un schéma récursif monadique.

1. INTRODUCTION

There were several recent attempts to find a reasonable computer-free concept
of computational complexity for program schemes. In particular, three different
definitions may be mentioned: by R. Constable [1], by K. Weihrauch [2], and by
Y. Igarashi [3]. All the three definitions have an essential common feature: they
model computation time. We propose a concept of complexity of absolutely
different nature. Our complexity measures characterize combinatorial
complexity of objects representing computations of schemes. Moreover, the
computation time is an illegal measure in our model. The mentioned papers
differ also by the classes of schemes under study. Constable and Weihrauch treat
standard (iterative) program schemes, while in Igarashi’s and our papers

(*) Received January 1980.
(*) Bul’var Guseva, 30, kv. 40, Kalinin, 170043 U.R.S.S.
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68 A. JA. DIKOVSKII

monadic recursion- schemes are considered. However, we are dealing with
classical monadic recursion schemes, whereas Igarashi exhibits his time
hierarchy in a class of generalized monadic recursion schemes substantially
broader then that of the classical schemes; furthermore, this hierarchy
degenerates for classical monadic recursion schemes.

As it is well known {4, 5] there 1s a tight relation between monadic recursion
schemes and cf-grammars: with each scheme E a ¢f-grammar G (E)is associated
in a natural way, every computation of E under an interpretation [ is represented
by a rightmost derivation of G(E) “‘controlied” by I. We make next step and
consider the trees of these derivations as representations of the corresponding
computations. After this it is rather natural to introduce complexity measures as
integer-valued functions on trees.

This relation is the base for replantation of already existing complexity theory
of ¢f-grammars as, outlined in our earlier papers [6-9] to monadic recursion
schemes. In particular, we apply (with minory changes) to monadic recursion
schemes a central concept of this theory: the notlon of a mimeoinvariant
complexity measufe (section 5). The characteristic feature of these measures is
their invariance under a class of transformations of trees preserving on the whole
their “‘topology”. A complexity measure m has been chosen, we associate with
each monadic recursion scheme E its m-complexity function mg and thus to any
nondecreasing total function f relate the class &7 of all schemes whose
complexity functions do not exeed f. Mimeoinvariance of m implies that all
quasirational monadic recursion schemes fall into bounded complexity class
&¢, .- As it turns out all mimeoinvariant complexity measures have high
classificational capacities. In section 6 we find simple conditions under which a
function f or a constant ¢ become nonreducible upper bounds of m-complexity
‘of a monadic recursion scheme (thms. 6.1, 6.2). The main result of section 7
(thm. 7.1) gives a condition under which for a mimeoinvariant complexity
measure m there is an infinitely decreasing sequence of functions
fi>f2>f> ... where each f; is a nonreducible upper bound of m-complexity
of a monadic recursion scheme. The theorem 8.1, a simplified version of this
hierarc}iy theorem, shows that for any mimeoinvariant complexity measure m
there is an infinitely decreasing sequence of functions f, > f,>> f3>=. . . such that

T—&7. #O for all i. Hence all mimeoinvariant measures provide
nondegenerate classifications of monadic recursion schemes. Finally, in the
nineth section we formulate a definition of a monadic recursion scheme of
maximal complexity and show that under reasonable conditions all
unambiguous monadic recursion schemes are elther of maximal complexity or of
bounded density.
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COMPLEXITY OF MONADIC RECURSION SCHEMES 69

2. PRELIMINARIES

We choose for the sequel two countable disjoint alphabets ¥ and W (of
terminal and nonterminal symbols respectively).

DEFINITIONS AND NOTATION 2. 1: Let z be a string. A prefix (suffix) of z is any
string v such that z=uvu (respectively z =uv) for a string u. Let N and Z , denote
the set of all numbers and all nonnegative integers respectively. A (finite labelled
rooted) treeis a pair T=(A, 1), where: (1) Ais a finite nonempty subset of (Z , )*;
(2) Ais prefix closed, i. e. with every string z it containes all its prefixes; (3) lis a
function (called a labelling) from A to Zu WU { A} (A is the empty string) (*).

Strings in A are called nodes of T. For a node v of T I(v) is called a label of v.

Let v, v’ be two nodes of T such that v=v"a for some ain Z , . Then v is called
an immediate successor of v’ (in T). The set of all immediate successors of a node v
is denoted by i (v). The cardinality of i (v) is called a width of v. The maximal width
of nodes of T'is called a width of T. A sequence p=(v,, v,, ..., v,),n=1,0f nodes
of T is called a path from v, to v, (n being its length) if v, , is in i(v;) for all
1<i<n. A path (v,, v,) is called an arrow from v, to v,. A node v’ is called a
successor of a node v if v#v’ and there is a path from v to v'.

The node Aiscalled a root of T. A node vis bottomif there is no arrow from v to
a node of T, and nonbottom otherwise. A node v is preterminal if I(v) is in
wWou { A } and either v is bottom or all immediate successors of v are bottom and
are labelled by symbols in Z.

We consider the following natural ( partial) order (denoted by <) on the set of
nodes of T. v; < v, holds iff there are nodes v, v}, v in A such that v}, v} are in
i(v), v} =va, vy, =vb for some a, b in Z , such that a<b, and v,, v} (v,, v5) either
coincide, or v, (v,) is a successor of v (v3). This natural order is complete on the
set of bottom nodes of 7. If v; <] v, < ...< v, is the sequence of all bottom
nodes of T in their natural order then the string I(v,)I(v,) . . . I(v,) [denoted by
t(7))] is the yield of T. The length s of this string is denoted by | T'|.

DerFiniTioN 2.2: Two trees T,=(A,, l;) and T,=(A,, l,) are isomorphic
(notation T, =T, ) if there is a one-to-one correspondence h between A, and A,
such that for any two nodes v,, v, of T;: (1) v, is a successor of v, iff h(v,) is a
successor of h(v,)in T,,(2) v, T v, iff h(v,) < h(v,)in T,,(3) I, (v,)=1, (h(v,)).

(?) In our definitions and theorems we admit empty labels, empty right sides of productions,
empty equations, and so on. However in the proofs of theorems we dont consider such cases for the
reasons of space and because of triviality or routine character of the corresponding arguments.
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70 A. JA. DIKOVSKII

DerFINITION 2.3: Let T=(A, l)beatreeandvbeanodeof T. A tree T" =(A', I'),
where (3) A’c v\ A and I'(z)=I(vz) for all z in A’ is called a (v-)subiree of T.
B(T')=vA'1is a base set of T'. The v-subtree (denoted by T'(v)) whose base set
B(T(v)) is the least subset of A containing v and all its successors is called a full
(v-)subtree of T. The A-subtree of T [denoted by CT (v)] with the base set
(A—=B(T(v)))u {v} is called a complementary v-subtree of T.

DEerFINITION 2.4: Let T=(A, 1), T, and T, be some trees and v be a node of 7.
We say that Tis a composition of T, and T, at v [notation T=com(T,, v, T,)] if
T,=CT({)and T,=T(v).

DerFiNITION 2.5: Let T=(A, [) be a tree. A covering of T is a system of its
subtrees C={T,, ..., T,} such that (1) B(T;)n B(T;)=0 for all i#j, 1<i,
j=r,and 2) A= U B(T)).

i=1

DeriniTION 2.6: Let £'cX and WS W be two alphabets. T=(A, ) is a
(syntactic) structure tree (abbreviated s-tree) over X', W' if: (1) all nonbottom
nodes of T are labelled by symbols in W7, (2) all bottom nodes of T are labelled
by symbols in X' W' u { A}, (3) each nonbottom node possessing an
immediate successor labelled by A is of width 1. A s-tree is complete (cs-tree for
short) if every its bottom node is labelled by an element of £ U { A }. A s-tree T'is
linear if every its nonbottom node has no more than one immediate successor
labelled by a nonterminal, T is trivial if the width of Tis <1.

We introduce several binary relations on the set of s-trees which in a sense
preserve their ‘“‘topology”. -

DerintTioN 2.7: Let T, =(A,, ;) and T,=(A,, l,) be two s-trees. T, is
mimeomorphic (strictly mimeomorphic) to T (notation T; =T, and respectively
T, <°T,) if there is a covering C={T,,, ..., T3, } of T, and a one-to-one
correspondence (mimeomorphism) ¢ between A, and C with the following
properties. Let v, v, be two nodes of T, ¢ (v, ) be a u;-subtree and ¢ (v,) be a u,-
subtree of T, for some u,, u,. Then: (1) if v, is in i(v,) in T, there is a node
(respectively a preterminal node) u of the tree @ (v, ) such that u, isini(u, u)in T,
(2) ifv; q v, in T, then for any nodes w, of @ (v;) and w, of @ (v,) u; w; G u, w,
holdsin T, (3) I, (v;)isin Z U { A} iff ¢ (v, ) is a one-node u,-subtree and [, (u,)
isin® U { A}.Ifevery tree in C is linear (trivial) we say that the mimeomorphism
is linear (trivial) (notation T,<'T, and respectively T,<'T,); if the
mimeomorphism is both strict and linear (trivial) we say that it is strictly linear
(trivial) (notation T, £*' T, and respectively Ty <% T)).

(*) For a language L and a string z, 2\ L denotes the quotient language {w|zw is in L}.
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COMPLEXITY OF MONADIC RECURSION SCHEMES 71

Remark: If T'; <** T, and all subtrees in C are either one-node or their bottom
nodes are labelled by nonterminals then T, is homeomorphic to 7', in the graph-
theoretic sense (cf. [10]) (notation T, <" T5,).

NotaTioN: Let £’ X and W' < W. The set of all s-trees (cs-trees) of width <k
over I', W' is denoted by & (X', W', k) [respectively by (X', W', k)]. Let

ST, W)= U L&', W, k),
k=0

SE, W)= U FE&, W, k),
k=0

FE, W)=, FE, W)=

DeriniTION 2.8: A set S such that S ¥°(Z,, W, k) for some k and finite
3, <X, W, = Wis called a structure set (abbreviated s-set) if no two trees in S are -
isomorphic. L(S)={ t(T)| T is in S} is the language characterized by §. S is
unambiguous if for each z in L(S) there is at most one cs-tree T in S such that
z=t(T); otherwise S is ambiguous. A s-set S is free if for any two s-trees
Ty=(A,, l;)and T, =(A,, I,) in S and any nodes v, of T; and v, of T, such that
Li{v)=L{,) S conta/ins a s-tree com(CTy (vy), vy, T5(v,)).

NoTtaTiON: Let Z'cX and W/ S W be two alphabets. The class of all
¢f-grammars G=(X,, W,, A, P)such that £, = X' and W, < W', is denoted by
4 (X', W').Foracf-grammar G in 4 (X', W’) we denote its structure set, i.¢. the
set of all its complete phrase-structure trees, by S(G).

ProprosiTiON 2. 1:
{S(G)lG isin % (X, W’)}:{Scyc(Z’, W")|Sis a free s-set}

forall¥'cX and W W.

This well known proposition will provide a grammar-free form to our notion
of complexity and to related concepts, convenient for applications to monadic
recursion schemes as well as to cf—grammars.-

3. COMPLEXITY MEASURES AND STRUCTURE SETS

The concepts presented in this section are introduced in [6, 7]. They form the
framework within which we study there complexity of syntactic structures and
derivation trees in ¢f-grammars. In section 5 below these concepts will be applied
to monadic recursion schemes.
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72 A. JA. DIKOVSKII

DEeFINITION 3.1: A complexity measure is a computable total function m from
& onto an infinite subset of Z, such that m(7,)=m(T,) whenever T, =T,.

We cite a few examples of complexity measures (*).

Examples 1: Density of a s-tree [11, 12]. We define this measure by induction
on full subtrees of a tree. Let T be a s-tree and v be a node of 7'. (1) If v is a bottom
node of T then p(7(v))=0. (2) Let v be a nonbottom node and:

p,=max { u(T(v")|v" is in i(v) }.
Then:
(T @) =if vy, v, in i) [y #v, & p(T())=p(T())=n
then p,+1 else p,. n(T)=p(T(A)) is the the density of T.
2. Branching of a s-tree [6, 7] is the number b(T) of pfeterminal nodes of T.
3. Capacity of a s-tree T is the number ¢(T) of all nodes of T.

DEerFiNniTION 3.2: Let m be a complexity measure and S be a s-set. By
(m-) complexity of S we mean the function A n.mg(n) where:

mg(n)=max {0, mg(T)| Tin S, | T|Sn},
and:

mg(T)=min{m(T")| T"in S, t(T")=¢t(T)} for all Tin S.
Besides this for z=¢(T), T in S, we.set mg(z)=mg(T).

DeriniTION 3.3: Let m be a complexity measure, f be a total nondecreasing
function, and S be a s-set. We say that f is m-limiting S if:

(@) @c) (VT in S) [m(T)=¢f (I T1)] and

(b) there is a sequence of cs-trees T, T, ... in S'(a fundamental sequence)
such that the set {| 7;| | i>0} is infinite and (3d) (Vi) [dm(T))= f (| T;)].

This concept is very close to the notion of constructable function in automata
theory and plays a similar part in our exploration.

Remark As we observed in [6] the functions A n.n and log n (*) are respectively
b-limiting and p-limiting the least free s-set containing:

A A

b'A/AA and \b\‘

a a

(*) Some other examples of measures of importance for cf-grammar theory such as index, Yngve
measures, dispersion, selfembedding index, and so on, may be found in [6, 7}.

() Functions that we use for measuring complexity are total nondecreasing functions from Z,
into Z .. For example, logn denotes the function An.[log, (n+1)].
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COMPLEXITY OF MONADIC RECURSION SCHEMES 73

DEeriniTION 3.4: Let fbe a total nondecreasing unbounded function and mbe a
complexity measure. We say that f'is limiting m if:

(@) Vk)@e)(YTin & (Z, W, k)) [m (T)=¢f (| TI )] and

(b) there are k, and a sequence of s-tress (7', . . . L )InFZ, W, ko) (a
Sfundamental sequence of ) and d >0 such that dm(T ) _f (|1 T;]) for all i.

For example, log n is limiting p [6, 9] and A n.n is limiting b and c.

4. MONADIC RECURSION SCHEMES

There is an unsubstantial difference between the notion of a monadic
recursion scheme under study and that of [4] and [5]. Nevertheless we outline
here both their syntax and semantics.

I. Syntax: Treating monadic recursion schemes we give to symbols of X and
- W new names: basic and defined function symbols respectively.

Let {2, >:i. v be a system of countable pairwise disjoint alphabets (of switch
function symbols) P;= {piljin N} such that P.AEUW)=0 for all i,
2= 2, and x be a symbol not in Zu X U W (a variable symbol). Let X' S Z,

iin N
W' W. A string z in (£ v W')* x is a (monadic) term (over ', W’). A term z
over X', W'is basic if it doesn’t contain occurences of defined function symbols.

DEFINITION 4. 1: A monadic recursion scheme (MR-scheme) (over Z, W) is a
system E=(Z,, Wy, F,, {e,, ..., e, }) meeting the conditions:

(1) Z,cT and W,={F,, ..., F, } = W are finite alphabets;

(2) e; (1Li<k)is a formal equation of the form:

e;: Fix=(piQxluyx, ..., upeX),
where p}, () is a switch function symbol, u;, x, . . ., u;, ;) X are monadic terms over
Z,, W, 1<i<k. Wesay that E defines F,. The set { p2'?), . . .; pp)} is denoted

by 2 (E) and the class of all MR-schemes by &.

With the M R-scheme E in the definition 4.1 we associate a cf-grammar G (E)
in the following regular way:

k
G(E)=(X,, W, F{, R), where R=\J R(e;),
i=1
and ‘
R(e)={F;»uy, ..., Fi>up, i} 1<i<k.
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74 A. JA. DIKOVSKII

The associated cf-grammar will serve as a base for a semantic notion of a
computation of a MR-scheme. Besides this it is a convenient means of syntactic
classification of M R-schemes. For example, we call a MR-scheme E linear if its
associated grammar G(E) is linear.

II. SemanTics: Let E=(Z,, W, Fy, {e;, ..., e,}) be a MR-scheme. An
interpretation of E is a system I =(J, D), where D is a set called a domain of I and
J is a functional on £, U2(E)u { x } such that:

(1) J (f) is a total function from D into D for each fin XZ;; .

(2) J (x) is an element of D, and (3) for each n and each p! in 2, "2(E)
J (p?)is a total function from Dinto { 1, ..., n}. I is naturally extendable to the
set of basic terms:

{1 (x)=J (%),
1(fox)=J(f) (I (vx)),

for all fin Z,, v in T¥%.

An interpretation I =(J, D) of E is free (or Herbrand) if D=X%, J (x)=A, and
J(f)(t)=ft for all fin £, and t in D.

A computation of a MR-scheme E may be considered as a rightmost

derivation of the grammar G(E) controlled by an interpretation I in the
“following sense.

DEerFiNITION 4.2: Let I=(J, D) be an interpretation of the MR-scheme above.
Let X=y, F;y, and Y be two strings in (£, v W,)* and y, be in £§. Then:

X =5 Y if J(P:‘n((ii))) Ty x))=j
for some j<n(i), Y=y, u;;y, and the equation e; in E is of the form:

e;r Fix=(ppldxlugx, ... u X, ..., iy X).
Asequencec(E,I)=(X,, X, X, . ..)is called an I-computation sequence of E if
(a) Xo=F,, and (b) X;=; X;,, for all i=0. If the I-computation sequence
c(E, I)is finite,i.e. c(E, I)=(Xy, X4, ..., X,) for some r, and its last string X,
is in X¥ then it is called an (I —) computation of E.

It is evident that for all interpretations I such that ¢ (E, I)is a computationitis
at the same time a rightmost complete derivation of the ¢f~grammar G (E). The
tree of this derivation [denoted T(E, I)] is called a tree of the I-computation
c(E, I). The set of all trees of computations of E, i.e. the set { T(E, I)|I is an
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COMPLEXITY OF MONADIC RECURSION SCHEMES 75

interpretation of E } is denoted by S(E). E is unambiguous (ambiguous) if S (E) is
unambiguous (ambiguous). We will consider two partial value functions:

TERMVAL(E, I)= %’t(T(E 1)) if ¢(E, I) is a computation of E,
undefined otherwise

VAL(E, I)=1(TERMVAL(E, I)x).
The set:
TL(E)={ TERMVAL(E, I)|I is an interpretation of E }
is called a term language of E.

DEerFiNITION 4.3: We say that MR-schemes E,, E, are termally (strongly)
equivalent (notation E,=,E, and E,=E, respectively) if TL(E,)=TL(E,)
~ [respectively AI.VAL(E,, I)=A1.VAL(E,, I)}.

DEeriNITION 4.4: An equivalence =, on & is called reasonable if E, = E,
implies E, =,E, for all E,, E, in &.

Remark: Strong equivalence of M R-schemes is of course a reasonable one.
This follows directly from the fact that if E;=,E, then
VAL(E,, I)=VAL(E,, I) for each free interpretation I.

DerINITION 4.5: Let &,, &, be two classes of MR-schemes and =, be a
reasonable equivalence on &. We say that &, is termally (strongly, r-)
translatableinto &, (notation &, = ,£,,8,=>£,,and §, =, &, respectively) if
for each MR-scheme E, in &, there is a termally (strongly, r-) equivalent to E;
MR-scheme E, in &,.

5. COMPLEXITY CLASSES AND MIMEOINVARIANT MEASURES

Application of complexity measures to structure sets leads in a
straightforward manner to a natural notion of computation complexity of MR-
schemes. In fact, we measure the complexity of trees in S (E) bearing in mind that
these are tree representations of the corresponding computatlons of E. So, we
arrive at the following definition.

DEFINITION 5. 1: Let m be a complexity measure and E be a M R-scheme. By
m-complexity of E we mean the function mg=2x n.mg ) (n).

So that to stratify the class & of all MR-schemes into complexity classes we
consider the following relations on the set of total functions on Z , .

vol. 15, n°1, 1981



76 A. JA. DIKOVSKII

NotaTioN: Let g and f'be total functions. g< fmeans lim g(n)/ f (n)=0,9<f

n— o

means lim g(n)/f(n)<c for some cin Z,,i.e. 3¢c) (Vv°n) [gn)<cf (n)], g<f

n-» oo
means g<f & f<g, and g = fmeans that g< f but not g<< f.
DEFINITION 5. 2: Let fbe a total nondecreasing function. The set §7={ E|E is
a MR-scheme, m < f} is a (m-) complexity class. Let ¢ 20 be an integer. The set

¢7={E|E is a MR-scheme, (Vn) [mz(n)<c]} is a c-bounded (m-) complexity
class. €. = \U €T is called a bounded (m-) complexity class.
i=0
Of course, &7 =& for any function f limiting a complexity measure m.

REMARK: All these notions can be (and they were) applied to ¢f-grammars. For
example, the complexity function of a c¢f-grammar G is defined as
mg=An.mg (n) for all complexity measures m.

DerINITION 5.3: A complexity measure m is nondegenerate if there is an
unambiguous M R-scheme E whose m-complexity function m; is unbounded.

Meanwhile, the definition 5.1 is too general to be workable. We are looking
for a reasonable class of measures which (1) make the complexity stratifications
{ &7} and { &7} nontrivial, and (2) have close values on ‘‘topologically” similar
trees. We attain both objectives imposing simple conditions on complexity
measures. These conditions formalize a vague formulation of our second
objective in terms of mimeomorphisms. In fact we assume that a s-tree T'(strictly)
linear mimeomorphic to another s-tree 7" is only negligibly different from it from
the complexity point of view. The complexity measures meeting this condition
are-called mimeoinvariant.

DEFINITION 5.4 (main definition): A nondegenerate complexity measure m is
mimeoinvariant if it satisfies the axioms: :

@Fe)) VT, T, in &)
T,£'T,om(T,)<c,m(T))],

B { (Bdp) (VTy, T, in F)
[Ty =T, om(T,)=dym(T,)],

A

and it is asymptotically mimeoinvariant if it meets the conditions:
A2 Fecz0)(vVT,, T, in &)
[T, =5 T, o>m(T,)<Sm(Ty) +d],
- { YT, T, in &)
[T, =T,om(T,)=m(T,)].
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COMPLEXITY OF MONADIC RECURSION SCHEMES 77

The measures p and b are obviously mimeoinvariant and asymptotically
mimeoinvariant, while ¢ is not (it must be noted that ¢ doesn’t depend on form of
s-trees). Note also that if m is (asymptotically) mimeoinvariant then all linear
MR-schemes fall into 68, -

6. RIGHT-NORMAL FORM c¢f-GRAMMARS AND COMPLEXITY OF INDIVIDUAL
MR-SCHEMES

Let m be a complexity measure and f be an unbounded nondecreasing
function. Let us say that a cf-grammar G is of nonreducible m-complexity fif: (1)
mg< fand (2) for no ¢f-grammar G’ such that m; < f L(G)=L(G').

A similar notion may be introduced for M R-schemes. This notion however
relates upon a choice of equivalence relation among MR-schemes. We will
consider only reasonable equivalences. So let =, be some reasonable
equivalence relation on & and = , be the corresponding translatability relation.

DEFINITION 6. 1: A MR-scheme E is of r-nonreducible m-complexity fif: (1) E is
in &7 and (2) for no MR-scheme E’ such that my<fE'=,E.

REemark: If there is a M R-scheme of r-nonreducible m-complexity f then the
class &7 is unempty and is r-translatable neither into any class &7 such that
g=<f, nor into &g, -

In this section we give the conditions sufficient for a function and a constant to
be nonreducible M R-scheme complexity bounds.

We start with a few simple observations.

DEFINITION 6.2: A ¢f-grammar is in a right-normal form if all its productions
are of the form 4 - Qu, uin =%,

ProrosiTION 6. 1: For each cf-grammar G in right-normal form there is a MR-
scheme E such that S(E)=S(G) and thus my=m.

[Of course, this is a scheme such that G(E)=G]
The next proposition follows directly from the proof of the theorem 2.5 in [4].

ProrosiTION 6.2: For every MR-scheme E there are a MR-scheme E
(unambiguous if E is unambiguous) with G (E ) in right-normal form and a bijection
q: S — F on the set S of all interpretations, such that T, =T(E, I) exists iff
T,=T(E, q(I)) exists, and in the case they exist t(T,)=t(T,) and T,<'T,.

From these propositions we have:

CoROLLARY 6. 1: For every mimeoinvariant complexity measure m and for every
MR-scheme E there is a cf-grammar Gy in right-normal form such that m; =<mg
and L(G.)=TL(E).
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COROLLARY 6.2: For any mimeoinvariant complexity measure m, any reasonable
equiralence relation =,, and any cf-grammar G in right-normal form of
nonreducible m-complexity f there is a MR-scheme E of r-nonreducible
m-complexity f.

In our papers [6, 8] we have developed a technics of constructing cf-grammars
of nonreducible m-complexities. The dbovestated propositions permit
reconstruction of these c¢f-grammars into MR-schemes of nonreducible
m-complexity in the case they are in right-normal form.

DEeFINITION 6.3: A function f is semihomogeneous if

(Vey) 3ez) (Vny, ny)

[nyScynyof (ny)Sceyf (my)]
REeMARK: A semihomogeneous function cannot of course be superexponential.

THEOREM 6.1: Let =, be a reasonable equivalence relation on &, m be a
mimeoinvariant complexity measure, and f be a nondecreasing unbounded
semihomogeneous function m-limiting the s-set S(E) for a MR-scheme E. Then
there is a MR-scheme E ; of r-nonreducible m-complexity f.

Proof: Let m, r, fand E be as above. First of all we associate with E the MR-
scheme E as in the proposition 6.2 and consider the ¢f-grammar G (E). Then we
carry out the following construction originating from [6,8]. Let
G(E)=(Z,, W,, A, P). We choose four new symbols a, b, ¢, d in =—X, and
choose a symbol F, in W— W, for each production & in P. After this we set:

Wi={F,In in PYuW, and P=y P,
nin P

where for each t=F - ¢ in P: -
P,={F—>cF,d, F,»aF,b,F,—»a@b}.
As a result, we obtain the ¢f-grammar:
TGEN=(EZ,v{a b, c,d}, Wi, 4, P).
Since m is mimeoinvariant we infere from the proposition 6.2 that the function f

is m-limiting the s-set S (E)=S(G(E)). This being clear, we use the following fact
proven in [6] (thm. 9.4) and in [§] (thm. 1).

ProrosiTION 6.3: Let m be a mimeoinvariant complexity measure, f be a
nondecreasing semihomogeneous function m-limiting the set S(G) of a cf-grammar
G. Then the cf-grammar T'[G] associated with G as above is of nonreducible
m-complexity f. '
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Thus we see that I'[G(E)] is a cf-grammar in right-normal form and of
nonreducible m-complexity f. Hence by the corollary 6.2 we associate with
I'[G(E)] the needed MR-scheme E s of r-nonreducible m-complexity f.

QED.

ReMARrk: Consider the M R-scheme:
Ey: Fx=(px|FFfx, gx).

Itis evident that the function log n is p-limiting the s-set S (E, ) and the function
An.nis b-limiting this s-set. Since both these measures are mimeoinvariant, both
functions are semihomogeneous, and G(E,) is in right-normal form the
construction of the theorem 6.1 delivers a MR-scheme E; of r-nonreducible
u-complexity log n and of r-nonreducible b-complexity A n. n for each reasonable
equivalence relation- =,. Though the proof of the theorem 6.1 defines this
M R-scheme entirely we cite it out here:

Fx=(p?x|cF,dx, cF,dx),
E,: { F,x=(p5x|aF,bx, FFfx),
F,x=(p3x|aF,bx, gx).

The same reduction leads to an infinite hierarchy of M R-schemes of bounded
complexity.

THEOREM 6.2: Let m be an asymptotically mimeoinvariant complexity measure,
=, be some reasonable equivalence relation on &. Then there is c =0 such that for
any cs-tree T of m-complexity k there exists a MR-scheme E, in &}, . which is not
= ,-equivalent to any MR-scheme in any class &7 with 1<k.

Proof: Consider a cs-tree T=(A. /) such that A > 1 and m(T)=k. Let £, be the
set of all terminal labels of nodesin A. We add four new terminal symbols a, b, ¢, d
inX—-X;toZ;andsetX, =Z;uU{a, b, ¢, d}. With each nonbottom node v of T
we associate two nonterminals A,, B, in W in such a way that
{A4,,B,}n{A4, B,}=0 for v#u and set W,={A4,, B,|vin A}. To each
nonbottom node v of T'such that i(v)={v,, ..., v,}andv,;< v, ... < v, we
relate the system of productions P(v):

A,—c¢B,d,
B,—aB,b,
B,—aX X,...X,b,
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where:

Xo= A, if I(v;) is in W,
Tl if ) is in T

Thus we obtain the ¢f-grammar G,=(Z,, W,, 4,, P), where P= {J P(v). In
vin A

the first place we note that for each cs-tree 7" in S(G,) T<*® T’ holds. Since m is
asymptotically mimeoinvariant there is ¢ 20 such that m(T")<m(T)+c=k+c
for all T"in S (G,) and hence m;_<k+ c. Secondly we observe that Grisinright-
normal form. Thus by proposition 6.1 there is a MR-scheme E; such that
S(E;)=S(G;) and hence E; is in &}, .. In the paper [8] (corollary 3 from
theorem 1) we prove that if a ¢f-grammar G is equivalent to G, then there is no
such I <k that m; <I. Assume that there is a M R-scheme E such that E=, E;and
E is in &7 for some [ <k. By proposition 6.2 and the axiom B* in the definition
5.4 there is a ¢f-grammar G such that mg_<m; and L(Gg)=TL(E). Hence we
conclude that mg, < l<k. But L(G;)=TL(E;)=TL(E)=L(Gg), a
contradiction.

QED.

COROLLARY 6.3: Let m be an asymptotically mimeoinvariant complexity
measure and =, be a reasonable equivalence relation on &. Then there is an infinite
sequence of nonnegative integers n, <n, < ... <m < ... and MR-schemes E,,
E,, ..., E,, ... suchthat for allk>1E,isin &, and for nol<n,_, andno E in
&7 E=,E,.

7. INFINITE HIERARCHIES OF MR-SCHEMES OF NONREDUCIBLE COMPLEXITIES

Our main objective is to exibit conditions under which for a mimeoinvariant
complexity measure m and for a reasonable equivalence relation =, there is an
infinite hierarchy of MR-schemes {E;} of r-nonreducible m-complexities
fifoxfi>.... This will give hierarchy of complexity classes
67 pEFREND ... suchthat fornoi, j,i<j, £=>, & A similar hierarchy { G, }
of ¢f-grammars of nonreducible complexities is described in [6] (theorem 9.5 and
its corollaries) and in [8] (theorem 2 and its corollaries). Simple reductions of the
preceeding section are unfit however for reconstruction of { G, } into { E; }. The
reason is that the grammars G, are not in right-normal form and even worse: the
traditional reductions of G, to right-normal form increases their complexity to
the maximal. Thus we must strengthen the results of [6, 8] and expose an infinite
hierarchy of cf~grammars in right-normal form of nonreducible complexity. To
this end we need some notions and notation related to Turing machines.
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NotaTioN: Let £T < T be an infinite alphabet. We consider the class .# (X7) of
all one-tape one-head deterministic Turing machines such that for each M in
M (E£7) the set K, of states of M and the set V,, of tape symbols of M are both
subsets of £T. We use the standard encoding of situations and computations of
Turing machines. A situation of M is a string Q in V; K,, V3. If g, 1s a start and
q,is a final state of M then situations Q, =g, z, and Q, =4, z,, z, z, in V};, are
starting and final respectively. The symbol Q with or without indices we reserve
for the sequel as a variable over the set of Turing machine situations or their
substrings. For situations Q;, @, of M Q; Q, means that Q, immediately

M

follows Q, in a computation of M. n,,(Q) denotes the length of the situation Q'

such that Q - Q’. A substring of a situation Q is active if it containes an occurence
y A

of a state and passive if it doesn’t. Let § be a symbol in £ —X". A x-computation

record of M is the string P,, (x)=8Q, §0,§...0Q,_, §Q,, where Q, =g, x is the

starting situation with input string x, Q,, is a final situation and Q,  Q,, , for all
M

1<i<n.Inthe class.# (X7) we select the subclass 4" (Z;) of all Turing machines
such that:

(1) the record function A x. P, (x) is total;

(2) the function A x.|P,,(x)| is nondecreasing with respect to the lengths of
strings x, i.e. |x; | = | x, | implies | Py (x;)] = | Py (x,)].
* With each Turing machine M we associate the following integervalued

function p,, which is in a sense inverse to the record-length function
AX. [Py (x)]:

Pu(m)=ifE@x)[2]| Py (x)| =n—|x|]
then max {r|Ax)[| x| =r&2|Py,(x)| <n—r]}
else 1.

Remark: It is easily seen that for each machine M in .4 (Z") the function p,,(n).
is recursive and py (rn)<n for all n.

THEOREM 7.1: Let m be a mimeoinvariant complexity measure and [ be a
semihomogeneous unbounded nondecreasing function m-limiting the s-set S(G) of a
cf-grammar G=(Z,, W,,I,, P,). Then for each Turing machine M in /" (") there
is a right-normal form cf-grammar G, of non-reducible m-complexity
An.f(py(n)).

Proof: To expose the needed cf-grammar it is convenient to describe first the
language it generates. To this end we introduce several operations and
predicates. Let m, f, G, and M be fixed.

vol. 15, n°1, 1981



82 A. JA. DIKOVSKII

NoraTion: 1. Consider L<X* and:
U,, UycZ*xZ*. U M L={zz2z|zin L, (z;, z,) in U, },
U,@Us={{211221, 2222:)1421 1> 212) In Uy, (251, 255) In U, },
UO=U,, U =UP@ U,, U= U UP.

k=0
2. Let Q,, @, be two stringsin V5, U V¥ Ky, V. Then ERRy,(Q,, Q,) means
that either: (a) Q, is active, |Q, | =ny(Q,), but Q, does not coincide with the
M-situation Q such that @, - Q, or (b)Q, is passive, [Q, |=|0Q, |, but Q; #Q,.
M

Now we proceed to the description of the grammar G,, and the language
L, =L(G,y).

1. First of all we apply to the grammar G 5(21, W, I,, P,) the construction
outlined above in the proof of the theorem 6.1, relating to it the grammar
T [G]l=(Zo, Wy Lo, Po) with Z,=%, U {a, b, ¢, d}. The language L(I'[G]) we
denote by L,.

2. Then we introduce the following system of languages and pair languages

( 1sasymbolin Z—(ZTU{§H): )
Ly={ca'yb’d|jz0,yin {A}U({c}UE)ZF({d}UI))}.
L,={0Q"§x|Q is a situation of M, x in £}, | x| =|Q|} (°).

Uo={(A, #)}.
U,={(Q"§, §0)|Q is a final situation of M }.
U,={(Q"§, §Q)|Q is a situation of M }.
Us={(A, §Q)|Q is a situation of M }.
U.4={(Q§§Qlf §, §Q3)|Q1a 05, Q5

are situations of M. |Q, Q5| <|Q:|+nu(Q:)}.
U5={(Q§§Qf 8, 8§03)10Q1, 02, 05
are situations of M. [ Q.| +n(Q,)<2(Qs(}.
Ue= {(le(z Q'Z{I §Ql1< 8, §Q31 Qsz)lQuQn Q31, Q31 Qsz
are situations of M, | Q3| 2[1Q, 0>, 1/3]-1,

_ Re R PR ERR(Q33» sz)}-
U;={(058§012Q11 8 §031032)1Q11 Q125 @25 @31 U3
are situations of M, |03, 2[1Q,0,,1/3]1-2,

ERR, (0, Q1) }-
«={(0"§ §0)|Q is a starting situation of M }.

(%) zR denotes the reversal of a string z : [A]X=A, [wa]?=a[w]*.
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6
Now the language L, is defined as Ly = \U L, where:
i=1

Ly =(Ut@U @U%e® Us)RL,,
Ly.=(UleUSeU,@ U, RUS)AL,,
M3=(U8. Ug. UseU;® Ug).Ln
Lm:(.Ug. vseu,eUs@ Us)mL,,
LM5=(U3. Ug' v,eU;@ Ug).Lu
LM6=(U3. USe U;)ML,.

4. So that to specify the needed c¢f-grammar G,, let us notice that:

(@) L,=U, M{§}, where Uy ={(Q", x)|Q is a situation of M, x in =7,
Ix1z1Ql};

(b) L,=(U,,@U%,)MR, where U,,={(c,d)}, U;;={(ab)},
R={A}u({c}uZ,)=§({d}uZ,) is regular;

(c) for each pair language U, 0<j<11, and each pair (z, w) in it w# A, so,
there is a linear function g; for each 0<Jj<11 such that for all (v, u) in
U lvl=g;(lul)

(d) for each regular language there is a right-linear ¢f~grammar generating it.

From (a)-(d) it follows directly that there are unambiguous right-normal form

linear cf-grammars G, Gy, Guss Gugs Gus» Gye gENerating respectively the
languages:

L1;40=(U3. v,eU%e Us).{lo}a Lysys Lygss Lagas Ligss Ligs-

Let V—Vj and P ; be respectively nonterminal alphabets and production sets of the
grammars G, for j in {0, 2,3,4,5, 6}. We may assume without loss of
generality that: «

(1) all grammars G, Gypy Gpyss Gagas Gugss Gage have a common axiom I

(2) the alphabets W,, W,—{I}, W,—{1}, Wy—{I}, W,—{I},
Ws— {1}, Ws— {1} are pairwise disjoint.

Let us denote by =} the alphabet KyuVyu { §, %} UZ, and by G, the
cf-grammar &y, W,, I, P 1), where W\ Wou Wo and P1 =Pyu PO

Finally let us set G,,=(ZV, W% I, PM) where W¥ = U W and PM = U P

i=1 i—1

Itis easily seen that L (G, )= Ly, and L(G )= L. By the construction all the

cf-grammars we have described, including G, are in right-normal form. It

remains to prove that G is a ¢f~grammar of nonreducible m-complexity
An.f(py(n).
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UPPER BOUND: mg, < f (py,). To establish this bound we will show that there is

a ¢>0 such that mg,, (z)Scf (py (I2])) for all z in L,,. Since the complexity

measure m is mlmeomvarlant there evidently is an integer c,,>0 such that for

each linear s-tree Tm(T) <c,,. This implies that for each cs-tree T'in S(G,y), j in
6

{0,2,3,4,5,6}, m(T)<c,, thus mg,, (2)<c, for all zin U L,y;. It suffice to
i=2
establish the upper bound for all z in L.
Now, let us take a string z in L,,,. z may be represented in form:

2=0,80,-1§...018§x80,...§Q,-1§Q, 2%

for some k=0, n> 1, starting situation Q, of M, final situation @, of M, 1 <j<n,
and x in L,. Three alternatives arise.

1. The string §Q, §Q,...8§Q, is'not a computation record of M. In such a
case there is a i, 1 £i<n, such that Qi):; Q;+1. Let iy be the least such i. The
computation error Q,.ozf Q,,+1 may be of the following four kinds.

(@) 1Qi,+11 >ny(Q;,). In this case we find that:

Q1§ 0580 §x80, 80, .80, 1§80,
belongs to (U;@ US)ML,, (89, §Q,o+l] §Q;,+1) belongs to Us because:
21Qii1 1> 1Qit | +1u (@), (8Qiyv2- - §QI% §Qisa- - - §Q, #)

isin US@ U9, and x is in L, because L, < L,. Thus z belongs to L, there is a
linear cs-tree T in S(G,) with the yield z and therefore mg,,(z)<c,,.

(b) 1Q:i41] <nu(Q;,). In this situation we see that:
0f-1§...058078x80,80,...8Q;
belongs to U3 M L,, ((§0, §0, .1, §0,)is in U, because:
10,1 +74 (Q)> 12, Qi |
(A, §0,.) is in Us, (§Q;ss---§Qu1% §Q,1s-.- §Q, #¥) belongs to

US® U3, and x belongs to L,. Thus z is in L,,, and therefore MG, (2) < Cp-

The bounds established in (@) and (b) show that in the rest we may assume
without loss of generality that |Q, ,,|=n,(Q,). We need some additional
notions and notation for the analysis to follow.

Nortation: Let Q =z, afy z, be the representation of a situation of M such that
|z, |=|2,],|B| £1,and o,y arein V,, U K,,. A central partition of Q is the unique
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partition Q=1,,(Q)r,, (Q) such that:
(@) if z, af is active then /,,(Q)=2z; aPy and r\ (Q)=z,;
(b) if yz, is active then I,,(Q)=2z, and r,,(Q)=aPy z,.

2. Let Q,, Q, be two situations of M such that |Q,|=ny(Q,). We call a
partition Q,=0Q50% of Q, Q,-derivative if either [,(Q,) is active and
Q3 [=ny(1,(Q1)), or ry(Q,) is active and [ Q5| =ny (1, (Q,)).

Let us return to the proof.

Let Q;, =0Q; Qi be the central partition of Q; and Q, ,1=0Q; .1 Q1 be the
Q;-derivative partition of Q; .. There are four additional cases.

(c) Qi is active and Q; # Q; .. First of all we have Qi . |=ny(Q;)
M

and |Q{'.,| =1Q}|, From this follows:

19, Qi 1S +1Q, 1 +1 21O +21Q1+3)+1=3(Q;,, [ +4.

Thus:
01z [ IQ,~.,+13Q.{,'I—4] . [ 10,101 J_z_

Besides this we have ERRy,(Q;, Qi +1). That is why in this case:

0i18...038018x80,80,...§0,_,§Q, isin (U;@UDML,,
([§0,01'80,,41% §Qi.10011) is in Uy

and:

([§Qi,.+2‘ O] §Qn]Ra §Qi..+2' .. §Q" <\’l‘) i.S in Ug. U:.
Therefore z is in L.

(d) Qi is passive and Q; #Q; . Since Q; is passive we have | Q; .| <|Qi 1/,
1Qi1 <1Qi/+1|+1 and therefore | Q; .1 Qi1 <3|Q;/+|. Hence

1> [ 121

Of course, ERRy(Q;, Qi) is true, so, as in the preceeding case
(§Q;Q1/§0,+ 1% §Qis1Qir11) is in U, and z falls into Ly again.

(e) Qi is active and Q'K Q;,,. In this case |Q/|<|Q;|+3 and
M
1Q; +11=1Q; |, hence:

10,0,/ 1 310,143 and |Q{(,I%[%‘°—+—II—}—1:
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As ERR(Q/, Q/',,) is true we infere that:

(18Q;, §Qi+1 Q04115 §0,,00)
belongs to Ug. Therefore:
0F, . §0F...807§x80,§...8Q, isin (Us@ UDML,,
Q5+1§---QT§X§Q1~~§Q5+1 is in (U;@0U:@® Ug).Ll’
and z is in Ly,.

(f) The last alternative is: Q; is passive and Q.,;#(Q;. Here we have
Qi1 <1Qiland | Qi | =1Qj|+1. Hence:

1000131041 and jgus| 128l |y

As 1Q{1=1Q¢si| and Q. #Qis ERRy(Q Qfy) is true and
([§Q;, §Q.L+1 QL I, §Qi Q) belongs to Us. Therefore just as in the
preceeding case z falls into Ly,

Thus in all the cases(c) tb’( 1) mg,, (z)<c,,. This shows that mg,, (z) <c,forall z
in Ly, of the form z= P® x P +*, where P is not a computationrecord of M. Now let
us take the second alternative.

2. §0,80,...80, is a computation record of M but |x|=[Q, |. Then we

find that QF § x belongs to L,, 0% §x §Q, belongs to U, BL,, and z falls into
Lye. So in this case as in all the preceeding mg,, () <C,.

The last alternative is:

3. Z=Q§§Q5—l §" 'Q11{§x§Ql' . '§Qn—l §Qn{?‘-" X il’l LO: I‘xl< IQlI’ and

§Q,...§0, is a y-computation record of M for some y. Such a string z is
6

evidently in Ly, — \U L. Hence there is the only one derivation tree 7Tin S (G )
i=2

such that ¢ (T) =z and therefore mg,, (z)=m(7T). By the definition of G, this tree

T can be represented in the form T'=com (7, v, T;), where T, is the linear

derivation tree in S (G o) such that 1 (To)=Q, ...Q §1,§Q,...8Q, «*, visthe

bottom node of T, such that [(v)=1,, and T, is the derivation tree in S(I"[G])

such that t(7T,)=x.

Now let us notice that since |x|<|y| we have | P, (x)| <|P,(y)|. This
implies that |P,(x)xP,(x)|<|z|—k which in turn implies
Ix|=py(lz]—k)=py(lz]).

Since T, is a tree in S (' [G]) there is a tree T, in S(G) such that ¢t(T,)=u,uin
L(G), and T,<%' T,. First of all this implies that |u|=<]|x| and hence
|ul =py(12]). Secondly, f is m-limiting the s-set S(G). From this it follows that
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m(T,)Zc, f(lu|) for a constant ¢, >0 independent of T5. Third, because m is
mimeoinvariant m(T,)<c,m(T,) is true for ¢,>0 independent of T,, T,.
Finally we remark that T=com(T,, v, T;) implies 7) < T and therefore
m(T)<c,m(T,). Grouping together all these inequalities and bearing in mind
that f is nondecreasing we infere:

mg,, (2)=m(T)Sc,m(T,)Scim(T,) <cpci flul)sc el fpuiz])),

which gives the needed upper bound.

Lower BounD: To establish this bound it is enough to specify for each
¢f-grammar G such that L(G)= L, an infinite sequence (z;|i in N) in L, such
that for an integer ¢>0 and for all i in Ncmc(zi);_f_(p,w([zi|)).

Let G be a ¢f-grammar such that L (G)= L. The following lemma which is the
main technical means of our proof of the lower bound assigns to each cf-
grammar G a parameter n(G).

LEMMA 7.1: For each cf-grammar G with infinite language L(G) there is an
integer n(G)>0 such that for any x in L(G) and any its complete derivation
D=(I=X,, ..., X,=x)if x=x, zx, and | z| >n(G) then the substring z can be
decomposed into three parts z=z, uz, so that |u|#0 and the derivation D is
representable either in form:

I =* xz;Ay =* x,z;uduy =% Xx,z,uvou, y=x,
or in form:

I =* yAz,x, =* yu,Auzyx, =% yu,vuz,x,=x.

[This result is due to A. V. Gladkii (see for example [13]). Some later it was
reproven in a stronger form by W. Ogden [14].]

To specify the sequence (z;|i in N) we need some notions and notation.

NortaTion: With each tree T'in S (G) we will associate an infinite sub-language
of L), whose elements we will call T-terms. A T-term will be defined by induction
on full subtrees 7'(v) of T

(1) let v be a bottom node of T with I(v)=X. Then X is an elementary
T (v)-term;

(2) letvbeanode of T'such thati(v)={vy, ..., v, },v,;<]v, < ... < v,and
the T'(v;)-terms 0; have been defined so far for all 1 <i<k. Then for all j 20 the
string 6<">(T, v)=ca’0,...0,b’d is a T(v)-term, j is a degree of this term, and
8,, ..., 8, are its subterms; A

(3) each term 0 is a subterm of itself and each subterm of a subterm of 0 is a
subterm of 6;
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(4) if vy is the root of T then 89°(T, v,) is a T-term for each j=0.

Now we can specify the sequence (z;|j in N). Let Ty, 7,, T3, ... be a
fundamental sequence of f in S(G). Let us associate with each T the T;-term 6;
such that the degrees of all its nonelementary subterms are equal to
n, =n(G)+ 1. Let e be the first symbol in V.. Then we set:

z;=[Pu (€M% 6, Py (e") v,
where ¢ is the width (") of G and r;=(c+1)|0,].

Let us note that the set {r;|iin N } and hence the set { z;|iin N } are infinite.
Besides this py (| z;|)=r; for each i. Therefore it is enough to show that thereis an
integer ¢ > 0 such that for all i, cms(z;) = f (r;). The proof of this last statement is
rather tedious and lengthy. Its essence is the following proposition.

PropoSITION 7.1: Let T in S(G) be a cs-tree such that t(T)=z; for some i. Then
T can be represented in form T=com (T,, v, T(v)) so that T; < T (v).

The proof of this proposition is omitted here. However it may be found in [6]
(a part of the proof of theorem 9.5) and in [8] (a part of the proof of
theorem 2).

So let T be the simplest tree in S(G) such that ¢ (7)=z;. Then mg(z;)=m(T).
Since m is mimeoinvariant and by proposition 7.1 dgm(T)=m(T;) for a dg>0
independent of T"and 7. As (T;]iin N)is a fundamental sequence of f in S(G)
there is a e . >0independent of i such thate , m(T;)> f (| T; ). Itis easyto see that
|0;|<2(@+1)(2n; +3)|T;|, which implies that r,<2(w+1)*Q2n,+3)|T;|-
Since f is a semihomogeneous function there is a ¢ >0 independent of i such that
cf(| T;1)= f(r;). Finally we have

dBefcmG(zi)=dBefcm(T)_?_-efcm(Ti)gcf(l T: )= f(r)

for all /.
QED.

CoROLLARY 7.1: Let m be a mimeoinvariant complexity measure and f be a
nondecreasing unbounded semihomogeneous recursive function m-limiting the s-set
S(G) of a c¢f-free grammar G. Then for each unbounded and nondecreasing with
respect to both arguments recursive function Am, n.h(m, n) there are an
unbounded nondecreasing recursive function ¢ and a cf-grammar G in right-normal
form of nonreducible m-complexity ¢ such that for all but finitely many n,
¢ (n)=h(n, f ().

(") The width of a ¢f-free grammar G is the least integer v such that S(G)S ¥ (Z, W, v).
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CoroLLARY 7.2: Let m be a mimeoinvariant complexity measure, =, be a
reasonable equivalence relation on &, and f be a nondecreasing unbounded
semihomogeneous recursive function m-limiting the s-set S(E) of a MR-scheme E.
Then for each unbounded and nondecreasing with respect to both arguments
recursive function A m, n.h(m, n) there are an unbounded nondecreasing recursive
Junction @ and a MR-scheme E , of r-nonreducible m-complexity ¢ such that for all
but finitely many n, ¢ (n)<h(n, f (n)).

CoOROLLARY 7.3: Let m be a mimeoinvariant complexity measure and =, be a
reasonable equivalence relation on &. If there exist a MR-scheme E and an
unbounded nondecreasing semihomogeneous function f m-limiting S (E) then there
is an infinite sequence of unbounded nondecreasing functions f;>f,>f3>~. ..
such that f=f| and for no i<j, &7 = ,& /™.

COROLLARY 7.4: Let m be a mimeoinvariant complexity measure and =, be a
reasonable equivalence relation on &. If there exist a MR-scheme E and an
unbounded nondecreasing semihomogeneous recursive function f m-limiting S (E)
then for no nondecreasing unbounded recursive function g, 87 = , & &, -

The proof of the corollary 7.1 may be found in [6] (corollary 1 from the
theorem 9.3) and in [7] (corollary 1 from the theorem 3). Corollaries 7.2-7.4
follow from it directly.

8. ALL MIMEOINVARIANT COMPLEXITY MEASURES PROVIDE INFINITE CLASSIFI-
CATIONS OF MR-SCHEMES

In sections 6, 7 we considered some simple conditions sufficient for the
existence of individual MR-schemes or infinite hierarchies of MR-schemes of
nonreducible complexities. It is a pity but we cannot guarantee that these
conditions hold for all mimeoinvariant complexity measures. So in this section
classes of M R-schemes are compaired in terms of set theoretical inclusion, and
not in terms of translatability. In this much weaker sense we will show that all
mimeoinvariant complexity measures provide nondegenerate classifications of
MR-schemes. To this end we will simplify the construction of the theorem 7.1 so
as to infere that for each mimeoinvariant complexity measure m there is an
mhnite hierarchy of c¢f-grammars in right-normal form of different
m-complexities (these grammars however not always being of nonreducible
m-complexities).

THEOREM 8.1: For each mimeoinvariant complexity measure m there is an
unbounded nondecreasing recursive function f such that for each Turing machine
M in N (Z') there is a right-normal form cf-grammar G,,, such that
MGy = F{pw)-
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Proof: Our mimeoinvariant complexity measure m is nondegenerate by
definition. So there is an unambiguous MR-scheme E with unbounded
complexity function. We apply to E the proposition 6.2 so that to obtain the
MR-scheme E with the following properties:

1. G(E) is a right-normal form ¢f-grammar;

2. E is unambiguous (because E is unambiguous);

3. mygis recursive (because every nonbottom node of every tree Tin S(E) has a
width no less than 2, and therefore there are only finitely many trees in S (E) with
n bottom nodes for all n);

4. mg is unbounded (because m is mimeoinvariant and hence m; =<m;).

Next we show that the complexity function m; is m-limiting S (E). First of all
we infere from unambiguity of S(E) that:

mg e, (n)=max {0, m(T)| T in S(E), | T| <n} for all n.
This means that for every tree T'in S (E), m(T) < Mg (1 T'1 ). Secondly we choose
for each n a tree T, in S(E) (if any) such that:
[1,]<n  and m(T,)=max{m(T)|T in S(E), |T| <n}.

Since mg g, is unbounded and because of the abovementioned width property of

S(E)the set {|T,||n>0} isinfinite. Finally we note that m(T,) =mg, (| T, | ) for
all (but finitely many) n.

This argument shows that there are a ¢f-grammar Gy =(Z,, Wy, 1y, Py) in
right-normal form and an unbounded nondecreasing recursive function f
m-limiting the s-set S(G,). We apply to G, the following construction.

Let M be a Turing machine in 4" (X£7). We associate with M and G, the pair
languages U, — Ug from the proof of the theorem 7.1 and the languages:

Ly={Q"x|Q is asituation of M, x is in £, 1+ | x| >|Q|},

L,={Q%xQ,|0,.0Q, are situations of M,

7 xisin £§, 21Q,1> Q| + x| +1},

and set L, = U L, where:

. Lym=(U, @U@ Ug)lL(G,),
Lyn,=U%@U,0U,@0 US)BZ],
Lyn=U%@U-@U,@ US)MZ],
Lyu=US®eU @U@ USMZL;,
Lys=U%@U, @U@ U%)MZ],
LMm6=(Ug. Us;)M L,
Ly,=USEL,.
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There are linear ¢f~grammars in right-normal form G,,.0, Gpmz2> Gumss Gatmas
Grtms » Gitms s G generating respectively the languages
Lymo=(U, @ US@ Ug)B{Io}, Ly Liyimss Lagmar Latms> Latme> Laims- We
assume that these grammars share the axiom I and that for any two of them I is
their single common nonterminal. Besides this we denote by ¢ the alphabet
K, u VMUZOu {§} and by Grim the cf-grammar (Z§, Wy, I, P{,) where
Wo=Wyu WO, Py=Pyu PO, W0 is the nontermlnal alphabet and Po is the
production set of G,,,,-

Finally we set G,,,,=(Z%, W,, I, P), where W, is the union of nonterminal
alphabets and P is the union of production sets of the grammars G,,,,, 1 <j<7.
Of course, L (Gy,,)=L,,, and L (Gy))=L ppom1 -

UPPER BOUND: mg, < f (py). The proof of this inequality is very close to the
proof of the corresponding inequality in the theorem 7.1 and is left to the reader.

Lower BOUND: mg, = f(py). The proof of this statement is straight-
forward. Indeed, since f is m-limiting S(G,) we find there a fundamental
sequence (T{|i>0). Let us denote by x; the string t(7f) and set
z;=[Py(e™"]*x; Py(e'™') for eachi, where e is the first symbol of V.
The string [Py (eI, Py(e™') is the yield of a single tree T in
S (G ymo) for each i. We denote by T; the tree com (7Y, v;, T{), where v, is the
single bottom node of T} labelled by I,. It is obvious that T is in S (G ),
t(T;)=z;, and T; is the single tree in S(Gy,,) with the yield z;. This means that
for each i, m; = (z;)=m(T;). Since T{ < T, and m is mimeoinvariant there is an
integer dp>0 (not dependent on i) such that m(T/)<dsm(T;). Further,
(T{|i>0)is a fundamental sequence for f in S(G,), so there is an integer c >0
one for all i such that cfm(T{)gf(lin ). Finally, for all i, |x;| =pun(]2z;:]).
Summarizing these inequalities we obtain for all i:

cgcypmg,, (1z;1)Zcgcpmg, (2:)=c,c m(T)
ze,m(THzf(Ix:1)=1(pu(lz:1)).

QED.

CoroLLARY 8.1: For any mimeoinvariant complexity measure m there is an
infinite sequence of unbounded nondecreasing recursive functions fi > f, > f3>
such that for all j>0, é"}:’—é’}:‘“ #O.

CoroLLARY 8.2: If m is a mimeoinvariant complexity measure then for any
nondecreasing unbounded recursive function @, &3 —& Gy #D.

vol. 15, n°1, 1981



92 A. JA. DIKOVSKII

9. COMPLEXITY OF UNAMBIGUOUS MR-SCHEMES

In this little section we show that under most reasonable conditions
complexity of unambiguous MR-schemes is of extremal nature. We discuss first a
formalization of an informal concept of extremal complexity.

DEeFINITION 9. 1: Let m be a complexity measure and f be a function limiting it.
Then we say that a M R-scheme E is of maximal m-complexity if for no g<f, E is
in &7

The following proposition shows that this definition is sensible at least for
mimeoinvariant complexity measures.

PrROPOSITION 9. 1: Let m be a complexity measure and f be a function limiting m.
Then: _

(a) if E is a MR-scheme of maximal m-complexity then it is not in &%,

(b) if m is mimeoinvariant and [ is semihomogeneous then there exist
MR-schemes of maximal m-complexity.

Proof: (a) Since the range of m is infinite f is unbounded; hence m; is
unbounded too. v :

(b) Let 7,,7T,, T5, ... be a fundamental sequence of f. Since m is
mimeoinvariant we may assume without loss of generality that in every tree T in
this sequence each nonbottom node is of width no less than 2 (we will refer to this
condition as width condition).

Let k, be a number such that { Ty, T,, T, ... } S L °(Z, W, k;). Consider
the M R-scheme:

E.: Fx=(px|cx,aFbx, ..., aF*bx),

where pisin 2, ,,, and a, b, c are basic function symbols. E,| is unambiguous
and has the following property: for each i >0 thereis a tree 7§ in S (E, ) such that
T;<5' T* while | T*| <3| T,| (this upper bound follows directly from the width
condltlon) Since E,_is unambiguous we have my (|7} Fzmg (TH)=m(TY),
by the axiom B in the definition 5.4 there is a d >0 (one for all i) such that
dgm(T¥)2m(T;). As T; is a member of the fundamental sequence
em(T)Zf(|T;|) (cis independent of i). Finally the linear inequality
|T#| <3| T;| and semihomogenity of f imply that there is a b>0 such that
bf(1T;1)=f(1T¥]|) for all i. Hence bchmEko(T;“)gf(l T¥|)for all i.
QED.

Remark: For density and branching we have p; = log n, by, 2 n. Since p
and b are both mimeoinvariant and the functions logn and An.n are both
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semihomogeneous E, is a MR-scheme of maximal density and maximal
branching.

THEOREM 9. 1: Let m be a mimeoinvariant complexity measure m-limited by a
semihomogeneous function. Then every unambiguous MR-scheme is either of
maximal m-complexity or of bounded density (i.e. falls into &, ).

Proof: The proposition 6.2 guarantees that for each MR-scheme E there is a
MR-scheme E, unambiguous if E is unambiguous, such that m, = m; and

S (L)=.S((;(I;)), This reduces our theorem to the following theorem proven
in [6, 9]:

If a mimeoinvariant complexity measure m is m-limited by a semihomogeneous
function then every unambiguous cf-grammar is either of maximal m-complexity or
of bounded density.

QED.

Remark: From results of [11, 12] it follows that &¥,,, coincides with the class
of all quasirational (3) M R-schemes.
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