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ON SUBDIRECTLY
IRREDUCIBLE AUTOMATA (*)

by M. DEMLOVÂ (*), J. DEMEL (2) and V. KOUBEK (3)

Communicated by J. F. PERROT

Abstract. — An automaton {finite or infinité) is subdirectly irreducible iff it has no non-trivial
parallel décomposition. An algebraic characterization ofsuch automata is given as well as an algorithm
for deciding whether a given finite automaton is subdirectly irreducible that runs in polynomial time.

Résumé. — Les automates sous-directentent irréductibles sont ceux qui n'admettent point de
décomposition en parallèle non-triviale. On donne une caractérisation algébrique de ces automates ainsi
qu'un algorithme pour décider si un automate fini donné est sous-directement irréductible; cet
algorithme a une complexité polynomiale en temps.

The structure theory of automata developed by Hartmanis and Stearns [8]
deals with the décomposition of a given automaton into a network of automata.
One of the basic types of décomposition is the parallel décomposition. The aim of
the present paper is to characterize those automata which have no non-trivial
parallel décomposition. More precisely, to characterize automata M with the
foliowing property: if M is a subautomaton of a parallel composition of
automata Mhiel, then there exists ioel such that M is a subautomaton of Mio.
Such automata we call subdirectiy irreducible since similar objects in algebra are
so called, see e. g. [3].

This paper is divided into two parts; the first gives an algebraic
characterization of subdirectly irreducible automata (including infinité ones).
The algebraic characterization is a generalization of a well-known description of

(*) Received July 1978, revised November 1979.
i1) Katedra Matematik, FEL (ÎVUT, Suchbâtarova 2, 16627 Praha 6, Czechoslovakia.
(2) Katedra ASfc, FSv CVUT, Thâkurova 7, 16629 Praha 6, Czechoslovakia.
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24 M. DEMLOVÂ, J. DEMEL, V. KOUBEK

subdirectly irreducible group automata, see e. g. Hartmanis and Stearns [8],
Clifford and Preston [5]. The characterization for Medvedev automata is a direct
continuation of an investigation of Schein [9] and Tully [12].

The second part is devoted to algorithms which décide whether a given finite
automaton is subdirectly irreducible. For Medvedev automata and Mealy or
Moore automata with one output, the algorithms work in the time proportional
to n2 (m 4- log n)9 where n = card Q,m = card X, Q is the set of states, X is the set of
inputs. The algorithms for Mealy and Moore automata with two outputs use
Hopcroft's algorithm for minimizing the number of states in a finite automaton
and thus they need a time proportional to n.m.logn.

As a conséquence of these investigations we get a description of subdirectly
irreducible transformation semigroups and algorithms for deciding the
irreducibility of finite ones.

Through the whole paper X, Q, Y resp. dénotes the set of inputs, states,
outputs resp. 5 dénotes the transition function 8 : Q x X - » Q , p i s the output
function. A Medvedev automaton is a triple (X, Q, S), a Moore automaton is a
quintuple (X, Y, Q, S, P), where P : Q -> Y9 and a Mealy automaton is a
quintuple (X, Y, Q, 8, P), where p : Q x X -> Y.

DÉFINITION: Let M, M'be automata (Medvedev, Moore, Mealy). We say that
M' is a subautomaton of M if there exists:

for the Medvedev automata a couple .(/z^ /i2),
for the Moore and Mealy automata a triple (hl9 h29 hs)

of one-to-one mappings hx : X -> X', h2 : Q -> Q',h3 : F-> F , such that the
foliowing diagrams commute:

Medvedev:

Q-A.

Mealy:

! '

î
QxX*

1
ô —

î
-h—*i-

Moore:

't .,
•l

X '

^ y/

f-
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SUBDIRECTLY IRREDUCIBLE AUTOMÀTÀ 25

Let us recall several basic notions; we formulate them only for Mealy
automata and omit the analogous définitions for Moore and Medvedev
automata.

DÉFINITION: We say that a Mealy automaton M is subdirectly irreducible
provided that, whenever M is a subautomaton of a parallel composition of
Mealy automata Mh iel, with the triple(hi, h2, h$) then there exists z0€/ such
that M is a subautomaton of Mlo with the triple (nf *>hu n? o h2, n?oh3) (where

e. g. Tij is the projection from the parallel composition to Xt).

DÉFINITION: Let M be a Mealy automaton. A triple (X, n, s) is called a
congruence on M if X is an équivalence on X, \i on Y, s on Q such that:

xXx', qzq' => Sfa, x)s8(«', x') & P(«, x^Pfa', *').

Note: For Medvedev automaton a congruence (X, e) for which X is the
identical équivalence is called in [8] a partition with the substitution property.

DÉFINITION: A System of congruences {(Xh \ii9 e£); i e /} on a Mealy automaton
M is separative if { Xt; ieI}, {\it; iel} and {s£; iel} are separative Systems of
équivalences on X, Y, Q. [A System of équivalences {x̂ ; i e / } on a set A is
separative if for every a.beA, a^b, there exists j e / with (a, b)$%r]

CONVENTION: We shall dénote by AA the least équivalence on a set A,
i, e. (a, b)eàA iff a = 5; V̂  the largest équivalence, i. e. (a, b)eVA for every
a» beA, Evidently, (A ,̂ Ar, Aô) and (Ax, VY, Ve) are congruences for every
Mealy automaton; we shall call (Ax, AY, AQ) the identical congruence.

The following proposition is a well-known analogue to that given by
Birkhoff [4], see also [3], for àlgebras. Therefore, we shall formulate it without a
proof.

PROPOSITION 1.1 : A Mealy {Moore, Medvedev) automaton is subdirectly
irreducible iffevery separative System of congruences on M contains the identical
congruence. Equivalently: the set of all non-identical congruences on M has a
smallest element (in the lattice of all congruences).

Before we exhibit a characterization of subdirectly irreducible automata we
shall point out several necessary conditions which enable us to restrict ourselves
to Medvedev automata of a special form.

LEMMA L2: Every subdirectly irreducible automaton {Mealy or Moore) has at
most two out put s.

The proof immediately follows from the fact that for every équivalence X
on F, (AXs X, AQ) is a congruence on M.
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26 M. DEMLOVÂ, J. DEMEL, V. KOUBEK

LEMMA 1.3: Let M bea subdirectly irreducible Mealy {Moore, Medvedev resp.)
automaton. Let there exist x,x'eX, x^x ' , such that for every qeQ,
Ste,'x) = 5(g, x') and p (q, x) = p (q, x') [8 (q, x ) -S (<?, x'), resp]. Then card
X = 2, card Q = l, and card F g l .

Proof: Given an automaton (Mealy, Moore or Medvedev), defme an
équivalence X on X by (x, x')eX iff for ail geQ, 8(q, x) — b{q, x') and
P(<2, x) —P(#, x'). Clearly, (X, A7, Ae) is a congruence. Since {(I, Ar, ÀQ)5

(Ax, Vy> Ve)} is a separative system of congruences we get our assertion.

CONVENTION: In the following we shall always assume that every Mealy
(Moore, Medvedev resp.) automaton satisfies:

Vx, x'eX (x^x'=>3qeQ : b(q, x)#5(g, x') orp(ç, x )^P(g , x')) !

g, x')) resp.).

We shall use the well-known notations: X*, X+ , ô*, 8 +, p*, p+ (see e. g. [2]).

THEOREM 1.4: Let M be a Mealy (Moore resp.) automaton with card 7=2.
Then the following are equivalent:

(i) M is subdirectly irreducible;
(ii) M satisfies (2) and the following holds:for every q,q'eQ,q^ q', there exists

aeX+
 ( Û G I * resp,), such that p+ (q9 a )#p + (g', a), (p* (g, a)#p*(çr', a) resp.).

Proof: (ii)=>(i). Take a non-identical congruence (X, \x, z) different from
(Ax, Vy, Aö). From (2) we know that (X, \i, s) is non-identical iff (A ,̂ [i, s) is.
Take any (q, q')ee, q^q'; by condition (ii) there is aeX +, resp. aeX*, with
{ p+ (q, a), p+ (q', a ) } - F, resp. { p* (q, a), p* (q', a)}=Y, and thus u = Vy.
Hence (Ax, Vy, AQ) is the finest non-identical congruence.

resp.),

p + fe a ) - p + ( ^ , a)($*{q9 û) = p*(«', a) resp.)}.

If (gafl')ee then (8(g, x), 8 (q'9 x))ee for every xeX [use e..g.
p+ (8 (<2, x), a)=P+ (q, xa)]. Thus (Ax, Ay, e) is a congruence on M. Clearly,
{(Ax, Ay, s), (Ax, Vy, Ae)} is à separative system of congruences. Hence,
if M is subdirectly irreducible, then s = Ae, i. e. condition (ii) holds.

REMARK: Lct M=(X, Y, Q, 8, P)be an auiomaton,card 7= 2. Then subdirect
irreducibility of M and of (X, Q, 8) are independent, i. e. there exists a
subdirectly irreducible automaton M for which (X, Q, 8) is not subdirectly
irreducible and on the other hand a non-subdirectly irreducible automaton M
for which (X, Q, 8) is subdirectly irreducible.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SUBDIRECTLY IRREDUCIBLE AUTOMATA 2 7

Clearly, there exists e. g. a Moore automaton with two outputs which is not
subdirectly irreducible, yet with (X, X, 8) subdirectly irreducible (for P being a
constant mapping). The foUowing example shows that there exists a subdirectly
irreducible Moore automaton for which (X, Q, 8) is subdirectly reducible.

Example l:LetX = {x}, Y={A, B}9 Q = { 1, 2, 3, 4}. Let 8, p be defined as
folio ws:

A . 1 B . 2

x

4

© ©
Clearly, (X, Q, 8) is not subdirectly irreducible, to see this it suffices to take

e = AQ u {(3, 4)}, e' = Ae u {(1, 3)} and we get a separative system of
congruences {(AXi e), (AX9 e')}. On the other hand, (X, Y, Q, 8, P) is subdirectly
irreducible by theorem 1.4.

Using Theorem 1.4 and Lemma 1.2, we can restrict ourselves only to the case
card 7= 1 in the following. Clearly, a Moore or Mealy automaton with one
output is subdirectly irreducible iff so is its Medvedev automaton. Thus from
now on, throughout the first part, we shall consider only Medvedev automata.

DÉFINITION: Let M be an automaton. Define a graph G = (g, R) (i. e.
Rï=QxQ)by: (q, q')eR if there exists xeX with 8(g, x) = q'. The components
of G (i. e. maximal connected subgraphs) will be called the components of the
automaton M. If M has exactly one component we say that M is weakly
connected.

PROPOSITION 1.5: Let M be a subdirectly irreducible automaton. Then either:
(1) M is weakly connected or (2) M has two singleton components (and hence
card X=l) or (3) M has two components, one of which is a singleton and for
every element q in the other there exists xeX with b(q, x)¥^q.

Proof: Let { Et; i e I} be system of components of M. For every / e 1 define an
équivalence st by (q, qf)eet iff either q = q' or q, q'$E{. Clearly, (Ax, £t) is a
congruence on M and {(Ax, £t); i el} is a separative system of congruences on
M. Therefore there exists a component, the complement of which has at most
one point. Hence either card / = 1 or card 1 = 2 and for some i e l , card E( = 1.
Assume thelatter, i. e. £, = {<?'}, and let there exist qeEpj^i, with S (4, x) = q
for all xeX. Take (À,, e) the smallest congruence with (q, q')ez. Clearly, X = AX

and {(AX9 et), (Ax, e)} is a separative system of congruences, thus ê  = AQ, i. e.
card Ej=l. By (2), card X=l.

vol. 15, n°l , 1981



28 M. DEMLOVA, J. DEMEL, V. KOUBEK

To characterize subdirectly irreducible automata we use the following
algebraic représentation which is analogous to that given by Schein, see [9].

DÉFINITION: Let X be a set. Then a triple (S, {xf; iel}, x) is said to be a
représentation System if the following conditions hold:

(1) S is a semigroup with the set of generators X\
(2) Xi is a right congruence on S for every ie I;
(3) T is an équivalence on ={{R, T,); R is a class of T,-; ï e / } , such that: if

((R, xt), (R', Xj))ex then either R~Rf or i^j and for every xeX, ((Rx, xt),
(R', x, Xj))ex. {Rx is the set of ail éléments y.x, yeR, where . is the
multiplication given by S.)

DÉFINITION: Let M be an automaton. Then a représentation System (S, {x^
iel}, T) over X is a représentation of M if there exists a bijection Ji : Q -+ P/x
such that Zz (8 (4, x)) is a class of t containing (£ x, x£) whenever the class of fc(g)
contains (£, x£). Define <p : P ^> Qby (p {R,xt)= h~l ([R, x()]). We call 9 the
représentation mapping of (S, (T£; Ï G / } , T) relative to M.

By a modification of the proof given in [9] we get the following proposition:

PROPOSITION 1.6: Every automaton has a représentation.

There is a correspondence between Medvedev automata and transformation
semigroups (shortly 7-semigroups). Üsing this correspondence one obtains a
représentation of T-semigroups which is a generaiization of the known
représentation of T-groups [5],

DÉFINITION: A T-semigroup is a couple (Z, Jt\ where Z is a set and M a set of
transformations of Z closed under composition. If ail transformations are
bijections and for every ƒ e ^ also ƒ ~xeJ(, then (Z, Jf) is called a T-group.

With every T-semigroup (Z, ^ ) we can associate a (Medvedev) automaton
A(Z, JK) with X = Ji, Q = Z, and § (z, ƒ) = ƒ » . Say that a représentation
System is a représentation of(Z, M) if it is a représentation of A(Z, ^ ) .

COROLLARY 1.7: Euerj; T-semigroup (Z, ^ ) /ias a représentation. Moreover,
there exists a représentation (S, { X / , ; G / } , X) of (Z, M\ where S = ( ^ , . ) and if
(Z, M) is a T-group, then x is identical.

DÉFINITION: A T-semigroup (Z, Ji) has a source xeZ if for every z e Z there
exists ƒ G ^ for which ƒ (x) = z.

Let us give a characterization of several well-known notions (given e. g. in [2]
and [8]) by means of the foregoing représentation. The part of the following
corollary concerning T-semigroups was first proved by Schein [9].

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SUBDIRECTLY IRREDUCIBLE AUTOMATA 29

COROLLARY 1.8: (1) An automaton M is:

(a) connected iffit has a représentation (X, {x1}9x)'9

(b) strongly connected ifffor each ofits représentations (S, {xt\ iel} , x) the

following holds: for arbitrary iel, a, beS, there exists ce S with (a, &.c)ex£ .

(2) A T'Semigroup (Z, Jt) containing the identity mapping of Z:

(a) has a source x iff there exists a right congruence x on {Jty-% for which

(f(x), x)ex whenever feM9 such that {{Ji, .)> {^} » \ ) *s a représentation of

(Z, U?) (P is tfee set of classes o/T);
(b) is transitive ifffor each ofits représentations (S, { x,- ; i G ƒ } , x) and for every

iel9 a9beS, there exists ce S with (a, b.c)eXi.

CONVENTION: Let M be an automaton, (S, {x^; iel}, x) its représentation.
Dénote by Ct the class of all right congruences on S strictly coarser than xt (note

DÉFINITION : Let M be an automaton, (S, {x £ ; i e / } , x ) i t s représentation. Let
(S, {}v, ieî) , \x) be a représentation System over X. We say that it is
compatible with (S, {xf; i e / } , x) if:

(1) \iitCi^j{xi} for every Ï G / ;

(2) if ((R, xt-)s (R', Xj))eT then (([R]M|, ^ ) , ( [ « \ , ^))e»i(where [R]^ is the
class of f̂ containing R);

(3) if (a, b)G^and(([a] v T,) , (R, X , - ) ) ^ ! ^ , ^ ( R ' , T,-)) 6 T then [ R ^ - I R ^ .

LEMMA 1.9: Let M fee an automaton, (S, {x^; ze J } , x) its représentation. Let

XiêCi- Then there exists a compatible System (S, {Xl
j9jel}, Xl)such thatX\ = Xi

and every System (S, {vjijel} , v), compatible with (S, {x,; j e / } , x)for which
Vi — Xi, is compatible with (5, {Xy9jel}9 X1).

Proof: Define X) by (a, b)eX^ iff either (a, b)eXj or (([a]t., Xj), ([c]T, x£))s

( (M v T ;) , ( [ ^ ] V xt-))ex and (c, d)eXt. Define Xf by (([a],;s \)),\[b]K, TJ^eX1 if
there existe, à with (a, c)eX,j,(6, d ) e X[ and (([c]T., Xj),{[d]Xki xk))ex. Evidently,
(S, [X); jel}, Xf) has the required properties.

DÉFINITION: Let G={V, E) be a graph. The trap &~{G) of the graph G is
defined to be the full subgraph of G on the set T(G)<= V, being the least subset
with the following properties:

(i) for every a e V there exists b e T(G) for which there is a (directed) path from
a to b;

(ii) if (a, fe)e£ and aeT(G), then beJ (G) .

Note. (1) Such T(G) uniquely exists since sets with properties (i) and (ii) are
closed under intersection.

vol 15, n°l, 1981



30 M. DEMLOVÂ, J. DEMEL, V. KOUBEK

(2) If there exists a (directed) path from a tob and a, b e T{G), then there aiso
exists a (directed) path from b to a.

(3) If G' is a transitive closure of G, then T(G) = T(G').

DÉFINITION : Let M be an automaton. Dénote by G (M) = (P, R) the graph with
p= {{<!> q'}',q, qfeQ,q^q'}andJoreverypup2eP,(pup2)eRiïîîor every
congruence (X, s) for which px e& we have p2es.

THEOREM 1.10: Let M be an automaton fuljilling (2). Then the jollowing are
equivalent:

(1) M is subdirectly irreducible;
(2) the graph ^(G{M)) is complete;
(3) each représentation (S, {xt; iel), x) of M has the jollowing properties:
(a) for every iel, C,- has thejinest element [dénote it by X()y

{b) for every i,jel9 X)eÇ,j{jor X) see Lemma 1.9),
(c) if (S, {T^ ; i e i } , T ' ) is a représentation System then x is coarser than x'.

Proof of (1) <s>(2): The graph G(M) is transitive. Hence its trap
consists of complete graphs with disjoint sets of vertices. Vertices of each of these
complete graphs, say Gt, form a non-identical équivalence, say e,, on Q such that
(A^5 Ei) is a minimal congruence on M. (It follows from the définition of G (M)
and the trap.)

Now, M is subdirectly irreducible iff it has a fmest non-identical congruence.
This congruence is the only minimal non-identical congruence, i.e. ^~(G{M))
has exactly one component. Using the transitivity of G(M), this holds iff
3~ (G{M)) is complete.

Before proving (1)^>(3) let us point out the foliowing:

L E M M A 1 .11 : Let M be an automaton with a représentation (S, [xi9 iel), x).
Let £ be an équivalence on Q. Then [Ax, E) is a congruence on M iff there exists a
System (S , {\it; iel} , \x) compatible with (S, { x f ; iel} , x) such that

(q,q')ez o 3 a , 6 e S , i,jel9

and

where cp is the représentation mapping of (S, {x^; iel}, x) relative to M.

Proof (1) Assume (Ax, e) is a congruence. Then one can clearly construct a
représentation of M/{AX, e) = (X, g /e , 5/Ax xe) with the required properties.
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(2) Let (5, {uf; iel}, u.) be a représentation System fulfilling (3). Take
(q, qf)ee, xeX\ then q>([a]T.) = g, cp([b]T.) = <?' for some i, j e / , a, beS, and

so is

Further 8(4, x) = (p([ax]T), 8(g', x) = q>{[bx]T ), hence (5 (5, x), 8(4', x) )ee and
(Ax, s) is a congruence.

CONVENTION: For every congruence (Ax, e) dénote

(see Lemma 1.11). Now, T is a one-to-one correspondence between
congruences on M containing A^ and Systems compatible with (S, { xt; i e I}, x)
satisfying (3 ). Dénote $ = *F " x .

Prooj of Theorem 1.10 (1)=>(3); AssumecardQ^l. (For cardQ = l there is
nothing to prove.)

Condition 3 (a): Assume that C,- does not contain a fmest element, so there are
G^ViECi the intersection of which isx ; . Thus we have two congruences
{Ax, ri), (A^, ̂ ) on M, where

T I = * ( S , {&j'jel}9 0% ^ = <D(S, {v);jel}, V)

(see Lemma 1.9 and the above convention). Let (q, <?')erl> Q^Q\ i-e- by
Lemma 1.9 and Lemma 1.11 there exist a,beS with {a,b)eGt and cp ([a]a) = q,
9 ([&]Ol) = q'- Since (as b) ̂  xf, we have (a, b) ̂  vf and thus {q, q')$£>. Analogously,
one proves that for every (q, q')e£„ q^q\ we have (q, q')$r\. Hence (AX9 -q),
(Ax ,^) form a separative system of congruences, Le. M is not subdirectly
irreducible.

Condition 3(b); Assume that there exist u^eC; and jel with uj= x̂ ..
Then we can assume that [ii = Xt, Take v = $(S, {V f e ; lcel}5 X') and
a = O(S, { l{ ; /ce/} , V). Clearly (AX9 v), (Ax, a) form a separative system of
congruences, hence M is not subdirectly irreducible.

Condition 3 (c): Assume that there exists an équivalence x'onlP coarser than x
such that (5, {x^; iel} , x') is a représentation system satisfying (3). Take
G = ®(S, {%ii iel}, x'),v = <D(5, {A,{; / c e / } , V") for some ;e / . Again (Ax, a) ,
(AXï v) form a separative system of congruences. Indeed, if ( p, r)eo, then for
j e / it holds: if cp ([a]T ) = p for some a e S5 then for every b e S1, cp ([b]T.) ̂  r, hence by

vol. 15, n°l, 1981



32 M. DEMLOVÂ, J. DEMEL, V. KOUBEK

Lemma 1.9, (p, r)jÉv. If (p, r)ev then there exist a, beS with cp ([a]Xj) = p,
cp ([b]T) = r and (a, 6-) 6 X; but (a, b) £ TJ . Thus {p,r)$o and the proof is complete.

(3)=>(1). Let^=-{(a t , \ik); keJ} be a separative System of congruences
on M. One has: (Ax, n) is a congruence on M whenever there exists CT, with
(a, |o,) being a congruence. So we can suppose that ak = Ax for ail fee J. Take

By Condition 3 (c) we have: whenever \ik ̂  AQ there exists Ï0 with jï^e C v Hence
by Condition 3 (a) (Ax, m) is coarser than <I> (S, {X)Jel}, X>). Further from
Condition 3 (b) we have thaX'X^Xj for every ijel. Thus, from the separativity
of £f, there exists k0eJfor which p,ko = AQ. By (2), ako = Ax and thus (Ax, AQ)eSf
and M is subdirectly irreducible.

DÉFINITION: A T-semigroup (Z, Jt) is a T-subsemigroup of (y, ^K) if there
exists a pair (ƒ, rj) of one-to-one mappings f:Z-*Y,r\ \ Jt ^> Jf such that:

(1) Tl(ofioof2) = Tl(âfi)o'n(ôf2)forevery glig2e^\
(2) ƒ (0(X)) = TI(</)(ƒ (x)) for every x e Z ^ e J .

Then (ƒ, r\) is the inclusion morphism of (Z, ^ ) into (y, Jf).
A T-semigroup (Z, ulf) is subdirectly irreducible if: whenever (Z, ^ ) is a

T-subsemigroup of (f]Z i 5 {Y\gi', g^Jii) ) ({Z^Jt^ are J-semigroups)
ïei iel

with the inclusion morphism (ƒ, -q), then there exists ioe I such that (Z, Jt} is
a T-subsemigroup of (ZÎQ, Jiio) with (nio°f> ̂ lo°'n) being the inclusion
morphism. (TC( means the i-th projection of the product.)

COROLLARY 1.12: For a T-semigroup (Z, JK) thefollowing are equivalent:
(1) (Z, M) is subdirectly irreducible;
(2) the trap of the graph

{x, y}^{z, v}, V congruence e on (Z, Jt) ((x, ^)6 8=>(z, ü)eg)})

is complete;
(3) euery représentation of(Z, Ji) satisfies Condition 3 from Theorem 1.10.

COROLLARY 1.13: If an automaton M is connected (a T-semigroup (Z, M) has a
source) then M ((Z, M)) is subdirectly irreducible iff there exists a représentation
(S, { 9~}, AP) such that C* has afïnest element. Moreover, let (Z, Jî) be a T-group.
Then (Z, M) is subdirectly irreducible iffforsome XGZ the set { G; G is a subgroup

^ .), \feJt;/(x) —x}çG} has a smallest element.

Note: The last statement is a well-known description of subdirectly irreducible
T-groups.
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Note: Condition 3 from Theorem 1.10 is equivalent to the following: there
exists a représentation of M with 3(a)-3(c).

REMARK: Neither Condition 3 (b) nor 3 (c) can be ommited, as can be seen from
the following examples.

Example 2: Let M be an automaton, where X = {xl9 x2}, Q = {1, 2, 3, 4}
and

A représentation of M: Put 5 = X *, take 1 = {1, 2 } ; Xl has three classes: { A } ,
{a; 3èeX*, a = x1b}, {a;3fceX*, a = x 2 b} , T2 has two classes: {A}, {a;
aeX*, a ^ A } (A is the empty word). Further,

> t2 ) , ( [ x ^ , x2), ([x2]T), x j } .

x is generated by (([x2]Ti, x j , ([xJT2, XaHex. Clearly, M satisfies (2) and
Conditions 3 (a), 3 (c). Butit does not satisfy 3 (b) since the finest congruence in
C2 is /k2 = ̂ x a n ^ ^Î=X!. Therefore M is not subdirectly irreducible.

Example 3: Let M be an automaton, where X = { x1? x2 }, g = {1, 2, 3, 4}
and

. , Q -X7,

^ > 4 •-N
x2 A î xl9x2

A représentation of M: Put S = X*. Take I— {1, 2 } , T ! = T 2 and both have
three classes: { A } , {a; a^x1 b}, {a; a=x2 b}.

P - {([A]v xt), ([x,]v x,); i = l , 2,jf = l, 2} . '

Further, x is generated by (([xjti, x j , ([xJT2, x2))ex, i = l, 2. Evidently, M
satisfies (2) and Conditions 3 (a), 3 (fc). But it does not satisfy Condition 3 (c). For
this take x' which contains moreover (([A]Ti, xx), ([A]v x2)). Thus M is not
subdirectly irreducible.

vol. 15, n°l, 1981



34 M. DEMLOVÂ, J. DEMEL, V. KOUBEK

This part exhibits algorithms for deciding whether a given fmite automaton
(Medvedev, Moore, Mealy) is subdirectly irreducible. For this purpose we shall
use the following three aigorithms sé > 0H and $£.

ALGORITHM sé\ For a given mapping h : B x A —> C algorithm sé fmds the
équivalence a on A defmed by (a, a')G a iff h{b, a) = /i(b, a') for every beB.
Moreover algorithm se décides whether oc = AA. The worst case running time of
this algorithm is proportional to card A card 22.

ALGORITHM ^ : For a given Medvedev automaton M algorithm 3 fmds the
trap $~ (G (M)) and décides whether the trap is a complete graph. The worst case
running time is proportional to n2,(m + logn), where w = cardQ, m = cardX.

A description of algorithms sé, ^ , a proof of their correctness and a proof of
the running time is given below.

ALGORITHM !%: For a given Moore or Mealy automaton with the set of states Q
and for a given équivalence e on Q algorithm $ finds the biggest congruence
{Ax, Ay, X) such that X is finer than e. Moreover it décides whether X = AQ. The
worst case running time is proportional to rc.m.logrc.

This algorithm can be obtained as a slight modification of Hopcroft's
algorithm for minimizing the number of states in a fmite automaton (see [1]).

Now, we shall exhibit the algorithms for deciding whether a given automaton
is subdirectly irreducible. We do not deal with the trivial case-
cardQ = card 7 = 1 , cardX^2; such an automaton is subdirectly irreducible.

Medvedev automaton M

First we décide whether Condition (2) holds. For this we use algorithm sé for
A = X, B = C = Q and /i = S. If a^A^, the automaton is not subdirectly
irreducible. If oc = A ,̂ then we use algorithm J? for deciding whether the trap
9~(G (M)) is complete. If T/{G (M)) is complete, the automaton M is subdirectly
irreducible, otherwise M is not subdirectly irreducible.

The time bound is proportional to n2(m + logn), where n = cardg,
m = cardX.

Moore automaton M

If card 7>2, then M is not subdirectly irreducible. If card 7= 1, then M is
subdirectly irreducible iff {X, Q, 8) is so; thus we use the above algorithm.
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Ifcard F = 2 , then M satisfies (2) iff so does (X, Q, §);thus we use a lgor i thme
in the same way as above. If M satisfies (2) then we use algorithm X for the
équivalence y defined by: (q, q') e y iff P (q) = p (q') (as in the original Hopcroft's
algorithm). If X = AQ, then M is subdirectly irreducible, otherwise M is not
subdirectly irreducible.

For card Y = 2 the time bound is proportional to w.m.logw.

Meaîy automaton M

If card I V 2, then the algorithm is the same as for a Moore automaton.

Ifcard Y = 2, then in order to décide whether M fulfills (2) we use algorithm sé
for A = X, B = g5 C^Qx Y and h = b x p [i.e. h(q9 x) = (b(q, x), P(«, x))].

If M satisfies (2), then we use algorithm X for the équivalence y defined by
(<Z> Qf)€y iff) for evëry xeX, &(q, x) = $(q\ x). To obtain y we make use of
algorithm sé, now for A = g , JB = X, C = Y and h (x? 3) = P (q> x). Automaton M
is subdirectly irreducible iff the équivalence X obtained by algorithm X is equal
toAQ .

For card Y=2 the time bound is again proportional to n.m.logn.

Algorithm sé

Let A, B, C be fmite sets, / i : B x i - > C a mapping.

DÉFINITION: Let B'^B. We say that a, a' are recognizable w. r. t.B' provided
there exists b e B' with h (b, a)^h (b, ar). Further, defme an équivalence ~ B, on A
putting a~B,a' iff a, a' are not recognizable w.r.t . £ ' . The system of classes of
~B, is called the partition w.r. t. B'.

Our algorithm constructs a séquence of partitions 0>k w.r . t .
£/c~ {hl, . . , bk) , fc=l, . . . , n = cardB. First, let us describe the procedure
which constructs partition #fc + 1 w.r.t . Bku {bk+l} from the partition âPk.
Every block P l

k will be split into {n2 {h~x (c)); c e h {bk + %, P ^ ) } , where n2 is the
projection n2(b, a) = a. This can be achieved in a time proportional to cardP k .
Hence the time needed for the construction of ^ f e + 1 is proportional to card A.

LEMMA 2.1: For fc= 1, . . . , n — l,with n = card B, 0>k+ x is a refinement oj0*k and
&n corresponds to the required équivalence a.

Description oj algorithm sé

We use {n + 1 )-lists Mi,i = l, .,., n+1; every M t is either empty or contains a
block of ëPk or contains a block of £Pk+x. At every moment the set of all indices of
lists M f is divided into four parts: L E the set of indices of M t which are empty, Lo
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the set of indices of M( containing blocks of 0*k which are to be split w. r. t. bk+l9

L N the set of indices of Mf in which ail blocks of # k + 1 have at least two éléments,
L j the set of indices of M, which contain singleton blocks.

When splitting block P{ the symbol t(c) means the index i such that M t will
contain block Pr

k+1 for which h(bk+li Pr
k+1) = {c} provided such an index î

exists, otherwise t(c) =

Initialize: M1=A, M — 0 for i —2, ...,
f{c) = Oforal! c<=C

a: for each beB do
b : whüe Lo^0 do

take ieLd;
c: {Splitting M,w. r. t. b):

while M^0 do
take aeMt;

\{}

ift(c)=O then begin;

end; Mj = {a [ :
t'/.st' M t ( r )~M t

&*/?£/ c;

end b;
while LN

N N \ { } ;
i/card M, = l then L^^uiik

else Lo=L0u\î\;
end d;
if L0=Ç> then begin; write "'a^â,,"; stop; end;

else;
end a;
write "a 7e À/'; s fop;

Correctness of algorithm se folio ws from Lemma 2.1. It remains to show that
the number of lists Mt is sufficient. But this follows from the following
observation: Let Mf contain k éléments. Since every aeA is in every moment
contained in at most one list, there are at most n — k + l non-empty lists, i. e. there
are at least k etnpty lists for splitting Mf.

The time needed for one exécution of Statement c is proportional to card Mt

Hence the time needed for one exécution of Statement I? is proportional to

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SUBDIRECTLY IRREDUCIBLE AUTOMATA 37

card A. Statement d needs a time proportional to card L^^card A. Both
Statements b and d are repeated at most card B times, thus the time of exécution
of the whole algorithm is proportional to card A. card B.

Algorithm $

Let M be a fini te Medvedev automaton. Our aim is to give an algorithm that
finds the trap T G{M)) and décides whether the trap is complete.

First, let us point out se ver al lemmas about finding the trap of a (gênerai)
graph.

DÉFINITION: Let G = (F, E) be a graph. Define an équivalence c(G) on V as
follows: (u, v) e c (G) iff there exist paths both from u to v and from vtou. Dénote
by C(G) the quotient graph (V/c{G), E/c{G)) without loops, i. e. for different
classes [ƒ,, U2 of c(G), (Uu U2) is in E/c(G) iff there exist u1eUuu2e U2 with
(u1,u2)eE.The classes of c(G) willbe calledstrongly connectedcomponentsof G.

Let us consider a séquence of graphs Go, . . . , Gn such that :
(51) all G; = (F, Et) are subgraphs of G and G0 = (K, 0 ) ;
(52) for every i, £ i + 1 = £ i u { ( w , u)} for some w, u such that ueT(Gt) and

(S3) if ue r(GB) and (u, v)eE then (u, Ü)e c (GB).

Note that such a séquence exists for each graph.

LEMMA 2.2: (1) T(Gn) = T{G).

(2) c ( ^ ( G n ) ) = c (

Note: we J(G) iff for every path from uto v there exists a path from v to u.

The proof of Lemma 2.2 follows from the above note and from the fact that by
addition of an edge (u, v)eE\En to the graph G„, both the set T(Gn) and the
équivalence c(^(Gn)) do not change.

LEMMA 2.3: For every i = 0, ...,nthe graph C (Gt) is a partial mapping without

cycles.

Note: In other words C (Gt) is a forest.

Prooj: Let us proceed by induction. Evidently, our assertion holds for Go.
Assume that it holds for Gt. By the définition Gi+1={V, Ei + i), where
Ei+1=E(\j {(M, V)} for ueT(Gi). The following two cases can happen:

1) the grapa C {Gt) with the added edge {[u]h [v]t) has no cycle ([u]t dénotes the
element of V/c (Gt) containing u). In this case the équivalence c (Gf) and c (G; + x )
coincide and thus C{Gi + l) has no cycle;
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2) the graph C(Gi) with the added edge ([w]i5 [u]f) contains a cycle, say [v^,
k

[v2]h '-> lvkïf Then by the définition oîc{Gi+l) the set (J [vj, forms a strongly

connected component of Gi+1 and hence C(Gi+1) has no cycle.

Now, we shalî show that C (G£ + x ) is a partial mapping. Assume that, by way of
contradiction, there exist X, Y, Z.X^Y^Z^X, such that both {X, Y) and
(X, Z) are edges of C{Gi+1 ). Neither (X, 7 ), nor (X, Z) is the new added edge,
since X $ T(G{). Then there exist vertices DUD2 oïC(Gi) such that Dx u D 2 ç l
and (Dx, Y ), (D2, Z) are edges of C (G,). Then there exists a path in Gt either from
£>! to D2 or from D2 to Dx and ail vertices of this path belong to X. Let there exist
e. g. a path from D1 to D2 . Since C(Gt) is a partial mapping, Y is the second
vertex in the path from Dl to D2. Then 7 g X and hence X = Y — a contradiction.

LEMMA 2.4; Let G = (V, E)bea graph, let the séquence Go, . . . , GJulJil (SI),

(S2),(S3).Let/c = card K. Then n g 2 k - 2 . (In otherwords: graph Gn has at most
2/c-2edges.)

Proo/: By induction on i we shall prove that if a strongly connected component
of Gt- has s éléments, then it has at most 2s —2edges.

This is evident for Go.

Let the statement hold for Gh we shall prove it for Gi+1. The graph Gi + 1 arises
from Gt by addition of, say, the edge (w, t;). There are two possibilities:

a) the graph C{Gt) with the added edge has no cycle. In this case
c(Gi) = c(Gi+i) and there is no new edge inside the strongly connected
components of Gi + 1;

b) the graph C (Gf) with the added edge contains a cycle consisting of strongly
connected components [uj, , [v2]t, • • • » [vm]i' Dénote by kl9 -..,km the numbers of
vertices of [v^, [v2]h .--, [vm]t. In all these strongly connected components at
most m — 1 edges belong to Gh because C {Gt) is a forest. The new class oîc(Gi + 1)
is a union of strongly connected components [v^, ... [v J^. The number of edges
in the new strongly connected component is at most

m m

Since m^2, the new strongly connected component having s— Y, st vertices,

has at most 2s —2 edges.

Now, let [uj , . , . , [v„] be all the strongly connected components of Gn,
m

letkl, .. ., km be numbers of vertices in them and /c~ £ kt. Then there are at

m

most £ (2fcI—2) + m-1^2fc-2edgesin Gn.
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Lemmas 2.2-2.4 enable us to give an algorithm for fmding the trap of an
(gênerai) graph G. We shall construct a séquence Go, ..., Gn fulfilling (S1)-(S3).
While constructing it we maintain the set T(G(), the graph C{Gt) and the
équivalence c{Gi),

When a new edge (w, v) is added to Gh the following two cases can occur:
1) no cycle is closed, then we have to exclude [u]j from the trap and add a new

edge to C(Gt). There are no changes in the équivalence c(Gi);
2) a new cycle u9v9vi9v2, ..., vk is closed. Then we have to form a new strongly

connected component [v]i+1 of Gi + l as the union of strongly connected
components [u]h [v]h [uj^ ..., [v^ of Gt and also make corresponding changes in
T(Gt) and C(Gt).

Using suitable data structures it is possible to generate new edges in a total
time proportional to the number of edges in G. In addition, we can also remove a
strongly connected component of G, from the trap in a fixed amount of time; and
this needs be done at most once for every edge of G.

The time needed for maintenance of T{Gi), c {Gt) and C (Gt) when the new edge
closes a cycle is proportional to fc.logfc, where /c = card V, by the following
lemma.

LEMMA 2.5: Let {^}?=0 be a séquence of partitions on the set V such that
^i+1 is obtained from <Pt as a union of two blocks of gP{. Let the time needed for
Computing the union of two blocks be equal to the cardinality of the smaller ofthem.
Then the total time for obtaining unfrom u 0 is not larger then(n/2)Aog2

 n> where
n = cardF.

Prooj: Without loss of generality we can assume that ^ 0 consists of singleton
blocks only and 0>n has only one block. (This is the worst case.) We shall prove by
induction that the time needed for establishing a block of cardinality a is at
most (a/2).log2a.

For ^ 0 , this is obvious. Let the statement hold for two blocks with
cardinalities a^b. We have to prove that

| . l og 2 a + - . l o

Since a.log2a + a = a.log2(2a), it is sufficient to show that
b a

A b A

But this follows from the fact that the function

is increasing and convex,
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To save the time needed for a décision whether a new cycle was closed inGi+u

we shall label vertices of G by natural numbers and choose the new edges in a
special order using these labels. The label of vertex v is denoted by L (v). The rules
for labelling vertices and for choosing the edges are the foliowing:
(Ll) In Go, there are no labels.
(L2) If there exists an edge (w, v)eE which can be added to Gt according to
(S1)-(S3) such that vertex u has a label, then we shall choose this edge and we
shall label L(I>) = L(M), provided v has no label in G,.
(L3) If for every edge (u, v)eE that can be added to Gt according to (S1)-(S3),
u has no label, then we shall choose an arbitrary vertex u which has no label
and put L (u) = 1 + max { L (w); weV and w has a label}.

Note: (L3) describes the introduction of a new label and (L2) the addition of a
new edge.

Rules (L1)-(L3) imply that we shall prefer edges leading from the component
of the trap, which has just been created by cîosing a cycle or to which the last edge
leads. The set of vertices labelled by the same label forms a branch of the
forest C{Gt).

LEMMA 2.6: Ijboth u and v have labels andL(u) = L(v), then there exists apath
either from u to v or jrom v to u.

Prooj: Let us proceed by induction on i. The statement holds for Go; let it hold
for Gi_x. Let Ei\Ei_1=^{(w, z)}. There are three possibiiities:

a) both w and z have already labels in G^f,
b) neither w nor z has a label in G^^
c) only one of vertices w, z has a label in Gt„x.

The only interesting case is the third one. In this case w has a label and z has no
label in Gt_ t. Let now L(u)=^L(w) ~L{z) in Gt. Since w e T(Gt„ J , there exists a
path from u to w in Gi_1 and then there exists a path from u to z in Gt.

LEMMA 2.1: A cycle is closed by adding the edge (u,-v) to Gt ijfboth u and v have
already labels in Gt and L(u) = L(v).

The proof immediately foliows from Lemma 2.6 and from the fact that if there
is a path from w to z, then L (w)^L(z).

Note: Lemmas 2.2-2.7 enable us to construct an algorithm for finding the
trap of a (gênerai) graph the time bound of which is proportional to
card E + card F. log (card V).

Let us come back to the case of automata. We have to fmd the trap of the graph
G(M) = (P, R) (see. parti). The algorithm will be based on the concepts
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described above for graphs. We shall construct a séquence Go, . . . , G„ fulfilling
(S1)-(S3). The vertices will be labelled and the new edge will be chosen as
described in (LI )-(L3). However, the set of all edges of G (M) is rather large, since
the relation R is transitive. We shall show that the choice of edges can be
restricted to edges of two special types:

Let us consider the edge ( p, p'), where p = {q1, q2}, p' — {q[, q'2}. We say that
this edge (p, p') is of type L provided there exists a letter xeX such that
S({<2i><Î2}>x) = {<2i> 92}- On the other hand this edge (p5 p') is saidof type T
w. r. t. graph Gt provided (p, p')eEi+1\Ei9 q2 = <l2 a n d t r i e r e exists
Pi = {<7i> q'i} such that (p, Pl)ec(G().

LEMMA 2.8: Let the séquence of graphs Go, . . . , Gn fulfilling (S1)-(S2) and
(L1)-(L3) be constructed using edges of types T and L only. Let the condi-
tion (S3) hold for edges of types T and L. Then T(G(M))=T(Gn)
and

Proof: Let the séquence G o , . . . , G„ satisfy the assumptions of Lemma 2.8. Let
G (M) = (P, R), Gn = (P, Rn). Every strongly connected component A ç T{Gn) of
the trap $~{Gn) forms a relation e on Q in the following way: (qu ^ 2 ) e 8 iff
P = {^i> <îi}^^- Since Condition (S3) holds for edges of types T and L, the
relation e is an équivalence and (Ax, e) is a congruence of the automaton M.
Then there exists no edge ( p, pf)e R\Rn such that p G T(Gn) and (p, pf)^c (GJ.
ThusCondition (S3 ) holds for ail edges of G (M).Now, Lemma 2.2 concludes the
proof.

Ail edges of type L are defined by the mapping 5 : Q x X -> ô ; there is at most
one edge for every pair of states qu q2 e Q and for every letter xeX. Hence the
search for these edges is easy.

The search for edges of type T is a little more difficult: We have to examine
whether the relation formed by the strongly connected component of the trap is
transitive. If it is not transitive, then we have found an edge of type T. If the
relation is transitive, no edge of type T leading from the strongly connected
component exists.

Before giving the full description of algorithm S, let us describe the data
structures used in it.

From every strongly connected component of Gt a représentative vertex is
chosen. Ail information concerning the strongly connected component is
accessible by means of this représentative.

R(p) dénotes the représentative of the strongly connected component
containing p;
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K(r) dénotes the list of all vertices of the strongly connectée! component, the
représentative of which is r;

H ( p) dénotes the set of letters for which we have not yet examined the edge (of
type L ) leading from p\

D{r) dénotes the set of vertices peK(r) for which H(p)^Ç)]
L (p) dénotes the label of the vertex p, provided that p has a label. Otherwise

L(p) = 0;
l dénotes the maximum of all labels in Gt;
F dénotes the set of unlabelled vertices in G(;
T dénotes the set of the représentatives of the strongly connected

component s of the trap. (Note that éléments of F form trivial components
of the trap.);

V(r) dénotes the vertex p'$K(r) to which an edge of Gt leads from K(r),
provided that such an edge exists. (For uniqueness see Lemma 2.3.)

Every strongly connected component K of the trap has to be exàmined for
transitivity of the relation eK on Q defined as follows: (qx, q2) e zK iff {q t, q2 } e K.
We shall construct the smallest équivalence e containing sK and we shall examine
(during the construction of the équivalence) whether 8 = eK. If 8 = eK, then eK is
transitive and there is no edge of type T leading from K. If (q x, q2 ) G e \ % , then
there exists an edge (r5 p) of type T, where r is a représentative of K and
P— {<h> QI} • {$ee définition of G{M),)

Let us describe the construction of s. We shall start sith e = AQ. Let KK be a
copyofX.Letustakep= [qx, q2 }eKK.lf(qi, g2)££,wehavetomakeaunion
of [qj] and [q2]. Before this, we have to check for every gie^h] and c^2e\q2\
whether {q[, q'2 }eKK. If so, we shall exclude { q'u q2 } from KK; if not the
relation eK was not transitive, hence we have found an edge of type T and the
further construction of £ is not necessary for the time being.

If {11> <?2 } e KK hoîds for every q[ e [q^, q2 e [q2] we shall make a union of
[#i]> [Qi] a n d, if KK ^O ,we shall take another p e KK and proceed in the same
way.

For the purpose of the test of transitivity we shall use the following data
structures to store the information concerning the strongly connected
component with the représentative r:

E(r, q) is the name of the class containing q of the équivalence e associated
with r;

B(r, n) is the class of e denoted by the name n;
KK(r) is the subset of K(r) as described above;
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Miir) M2(r)7 M[{r), Mf
2(r) are used to store the states qu q2, q[, q2 for

which {q[, q'2 ] $ KK (r). These are useful in case the transitivity has to
be examined once more for the same représentative;

S(r, — ) is a permutation of Q such that every cycle of it forms a class B(r, n) for
some n.

All sets and équivalence classes in our algorithm are maintained as doubly-
linked lists (by forward and backward cyclic mappings), so that we can use one of
these mappings for S (r5 — ). So in our algorithm the maintenance of these cyclic
mappings is not explicitely described.

Before starting the algorithm let us initialize:

1 = 0, F = P, T=P, E(r,q) =

NEW LABEL: begin; ifF = <D then
begin; ij card T> 1 then;

write "reducible";
else write "irreducible"
stop;

end;
else begin; take re F;

\{}

end;
end NEW LABEL;

LETTER: (finding an edge of type L):
while D{r)^0 do

takep= {q1,q2}eD{r);
ifH(p)^0 then

LI: begin; take xeH(p);
() = H(p)\{x};

qi(qi ï q i i
ifQi^q'z then

begin; p '= {q'uq'2};
ifR(p')ïr then

go to EDGE;
else;

end;
else;

end LI;
elseD{r)=D(r)\{p};

end LETTER;
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TRANSITIVITY: (test of transitivity and finding an edge of type F):
uhiie KK(r)ï® do

Tl: (preparing qu q\, g2, q2 for the while loop T2):
if M!(r) = Af ;(r) and M2(r)^M'2(r) then

begin; take p — {qu q2}eKK(r);
KK() = KK{r)\{p};

)?i ( ,$ 2 ) ;
If ^2=^2 '*»*« 4i=5(r5 ^ )
e / s e ^ ^ ;

end;
fce begin; q1=Ml (r); q2 = M2 (r);

) ()
end;

T2: (examining whether {^i, q'z}eKK(r) for q^
while q\¥"q\ or qf

2^q2 do
p'= {«'i»«0;

if 42 = 42 then q\=S(r, q[);
eise;

end;
else (interruption due to an edge of type T):

begin; Ml{r) = ql; M2(r) = q2;
M'i(r)^qi; M'2{r) = q'2\
go to EDGE;

end;
end T2;

T3: (union of classes [q^ [q2])
begin; n^Eir, qj; n2 = E(ri q2);

if card B(r, n1)<cardB(r, n2) then
begin; n = n2; no = nl; end;

else begin; n^n^, no = n2; end;
for each qeB(r, n0) do

E(r9q) = n;
end;
B(r, n) = B{r, n)uB{r3 n0);
Mi(r) = M'1(r) = q

end T3;
end TRANSITIVÏTY;
go to NEW LABEL;

EDGE: (changes due to discovering of a new edge leading from the component K (r) to the vertex p'):
begin; V(r) = p';

ifL(p')*L(r) then

El; (no new cycle has been closedj;
begin; T=T\{r};

ifL(p') = 0 then
begin; L(p') = L(r);

F = F\{p'};
r = p'l

end;
else go to NEW LABEL;

end El;
else

£2: (a new cycle has been closed);
hegin: r' = r : r ( — R ( p'):
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E3: (finding the biggest class in the new cycle):
whiie r^r do

i/cardiC(r1)>cardK(r')
then rr'=r1\

else;
T

end E3;

E4: (creating the new component):
while r^r' do

T=T\{r};
K(r') = K(r')vjJC(r);
KK(r') = KK{r')juK{r);
for each peK(r) do

R(p)=r';
end;
r = R(V{r));

end E4;
end E2;

end EDGE:
ifo w LETTER;

The proof of correctness of algorithm M foliows from Lemmas 2.2-2.8. It
remains to prove the time bound.

Statement NEW LABEL takes a fixed amount of time and it is executed at
most once for every peP,

The statements inside the loop LETTER take a fixed amount of time and they
are executed at most once for every peP and xeX.

Statement EDGE consists of two branches: El and E2. Statement El takes a
fixed amount of time and the number of exécutions of it is proportional to card P
{see Lemma 2.4). Statement E2 needs the time proportional to /c.log fc, where
/c = card P {see Lemma 2.5).

It remains to prove the time bound of Statement TRANSITIVITY. Statement
Tl takes a fixed amount of time and the number of exécutions of Tl is the same as
the number of exécutions of T2 and T3. In Statement T2 one element is removed
from KK (r) for every pair q[, q'2. Thus the time needed for one exécution of T2 is
proportional to the number of pairs removed from KK(r). The time needed for
one exécution of Statement T3 is proportional to the cardinality of the smaller of
classes [gj, [q2]. But this cardinality is less or equal to the number of pairs
removed from KK(r) for [qx] and [q2].

First, assume that no edge of type T was discovered. Then KK{r) = Q) after
exécution of TRANSITIVITY and this strongly connected component is not
going to be examined for transitivity any more. Hence the time needed for one
exécution of TRANSITIYITY is proportional to cardXX(r)gcardX(r).
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Now, assume that an edge of type T was discovered. Then the exécution of
TRANSITIVITY is interrupted and this strongly connected component either is
not examined for transitivity any more or it is examined. In the latter case, a cycle
was closed between the old and the new exécution of TRANSITIVITY. Our
strongly connected component was the largest oge in the cycle. Thus the time
needed for the new exécution is proportional to the time needed for union of
strongly connected components contained in the cycle (i. e. proportional to the
number of pairs added to old KK{r)) plus the time saved in the previous
exécution due to the interruption when an edge of type T was found.

Therefore, using this trick and Lemma 2.5, the total time needed for
Statement TRANSITIVITY is proportional to k:\og fc, where /c = card P. Since
card P S n2, where n = card Q, we get that the total time needed for the work of
the whole algorithm M is proportional to rc2.(m + log n), where m = card X.
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