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ON SUBDIRECTLY
IRREDUCIBLE AUTOMATA (%)

by M. Demrova (*), J. DemeL (?) and V. Kousek (%)

Communicated by>J . E. PERROT

Abstract. — An automaton (finite or infinite) is subdirectly irreducible iff it has no non-trivial
parallel decomposition. An algebraic characterization of such automata is given as well as an algorithm
for deciding whether a given finite automaton is subdirectly irreducible that runs in polynomial time.

Résumé. — Les aqutomates sous-directement irréductibles sont ceux qui n’admettent point de
décomposition en paralléle non-triviale. On donne une caractérisation algébrique de ces automates ainsi
qu'un algorithme pour décider si un automate fini donné est sous-directement iyréductible; cet
algorithme a une complexité polynomiale en temps.

The structure theory of automata developed by Hartmanis and Stearns [8]}
deals with the decomposition of a given automaton into a network of automata.
One of the basic types of decomposition is the parallel decomposition. The aim of
the present paper is to characterize those automata which have no non-trivial
" parallel decomposition. More precisely, to characterize automata M with the
following property: if M is a subautomaton of a parallel composition of
automata M, iel, then there exists iy € I such that M is a subautomaton of M, .
Such automata we call subdirectly irreducible since similar objects in algebra are
so called, see e. g. [3].

This paper is divided into two parts; the first gives an algebraic
characterization of subdirectly irreducible automata (including infinite ones).
The algebraic characterization is a generalization of a well-known description of
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24 M. DEMLOVA, J. DEMEL, V. KOUBEK

subdirectly irreducible group automata, see ¢. g. Hartmanis and Stearns [8],
Clifford and Preston [5]. The characterization for Medvedev automata is a direct
continuation of an investigation of Schein [9] and Tully [12].

The second part is devoted to algorithms which decide whether a given finite
automaton is subdirectly irreducible. For Medvedev automata and Mealy or
Moore automata with one output, the algorithms work in the time proportional
to n? (m+logn), where n=card Q, m=card X, Q is the set of states, X is the set of
inputs. The algorithms for Mealy and Moore automata with two outputs use
Hopcroft’s algorithm for minimizing the number of states in a finite automaton
and thus they need a time proportional to n.m.logn.

As a consequence of these investigations we get a description of subdirectly
irreducible transformation semigroups and algorithms for deciding the
irreducibility of finite ones.

Through the whole paper X, Q, Y resp. denotes the set of inputs, states,
outputs resp. 8 denotes the transition function 8 : @ x X — @, B is the output
function. A Medvedev automaton is a triple (X, Q, 8), a Moore automaton is a
quintuple (X, Y, @, 8, B), where B:Q— Y, and a Mealy automaton is a
quintuple (X, Y, Q, d, B), where B : @ x X - Y.

DEerFINITION: Let M, M’ be automata (Medvedev, Moore, Mealy). We say that
M’ is a subautomaton of M if there exists:

for the Medvedev automata a couple (h,, h,),

for the Moore and Mealy automata a triple (h,, h,, h3)
of one-to-one mappings h, : X > X', h, : Q> Q', hy : Y- Y’, such that the
following diagrams commute:

Medvedev: Moore:
Y i — Y’
hy ,

. - R

5 T Ts Q - —> Q'
hy x hy f
0xX >0’ x X' 4 T
hy x hy

Q X X-me—e—3 Q' x X'

Y ——2—Y’

.

QXX».___)QI?(XI

! |

Q_a_._"i__)Qr
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SUBDIRECTLY IRREDUCIBLE AUTOMATA 25

Let us recall several basic notions; we formulate them only for Mealy
automata and omit the analogous definitions for Moore and Medvedev
automata.

DerFINITION: We say that a Mealy automaton M is subdirectly irreducible
provided that, whenever M is a subautomaton of a parallel composition of
Mealy automata M, i€ I, with the triple (h,, h,, h;) then there exists i, € I such
that M is a subautomaton of M, with the triple (n) ohy, n o h,, 1} o h3) (Where

e. g m) is the projection from the parallel composition to X, i)

DerFmition: Let M be a Mealy automaton. A triple (A, p, €) is called a
congruence on M if A is an equivalence on X, p on Y, € on @ such that:

xhx', qeq’ = 38(q,x)ed(q’, x") & Plg, x)uBlg’, x').

Note: For Medvedev automaton a congruence (A, €) for which A is the
identical equivalence is called in [8] a partition with the substitution property.

DErFInITION: A system of congruences {(Xi, B, €)siel } on a Mealy automaton
M is separative if { A;;iel}, {p;iel} and {¢; iel} are separative systems of
equivalences on X, Y, Q. [A system of equivalences {t;; ieI} on a set 4 is
separative if for every a, be A, a#b, there exists jel with (a, b)¢ ;]

ConvenTioN: We shall denote by A, the least equivalence on a set A4,
i.e. (a, b)eA, iff a=b; V, the largest equivalence, i. €. (a, b)eV , for every
a, be A. Evidently, (Ay, Ay, Ay) and (A, V,, V,) are congruences for every
- Mealy automaton; we shall call (A, Ay, A,) the identical congruence.

The following proposition is a well-known analogue to that given by
Birkhoff [4], see also [3], for algebras. Therefore, we shall formulate it without a
proof.

ProposiTiON 1.1: A Mealy (Moore, Medvedev) automaton is subdirectly
irreducible iff every separative system of congruences on M contains the identical
congruence. Equivalently: the set of all non-identical congruences on M has a
smallest element (in the lattice of all congruences).

Before we exhibit a characterization of subdirectly irreducible automata we
shall point out several necessary conditions which enable us to restrict ourselves -
to Medvedev automata of a special form. ‘

LemMA 1.2: Every subdirectly irreducible automaton (Mealy or Moore) has at
most two outputs.

The proof immediately follows from the fact that for every equivalence A
on Y, (Ay, A, Ay) is a congruence on M.
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26 M. DEMLOVA, J. DEMEL, V. KOUBEK

LeMMaA 1.3: Let M be a subdirectly irreducible Mealy (Moore, Medvedev resp.)
automaton. Let there exist x,x'e€X, x#x', such that for every qe(Q,
d(q, x)=95(q, x") and B (q, x)=B (g, x'} [0 (g, x})=8 (q, x'), resp.]. Then card
- X=2,card Q=1, and card Y<1.

Proof: Given an automaton (Mealy, Moore or Medvedev), define an
equivalence A on X by (x, x)el iff for all geQ, &(q, x)=06(q, x') and
B(g, x)=B(q, x'). Clearly, (A, Ay, A,) is a congruence. Since {(A, Ay, A,),
(Ay, Vy, VQ)} is a separative system of congruences we get our assertion.

ConvenTtioN: In the following we shall always assume that every Mealy
(Moore, Medvedev resp.) automaton satisfies:

Vx,xeX (x#x'=3qeQ:8(q x)#8(q, x') orB(q, x)#p(q, x'))
Vx, x'eX(x#x'=EqeQ :8(q, x)#05(q, x")) resp.).

(2)

We shall use the well-known notations: X*, X ™, §*, 8%, p*, B* (see ¢. g. [2]).

THEOREM 1.4: Let M be a Mealy (Moore resp.) automaton with card Y=2.
Then the following are equivalent:

(1) M is subdirectly irreducible;

(i1) M satisfies (2) and the following holds: for every q,q' € Q, q# q’, there exists
aeX™ (ae X* resp.), such that B* (g, a)#B" (¢, a), (B* (g, a) #B*(q’, a) resp.).

Proof: (ii)=>(i). Take a non-identical congruence (A, p, €) different from
(Ax, Vy, Ag). From (2) we know that (A, p, €) is non-identical iff (Ay, p, €) is.
Take any (g, q") €€, g#4’; by condition (ii) there is ae X *, resp. ae X*, with
{B* (¢, a),B* (¢',a)} =7, resp. { B* (g, a), B* (¢’, a)} =Y, and thus p=V,,.
Hence (Ay, Vy, Ap) is the finest non-identical congruence.

(i) = (ii). Put
e={(g, q'); VaeX* (Vae X* resp.),

B* (g, a)=B" (¢q', a)(B*(q, a)=P*(q', a) resp.)}.

If (q,q)ee then (8(q, x), 8 (4',x))ee for every xeX [use e.g.
B* (8 (g, x), a)=B" (g, xa)]. Thus (A, A,, €) is a congruence on M. Clearly,
{(Ax, Ay, €), (Ay, Vy, Ay)} is a separative system of congruences. Hence,
if M is subdirectly irreducible, then € =A,, i. e. condition (ii) holds.

Remarn: Let M =(X, Y, Q, 8, B) be an uutomaton, card Y =2. Then subdirect
irreducibility of M and of (X, Q, 8) are independent, i.e. there exists a
subdirectly irreducible automaton M for which (X, Q, ) is not subdirectly
irreducible and on the other hand a non-subdirectly irreducible automaton M
for which (X, @, §) is subdirectly irreducible.

R.A.LR.O. Informatique théorique/Theoretical Informatics



SUBDIRECTLY IRREDUCIBLE AUTOMATA 27

Clearly, there exists e. g. a Moore automaton with two outputs which is not
subdirectly irreducible, yet with (X, X, §) subdirectly irreducible (for B being a
constant mapping). The following example shows that there exists a subdirectly
irreducible Moore automaton for which (X, Q, 8) is subdirectly reducible.

Example 1: Let X ={x}, Y={A, B},Q={1,2,3,4}. Let 8, B be defined as
follows:

Clearly, (X, Q, 8) is not subdirectly irreducible, to see this it suffices to take
e=A8u{(3,4)}, ¢=A,u{(1,3)} and we get a separative system of
congruences { (A, €), (Ay, €') }. On the other hand, (X, Y, Q, 8, B) is subdirectly
irreducible by theorem 1.4.

Using Theorem 1.4 and Lemma 1.2, we can restrict ourselves only to the case
card Y=1 in the following. Clearly, a Moore or Mealy automaton with one
output is subdirectly irreducible iff so is its Medvedev automaton. Thus from
now on, throughout the first part, we shall consider only Medvedev automata.

DerFiniTiON: Let M be an automaton. Define a graph G=(Q, R) (i. e.
R= 0 x Q) by: (g, g')eR if there exists x € X with 6 (g, x)=g’'. The components
of G (i. . maximal connected subgraphs) will be called the components of the
automaton M. If M has exactly one component we say that M is weakly
connected.

ProrosiTion 1.5: Let M be a subdirectly irreducible automaton. Then either:
(1) M is weakly connected or (2) M has two singleton components (and hence
card X =1) or (3) M has two components, one of which is a singleton and for
every element q in the other there exists x€ X with 8(q, X)#q.

Proof: Let { E;; i1} be system of components of M. For every i€ I define an
equivalence ¢; by (g, ¢')eg; iff either g=q’ or g, g'¢ E;. Clearly, (Ay, &;) is a
congruence on M and {(AX, g;); i€l } is a separative system of congruences on
M. Therefore there exists a component, the complement of which has at most
one point. Hence either card I =1 or card I =2 and for some iel, card E;=1.
Assume the latter, i. e. E;={q'}, and let there exist g€ E, j#i, with 8 (¢, x)=¢
for all xe X. Take (A, €) the smallest congruence with (g, g') e e. Clearly, A.=A,
and {(Ay, &), (Ay, €)} is a separative system of congruences, thus g; =Ny, 1. €.
card E;=1. By (2), card X =1.
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28 M. DEMLOVA, J. DEMEL, V. KOUBEK

To characterize subdirectly irreducible automata we use the following
algebraic representation which is analogous to that given by Schein, see [9].

DerINITION: Let X be a set. Then a triple (S, {t; iel}, 1) is said to be a
representation system if the following conditions hold:

(1) S is a semigroup with the set of generators X;

(2) 7, is a right congruence on S for every iel;

(3) 7 is an equivalence on ={(R, 7;); R is a class of 7;; iel }, such that: if
(R, 7;), (R, tj))e then either R=R’ or i#j and for every xe X, ((Rx, 1)),
(R, x, 7;))et. (Rx is the set of all elements y.x, yeR, where . is the
multiplication given by S.)

DEFiNITION: Let M be an automaton. Then a representation system (S, { t;;
iel}, 1) over X is a representation of M if there exists a bijection h : Q - P/t
such that k(8 (g, x)) is a class of T containing (R x, t;) whenever the class of h(q)
contains (R, t;). Define ¢ : P—> Q by ¢ (R, 1;)= h™! ([R, t,)]). We call ¢ the
representation mapping of (S, {t;; iel}, 1) relative to M.

By a modification of the proof given in [9] we get the following proposition:

ProrosiTioN 1.6: Every automaton has a representation.

There is a correspondence between Medvedev automata and transformation
semigroups (shortly T-semigroups). Using this correspondence one obtains a
representation of T-semigroups which is a generalization of the known
representation of 7-groups [5].

DEFINITION: A T-semigroup is a couple(Z, .#), where Z is a set and . a set of
transformations of Z closed under composition. If all transformations are
bijections and for every f € 4 also f ~'e.#, then (Z, #) is called a T-group.

With every T-semigroup (Z, .#) we can associate a (Medvedev) automaton
A(Z, M) with X=4, Q=2Z, and  (z,f)= f(z). Say that a representation
system is a representation of (Z, /) if it is a representation of A(Z, ).

CoROLLARY 1.7: Every T-semigroup (Z, #) has a representation. Moreover,
there exists a representation (S, {t;;jel }, 1) of (Z, M), where S=(M,.) and if
(Z, #) is a T-group, then t is identical.

DeriniTiON: A T-semigroup (Z, .# ) has a source x€ Z if for every ze Z there

exists f € /4 for which f (x)=z.

Let us give a characterization of several well-known notions (given e. g. in [2]
and [8]) by means of the foregoing representation. The part of the following
corollary concerning T-semigroups was first proved by Schein [9].

R.A.L.R.O. Informatique théorique/Theoretical Informatics



SUBDIRECTLY IRREDUCIBLE AUTOMATA 29

CoroLLARY 1.8: (1) An automaton M is:

(a) connected iff it has a representation (X, {1, }, 1);

(b) strongly connected iff for each of its representations (S, {t;; i€l } , T) the
following holds: for arbitrary i€el, a, be S, there exists ce S with (a, b.c)eT;.

(2) A T-semigroup (Z, M) containing the identity mapping of Z:

(@) has a source x iff there exists a right congruence T on (#,.), for which
(f (x), x)eT whenever fe.#, such that (A, .), {T}, Ap)is a representation of
(Z, M) (P is the set of classes of T);

(b) is transitive iff for each of its representations (S, { 1;; i€l}, 1) and for every
iel, a, beS, there exists ce S with (a, b.c)e;.

ConveNTION: Let M be an automaton, (S, {t;; i€l }, T) its representation.
Denote by C, the class of all right congruences on § strictly coarser than t; (note
that Ti¢-Ci).

DeFINITION: Let M be an automaton, (S, {1;; iel}, t)its representation. Let
(S, {ns;iel}, p) be a representation system over X. We say that it is
compatible with (S, {t;; iel}, 7) if:

(1) wgC;u{r,} for every iel;

(2) if (R, 1), (R', 1;)) € then (([R],, p;), (R T W)ER (where [R], is the
class of p; containing R);

(3) if(a, b)ep,and (i, 7). (R, 7)), (B), » ), (R, 1)) et then [R], =[R], .

LemMa 1.9: Let M be an automaton, (S, {1;; i€l }, 1) its representation. Let
A€ C;. Then there exists a compatible system (S, { A}; jel}, \') such that M;=A4,
and every system (S, {v;; jel}, v), compatible with (S, {1;; jel}, 1) for which
v;=X\;, is compatible with (S, {A}; jel}, A)).

Proof: Define A by (a, b)e] iff either (a, b)et; or ((al, t;), (cl, ©:))s
(@), 7, (d},., 1)) and (c, d)eA,. Define A by ([l A, ([Bly, M) €A if
there exist ¢, d with (a, ¢)e A}, (b, d)eAjand ([c]; , 1,), ([d],,, Ti)) € T Evidently,
(S, {A%;jel}, A') has the required properties.

DeriniTion: Let G=(V, E) be a graph. The trap J (G) of the graph G is
defined to be the full subgraph of G on the set 7(G)< V, being the least subset
with the following properties:

(i) for every ae V there exists b e T(G) for which there is a (directed) path from
atob;

(ii) if (a, b)e E and ae T(G), then be T(G).

Note. (1) Such T'(G) uniquely exists since sets with properties (i) and (ii) are
closed under intersection.
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30 M. DEMLOVA, J. DEMEL, V. KOUBEK

(2) 1f there exists a (directed) path from a to b and a, be T(G), then there also
exists a (directed) path from b to a.

(3) If G’ is a transitive closure of G, then T(G)=T(G’).

DeriNiTION: Let M be an automaton. Denote by G (M)=(P, R)the graph with

P=1{{q,49'};49,9'€Q,9+#q } and, for every p,, p, € P,(p;, p,) € R iff for every
congruence (A, €) for which p, es we have p,ee.

THEOREM 1.10: Let M be an automaton fulfilling (2). Then the following are
equivalent:

(1) M is subdirectly irreducible;

(2) the graph F (G(M)) is complete;

(3) each representation (S, {ti;iel}, 1) of M has the following properties:

(a) for every iel, C; has the finest element (denote it by L),

(b) for every i, jel, Mje C;(for N see Lemma 1.9),

(c) i (S, {r;; iel}, 1) is a representation system then 1 is coarser than T'.

Proof of (1) «(2): The graph G(M) is transitive. Hence its trap 7 (G(M))
consists of complete graphs with disjoint sets of vertices. Vertices of each of these
complete graphs, say G;, form a non-identical equivalence, say €;, on Q such that
(Ax, €;) is a minimal congruence on M. (It follows from the definition of G (M)
and the trap.)

Now, M is subdirectly irreducible iff it has a finest non-identical congruence.
This congruence is the only minimal non-identical congruence, i.e. I (G (M))
has exactly one component. Using the transitivity of G(M), this holds iff
7 (G(M)) is complete.

Before proving (1)« (3) let us point out the following:

LemMA 1.11: Let M be an automaton with a representation (S, {t;; i€l}, 1).
Let € be an equivalence on Q. Then (A, €) is a congruence on M iff there exists a
system (S, {n;; iel}, p) compatible with (S, {1;; iel}, 1) such that
(g,9')ee <= 3da,besS, i jel,

od)=a, o(bl)=¢ )

(([a]p,.’ p'i)’ ([b]H,-’ l’lj))epw

and

where @ is the representation mapping of (S, {1;; i€}, 1) relative to M.

Proof: {1) Assume (A,, €) is a congruence. Then one can clearly construct a
representation of M /(Ay, €)=(X, Q/¢, 8/Ay x &) with the required properties.
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(2) Let (S, {p;;iel}, n) be a representation system fulfilling (3). Take
(g, 9')ee, xe X; then ¢([a], )=4q, (p([b],j)=q’ for some i, jel, a, be S, and

({al,,, w), (0], n))ewn,
SO 1S ‘
(ax], . o), (b, , 1) p.

Further 8(g, x)=¢ (lax],), 8(¢", x)=@([bx], ), hence (3(g, x), 8(¢’, x))e& and
(Ay, €) is a congruence.

ConvenTioN: For every congruence (A, €) denote

P(e)=(S, {n;iel}, p)

(see Lemma 1.11). Now, ¥ is a one-to-one correspondence between
congruences on M containing A, and systems compatible with (S, {t;; ie I}, 1)
satisfying (3). Denote ®=¥"!. _ '

Proof of Theorem 1.10 (1) = (3): Assumecard Q+#1. (For card Q =1 there is
nothing to prove.)

Condition 3 (a): Assume that C; does not contain a finest element, so there are
o;, v;€C; the intersection of which is t;. Thus we have two congruences
(Ay, M), (Ay, &) on M, where

n=0(S, {c};jel}, o'), &=0(S, {vi;jel}, V)

(see Lemma 1.9 and the above convention). Let (g, ¢')en, g#4’, i.e. by
Lemma 1.9 and Lemma 1.11 there exist a, be S with (a,b)e 5; and ¢ ([a], ) =g,
¢([b],)=q'. Since (a, b) ¢ 1;, we have (a, b) ¢ v, and thus (g, g') ¢ €. Analogously,
one proves that for every (q, g')€&, g#4q’, we have (g, ¢')¢n. Hence (A,, n),
(Ay,&) form a separative system of congruences, i.e. M is not subdirectly
irreducible.

Condition 3(b): Assume that there exist p,eC; and jel with pi= T;.
Then we can assume that p;=\;. Take v=®(S, {Aj;kel}, ') and
o=0(S, {A; kel}, N). Clearly (A, v), (Ay, o) form a separative system of
congruences, hence M is not subdirectly irreducible.

Condition 3 (c): Assume that there exists an equivalence 1’ on [P coarser than t
such that (S, {’ti; iel } ,T') iIs a representation system satisfying (3). Take
o=0(S, {1;;iel}, v),v=0(S, {\]; kel}, M) for some jel. Again (A, o),
(Ay, v) form a separative system of congruences. Indeed, if ( p, r) € o, then for
jelitholds:if @ ([a],}) =pforsomeaeS,thenforeverybeS, ¢([b], ) #r, hence by

vol. 15, n°1, 1981



32 M. DEMLOVA, J. DEMEL, V. KOUBEK

Lemma 1.9, (p, r)¢v. If (p, r)ev then there exist a beS with ¢ ([a], ) =p,
o ([b], )—rand (a, b)eA;but(a, b)¢ ;. Thus(p, r)¢ o and the proofis complete

(3)=(1). Let = {(ok, m); keJ} be a separative system of congruences
on M. One has: (A, p) is a congruence on M whenever there exists o, with
(o, p) being a congruence. So we can suppose that o, =A, for all keJ. Take

{W(); ked}, W)=(S, {ni;iel}, m").

By Condition 3 (c) we have: whenever i, # A, there exists i, with p e C,. Hence
by Condition 3 (a) (Ay, u,) is coarser than @ (S, { A%, jeI}, A). Further from
Condition 3 (b) we have that K‘ 2, for every i, jel. Thus, from the separativity
of &, there exists k, € J for whlch Wy, =Ag- By (2), 5, =Ay and thus (Ay, Ay)es
and M is subdirectly irreducible.
- DeriniTion: A T-semigroup (Z, #) is a T-subsemigroup of (Y, A) if there
exists a pair (f, n) of one-to-one mappings f: Z - Y, n : 4 — A such that:
(1) n(gy°g2)=m(g1)om(g,) for every g,, g, € 4;
(2) flg(x))=n(g)(f(x)) for every xeZ, ge M.
Then (f, n) is the inclusion morphism of (Z, #) into (Y, N).
A T-semigroup (Z, ) is subdirectly irreducible if: whenever (Z, #) is a
T-subsemigroup of ([]Z;, {[]9:; 9:.€#:}) (Z;, #;) are T-semigroups)
iel iel
with the inclusion morphism (f, 1), then there exists i, €I such that (Z, .#) is
a T-subsemigroup of (Z,, #;) with (m of, m om) being the inclusion
“morphism. (r; means the i-th projection of the product.)

CoroLLARY 1.12: For a T-semigroup (Z, M) the following are equivalent:
(1) (Z, #) is subdirectly irreducible;
(2) the trap of the graph

@ v} % yeZ x#y b {({ % v} {2, 0});

{x,y}#{z v}, V congruence ¢ on (Z, /) ((x, y)ee=(z, v)ee)})

is complete;
(3) every representation of (Z, M) satisfies Condition 3 from Theorem 1.10.

CoROLLARY 1.13: If an automaton M is connected (a T-semigroup (Z, M) has a
source) then M ((Z, .#)) is subdirectly irreducible iff there exists a representation
(S,{ 7}, Ap) such that C; has a finest element. Moreover, let (Z, #) be a T-group.
Then(Z, #)is subdirectly irreducible iff for some x € Z the set { G; G is a subgroup
of (M, .), {feM; f(x)=x}c G} has a smallest element.

Note: The last statement is a well-known description of subdirectly irreducible
T-groups.

R.A.LR.O. Informatique théorique/Theoretical Informatics



SUBDIRECTLY IRREDUCIBLE AUTOMATA 33

Note: Condition 3 from Theorem 1.10 is equivalent to the following: there
exists a representation of M with 3(a)-3(c).

Remark: Neither Condition 3(b)nor 3(c) can be ommited, as can be seen from
the following examples.

Example 2: Let M be an automaton, where X = {x,, x,},0={1,2, 3,4}
and

X X1, X;
1 1 . 3 Q 15X2
\xz \
2 s N 4
xl, X2 ~xl3x2

A representation of M: Put S=X *,take I = { 1, 2}; 1, has three classes: {A},
{a;3beX* a=x,b}, {a;IbeX*, a=x,b}, 1, has two classes: {A}, {a
aeX*, a#A} (A is the empty word). Further,

P={(AL,, 1), (x> ), (A, 12)s (i, 12), (), 1)}

t is generated by (([x,], , ty), (x,],, 1;))et. Clearly, M satisfies (2) and
Conditions 3 (a), 3 (c). But it does not satisfy 3 (b) since the finest congruence in
C, is A, =V, and A} =1,. Therefore M is not subdirectly irreducible.

Example 3: Let M be an automaton, where X = {x,, x,}, Q= {1, 2, 3,4}

and
Xy, X5
1 ad —>» 3 O

Xy X

‘ > 5, 4
2 xz O xl,xZ

A representation of M: Put S=X*. Take I= {1, 2}, 1, =1, and both have
three classes: {A}, {a; a=x,b}, {a; a=x,b}.

P={(AL, t), (x}, t); i=1,2,j=1,2}.

Further, t is generated by (), , 1;), ((xi,,» 12)) €1, i=1, 2. Evidently, M
satisfies (2) and Conditions 3 (a), 3 (b). But it does not satisfy Condition 3 (c). For
this take t" which contains moreover (({A],, 1), ({Al,, t;)). Thus M is not
subdirectly irreducible.
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1

This part exhibits algorithms for deciding whether a given finite automaton
(Medvedev, Moore, Mealy) is subdirectly irreducible. For this purpose we shall
use the following three algorithms &/, % and %

ALGORITHM &7: For a given mapping % : Bx A — C algorithm & finds the
equivalence o on A defined by (a, a’)ew iff h(b, a)=h(b, a') for every beB.
Moreover algorithm 7 decides whether a=A,. The worst case running time of
this algorithm is proportional to card A.card B.

ALGoriTHM Z: For a given Medvedev automaton M algorithm £ finds the
trap J (G (M)) and decides whether the trap is a complete graph. The worst case
running time is proportional to n2.(m+logn), where n=card Q, m=card X.

A description of algorithms ./, 4, a proof of their correctness and a proof of
the running time is given below.

ALGoriTHM Z': For a given Moore or Mealy automaton with the set of states Q
and for a given equivalence € on Q algorithm £ finds the biggest congruence
(Ay, Ay, A)such that A is finer than €. Moreover it decides whether A = A,. The
worst case running time is proportional to n.m.logn.

This algorithm can be obtained as a slight modification of Hopcroft’s
algorithm for minimizing the number of states in a finite automaton (see [1]).

Now, we shall exhibit the algorithms for deciding whether a given automaton
is subdirectly . irreducible. We do not deal with the trivial case-
card Q=card Y=1, card X £2; such an automaton is subdirectly irreducible.

Medvedev automaton M

First we decide whether Condition (2) holds. For this we use algorithm & for
A=X, B=C=Q and h=3. If a# Ay, the automaton is not subdirectly
irreducible. If a=A,, then we use algorithm % for deciding whether the trap
Z-(G(M))is complete. If 77 (G (M)) is complete, the automaton M is subdirectly
irreducible, otherwise M is not subdirectly irreducible.

The time bound is proportional to n*(m+logn), where n=cardQ,
m=card X. ‘

Moore automaton M

If card Y>2, then M is not subdirectly irreducible. If card Y=1, then M is
subdirectly irreducible iff (X, Q, 8) is so; thus we use the above algorithm.
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If card Y =2, then M satisfies (2)iff so does (X, Q, §); thus we use algorithm &/
in the same way as above. If M satisfies (2) then we use algorithm Z for the
equivalence y defined by: (g, q') ey iff B(g)=PB(¢’) (as in the original Hopcroft’s
algorithm). If A=A, then M is subdirectly irreducible, otherwise M is not
subdirectly irreducible.

For card Y=2 the time bound is proportional to n.m.logn.

Mealy automaton M

If card Y #2, then the algorithm is the same as for a Moore automaton.

Ifcard Y =2, then in order to decide whether M fulfills (2) we use algorithm </
for A=X,B=Q,C=Qx Y and h=3xB [i.e. h(g, x)=(3(q, x), B(g, x))].

If M satisfies (2), then we use algorithm & for the equivalence y defined by
(g, q')ev iff, for every xe X, B(g, x)=B(q’, x). To obtain y we make use of
algorithm &/, now for A=Q,B=X,C=Y and h(x, q)=B{(g, x). Automaton M
is subdirectly irreducible iff the equivalence A obtained by algorithm & is equal
to A,.

For card Y=2 the time bound is again proportional to n.m.logn.

Algorithm o/
Let A, B, C be finite sets, 1 : Bx A — C a mapping.

DeriniTion: Let B'< B. We say that a, a’ are recognizable w.r. t. B’ provided
there exists be B’ with h(b, a)#h (b, a’). Further, define an equivalence ~ 5. on A
putting a~ g a' iff a, a’ are not recognizable w.r.t. B’. The system of classes of
~ g is called the partition w.r.t. B'.

Our algorithm constructs a sequence of partitions £, w.r.t.
B, = {bl, . bk} , k=1, ..., n=card B. First, let us describe the procedure
which constructs partition #,,, w.r.t. B, U {b,,,} from the partition 2,.
Every block Pj, will be split into { n,(h~* (c)); c€h(by+y, P})}, where m, is the
projection n, (b, a)=a. This can be achieved in a time proportional to card P}.
Hence the time needed for the construction of 2, , , is proportional to card 4.

LemmAa 2. 1:Fork=1, ..., n—1,withn=card B, 2, . , is arefinement of ?, and
P, corresponds to the required equivalence o.
Description of algorithm </

Weuse (n+1)-lists M,,i=1, ..., n+1; every M, is either empty or contains a
block of 2, or contains a block of 2, . ,. At every moment the set of all indices of
lists M, is divided into four parts: L ; the set of indices of M; which are empty, L,
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the set of indices of M ; containing blocks of 2, which are to be splitw.r.t. b, , ,
L , the set of indices of M ; in which all blocks of 2, ., ; have at least two elements,
L, the set of indices of M; which contain singleton blocks.

When splitting block Pj the symbol ¢ (c) means the index i such that M; will
contain block P}, for which h(b,,,, P;,,)={c} provided such an index i
exists, otherwise t(c)=0(0¢ AU BuUC(C). '

Initialize: My =A, M,=Q for i=2, ..., n+1
t(c)=0 for all ce C
Ly=L,=
L, = M Lg={2,...,n+1)
a: for each be B do
b: while L, # D do
take ieL,;
¢: (Splitting M;w. r. t. b):
while M;#Q do
take ae M ;
M=M\{a};
c=h(b, a);
ift(c)=0 then begin;
takeje Lg;
Le=Le \{j};
LIV=LNU{j};
t(c)=j;
end; Myj={a}:
else My =M, uia}:
end ¢;

Ly=L,\{i};
LE=]‘EU ig;

takeieLN;{ }

LN=LN\ it )

if card M;=1 then Ly =L, v {'1};
else Ly=1L, v {il;

end d;
if L,= then begin; write Ca=A," stqp; end;
else;
end a;

write “‘a#A,”; stop:

Correctness of algorithm o follows from Lemma 2. 1. It remains to show that
the number of lists M, is sufficient. But this follows from the following
observation: Let M; contain k elements. Since every a€ 4 is in every moment
contained in at most one list, there are at most n — k + 1 non-empty lists, i. e. there
are at least k empty lists for splitting M ;.

The time needed for one execution of Statement ¢ is proportional to card M.
Hence the time needed for one execution of Statement b is proportional to
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card 4. Statement d needs a time proportional to card L, =<card 4. Both
Statements b and d are repeated at most card B times, thus the time of execution
of the whole algorithm is proportional to card 4.card B.

Algorithm %

Let M be a finite Medvedev automaton. Our aim is to give an algorithm that
finds the trap 7~ G(M)) and decides whether the trap is complete.

First, let us point out several lemmas about finding the trap of a (general)
graph.

DeriniTion: Let G=(V, E) be a graph. Define an equivalence ¢(G) on V as
follows: (u, v) e c(G) iff there exist paths both from u to v and from v to u. Denote
by C(G) the quotient graph (V/c(G), E/c(G)) without loops, i. e. for different
classes U, U, of ¢(G),(U,, U,)is in E/c(G) iff there exist u; e U, u, € U, with
(U, usy) € E. Theclasses of ¢ (G) will be called strongly connected components of G.

Let us consider a sequence of graphs Gy, ..., G, such that :
(S1) all G;=(V, E,) are subgraphs of G and G,=(V, O);
(82) for every i, E;,;=E; U {(4, v)} for some u, v such that ue 7(G,) and
(u, V)¢c(Gy); .
(S3) ifueT(G,) and (u, v)eE then (u, v)ec(G,).
Note that such a sequence exists for each graph.

LemmMmaA 2.2: (1) T (G,)=T (G).
(2) ¢ (7 (G))=c (7 (G)).

Note: ue T(G) iff for every path from u to v there exists a path from v to u.

The proof of Lemma 2. 2 follows from the above note and from the fact that by
addition of an edge (u, v)e E\ E, to the graph G,, both the set T'(G,) and the
equivalence ¢(J (G,)) do not change.

LemMma 2.3: For everyi=0, ... ,Vn the graph C(G,) is a partial mapping without
cycles.

Note: In other words C (G;) is a forest.

Proof: Let us proceed by induction. Evidently, our assertion holds for G,.
Assume that it holds for G,;. By the definition G,,,=(V, E;.), where
E;.;=E;u{(u,v)} for ue T(G,). The following two cases can happen:

1) the grapn C(G,) with the added edge ([u];, [v];) has no cycle ([u]; denotes the
element of V/c(G,) containing u). In this case the equivalence ¢(G;) and ¢ (G, ;)
coincide and thus C (G, ,) has no cycle;
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2) the graph C(G,) with the added edge ([u];, [v];) contains a cycle, say [v,];,
k
[v,2)is -- ., [vi);- Then by the definition of ¢(G;, ) the set U [v]; forms a strongly
i=1

connected component of G,,, and hence C(G;, ) has no cycle.

Now, we shall show that C (G, ,)is a partial mapping. Assume that, by way of
contradiction, there exist X, Y, Z, X # Y#Z #X, such that both (X, Y) and
(X, Z) are edges of C (G, ;). Neither (X, Y), nor (X, Z) is the new added edge,
since X ¢ 7(G;). Then there exist vertices D,, D, of C(G,)suchthatD, uD,= X
and(D,, Y),(D,, Z)areedges of C(G,). Then there exists a path in G, either from
D, to D, orfrom D, to D, and all vertices of this path belong to X. Let thereexist -
€. g. a path from D, to D,. Since C(G,) is a partial mapping, Y is the second
vertex in the path from D, to D,. Then Y < X and hence X = Y —a contradiction.
" LemMa 2.4: Let G=(V, E) be a graph, let the sequence G, ..., G, fulfil (S1),
(52),(S3). Let k=card V. Thenn £ 2 k—2.(In other words: graph G, has at most
2 k—2edges.)

Proof: By induction on i we shall prove that if a strongly connected component
of G; has s elements, then it has at most 2 s—2edges.

This is evident for G,,.

Let the statement hold for G,, we shall prove it for G, ;. The graph G, , arises
from G, by addition of, say, the edge (u, v). There are two possibilities:

a) the graph C(G;) with the added edge has no cycle. In this case
¢(G;)=c(G;,,) and there is no new edge inside the strongly connected
components of G, ;;

b) the graph C(G,) with the added edge contains a cycle consisting of strongly
connected components [v,];, [v,];, - -, [V,];- Denote by k4, ..., k,, the numbers of
vertices of [v];, [v,);, ---, [v):- In all these strongly connected components at
most m—1 edges belong to G,, because C(G,)is a forest. The new class of ¢ (G, ;)
is a union of strongly connected components [v,];, ... [v,];- The number of edges
in the new strongly connected component is at most

m m

m+ Y (25;—2)=2. ) s;—m.

) i=1 i=1 m

Since m =2, the new strongly connected component having s= Z s; vertices,

i=1

has at most 2s5~2 edges.
Now, let [v,], ..., [v,] be all the strongly connected components of G,

m
let ky, ..., k, be numbers of vertices in them and k= k;. Then there are at
i=1

i=

most Y (2k;~2)+m—1=<2k~2edgesin G,.
i=1
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Lemmas 2.2-2.4 enable us to give an algorithm for finding the trap of an
(general) graph G. We shall construct a sequence G,, ..., G, fulfilling (S1)-(S3).
While constructing it we maintain the set T(G,), the graph C(G;) and the
equivalence ¢(G,).

When a new edge (u, v) is added to G, the following two cases can occur:

1) no cycle is closed, then we have to exclude {u]; from the trap and add a new
edge to C(G;). There are no changes in the equivalence c(G;);

2) anewcycleu,v,v,,0,, ..., 0, is closed. Then we have to form a new strongly
connected component [v];,, of G;,; as the union of strongly connected
components [u];, [v];, [v,]; .., [v]; of G; and also make corresponding changes in
T(G,) and C(G,).

Using suitable data structures it is possible to generate new edges in a total
time proportional to the number of edges in G. In addition, we can also remove a
strongly connected component of G, from the trap in a fixed amount of time; and
this needs be done at most once for every edge of G.

The time needed for maintenance of T(G;), ¢ (G;) and C(G; )when the new edge
closes a cycle is proportional to k.logk, where k=card V, by the following
lemma.

LemMaA 2.5: Let {2, }"-, be a sequence of partitions on the set V such that
g’i; 1 is obtained from 2; as a union of two blocks of ;. Let the time needed for
computing the union of two blocks be equal to the cardinality of the smaller of them.
Then the total time for obtaining U, from U, is not larger then(n/2).log, n, where
n=card V.

Proof: Without loss of generality we can assume that 2, consists of singleton
blocks only and 2, has only one block. (This is the worst case.) We shall prove by
induction that the time needed for establishing a block of cardinality a is at
most (a/2).log, a.

For 2, this is obvious. Let the statement hold for two blocks with
cardinalities a<b. We have to prove that

b b
%.log2a+§.log2b+a§ %.logz(owb).

Since a.log, a+a=a.log, (2 a), it is sufficient to show that

10g2b—§ log2a< +b Jdog,(a+b)—a.log,(2a).

2 2

But this follows from the fact that the function
f (x)— log, x
is increasing and convex.
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To save the time needed for a decision whether a new cycle was closed in G, ;,
we shall label vertices of G by natural numbers and choose the new edges in a
special order using these labels. The label of vertex v is denoted by L (v). The rules
for labelling vertices and for choosing the edges are the following:

(L1) In G, there are no labels.

(L2) If there exists an edge (4, v)€ E which can be added to G, according to
(S1)-(S3) such that vertex u has a label, then we shall choose this edge and we
shall label L (v)=L (u), provided v has no label in G,.

(L3) Iffor every edge (u, v)€ E that can be added to G, according to (S1)-(S3),
u has no label, then we shall choose an arbitrary vertex u which has no label
and put L(u)=1+max { L(w); we ¥ and w has a label }.

Note: (L3) describes the introduction of a new label and (L2) the addition of a
new edge.

Rules (L1)-(L3) imply that we shall prefer edges leading from the component
of the trap, which has just been created by closing a cycle or to which the last edge

leads. The set of vertices labelled by the same label forms a branch of the
forest C(G,).

LemMa 2.6: If both u and v have labels and L (u)= L (v), then there exists a path
either from u to v or from v to u.

Proof: Let us proceed by induction on i. The statement holds for G,; let it hold
for G,_,. Let E;\E;_, ={(w, z)}. There are three possibilities:

a) both w and z have already labels in G,_,;

b) neither w nor z has a label in G,_;

¢) only one of vertices w, z has a label in G;_,.

The only interesting case is the third one. In this case w has a label and z has no
labelin G;_,.Letnow L(u)=L(w)=L(z)in G;. Since we T (G, _,), there exists a
path from u to w in G,_, and then there exists a path from u to z in G;.

LeMMA 2.7: A cycle is closed by adding the edge (u, v) to G, iff both u and v have
already labels in G; and L(u)=L(v).

The proof immediately follows from Lemma 2. 6 and from the fact that if there
is a path from w to z, then L (w)= L(z).

Note: Lemmas 2.2-2.7 enable us to construct an algorithm for finding the
trap of a (general) graph the time bound of which is proportional to
card E+card V.log (card V).

Let us come back to the case of automata. We have to find the trap of the graph
G(M)=(P, R) (see partI). The algorithm will be based on the concepts
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described above for graphs. We shall construct a sequence G, ..., G, fulfilling
(S1)<(S3). The vertices will be labelled and the new edge will be chosen as
described in (L1)-(L3). However, the set of all edges of G (M) is rather large, since
the relation R is transitive. We shall show that the choice of edges can be
restricted to edges of two special types:

Let us consider the edge (p, p'), where p={qy, g, },p'={ 4!, g5 }. Wesay that
this edge (p, p’) is of type L provided there exists a letter xe X such that
8 ({41,492}, x)={4}, g5 }. On the other hand this edge ( p, p’) is said of type T
w.r.t. graph G; provided (p,p’)eE;,,\E; 4g,=q; and there exists
p1={4,, 41 } such that (p, p;)ec(G)).

LemMa 2.8: Let the sequence of ‘graphs Gy, ..., G, fulfilling (S1)«(S2) and
(L1)-(L3) be constructed using edges of types T and L only. Let the condi-
tion (S3) hold for edges of typesT and L. Then T(G(M))=T(G,)
and ¢(7 (G (M) =c(7 (G,)). |

Proof: Let the sequence G, . . ., G, satisfy the assumptions of Lemma 2.8. Let
G(M)=(P, R), G,=(P, R,). Every strongly connected component 4 = T'(G,) of
the trap J (G,) forms a relation € on @ in the following way: (q,, g,)€¢ iff
p={4,, 9, } € A. Since Condition (S3) holds for edges of types T and L, the
relation ¢ is an equivalence and (A, €) is a congruence of the automaton M.
Then there exists no edge ( p, p’)€ R\ R, such that pe T(G,) and (p, p')¢c(G,).
ThusCondition (S3) holds for all edges of G (M ).Now, Lemma 2. 2 concludes the
proof.

All edges of type L are defined by the mapping & : @ x X — Q; there is at most
one edge for every pair of states q,, g, € Q and for every letter x€ X. Hence the
search for these edges is easy.

The search for edges of type T is a little more difficult: We have to examine
whether the relation formed by the strongly connected component of the trap is
transitive. If it is not transitive, then we have found an edge of type 7. If the
relation is transitive, no edge of type T leading from the strongly connected
component exists.

Before giving the full description of algorithm #, let us describe the data
structures used in it.

From every strongly connected component of G, a representative vertex is
chosen. All information concerning the strongly connected component is
accessible by means of this representative.

R(p) denotes the representative of the strongly connected component
containing p;
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K (r) denotes the list of all vertices of the strongly connected component, the
representative of which is r;

H(p) denotes the set of letters for which we have not yet examined the edge (of
type L) leading from p;

D(r) denotes the set of vertices pe K (r) for which H{(p)#®;

L (p) denotes the label of the vertex p, provided that p has a label. Otherwise

L (p)=0;
) denotes the maximum of all labels in G;;
F denotes the set of unlabelled vertices in G;;
T denotes the set of the representatives of the strongly connected

components of the trap. (Note that elements of F form trivial components
of the trap.);

V(r) denotes the vertex p'¢ K(r) to which an edge of G, leads from K(r),
provided that such an edge exists. (For uniqueness see Lemma 2.3.)

Every strongly connected component K of the trap has to be examined for
‘transitivity of the relation e, on Q defined as follows: (q,, 4,)e & iff { g, g, } € K.
We shall construct the smallest equivalence € containing &, and we shall examine
(during the construction of the equivalence) whether e=¢,. If e=¢,, then g4 is
transitive and there is no edge of type T leading from K. If(q,, 9,) € €\ &, then
there exists an edge (r, p) of type T, where r is a representative of K and
p={4;, 4, } . (See definition of G(M).) -

Let us describe the construction of . We shall start sith e=A,. Let KK be a
copy of K. Letus take p= {q,, q, } e KK.If(q,, q,) ¢ £, we have to make a union
of [¢,] and [g,]. Before this, we have to check for every g €[q,] and g5 €[g,]
whether { g}, g5 } € KK. If so, we shall exclude {q}, g5} from KK; if not the
relation g was not transitive, hence we have found an edge of type 7 and the
further construction of ¢ is not necessary for the time being,.

If { 91, g5 } € KK holds for every g €[q,], g5 €[g,] we shall make a union of

[9.], [g,] and, if KK # @, we shall take another pe KK and proceed in the same
way. ‘

For the purpose of the test of transitivity we shall use the following data
structures to store the information concerning the strongly connected
component with the representative r:

E(r,q) is the name of the class containing g of the equivalence ¢ associated
with r;

B(r, n) is the class of € denoted by the name n;

KK(r) is the subset of K (r) as described above;
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M,(r) M,(r), Mi(r), M5(r) are used to store the states q;, 4, 41, q5 for
which { g}, q; } ¢ KK (r). These are useful in case the transitivity has to
be examined once more for the same representative;

S(r, —) isapermutation of Q such that every cycle of it forms a class B (r, n) for
some n.

All sets and equivalence classes in our algorithm are maintained as doubly-
linked lists (by forward and backward cyclic mappings), so that we can use one of
these mappings for S (r, —). So in our algorithm the maintenance of these cyclic
mappings is not explicitely described.

Before starting the algorithm let us initialize:

R(p)=p, K(@)=KK()=D()={r}, H(p)=X,

L(p)=0, [I=0, F=P, T=P, E(r,q)=q,

B(r,q)={q}, M, (r)=M,F)=Mi(r)=M5(r)=0.

NEW LABEL: begin; if F=Q then
begin; if card T>1 then;
write ‘‘reducible”;
else write *‘irreducible”;

stop;
end;
else begin; take re F,;
F=F\({r};
I=1+1;
L(r)=1;
end;

end NEW LABEL;

LETTER: (finding an edge of type L):
while D(r)# @ do
take p={q,, g, }eD(r);
if H(p)# D then
Li: begin; take x e H(p);
H(p)=H(p)\{x};
q1=3(q;, x); 2=0(q, x);
if q1#4q; then
begin; p'= {4}, 45} ;
if R(p')#r then

go to EDGE;
else;
end;
else;
end L1,
else D(r)=D(r)\{p};

end LETTER;

vol. 15, n°1, 1981



44 M. DEMLOVA, J. DEMEL, V. KOUBEK

TRANSITIVITY: (test of transitivity and finding an edge of type T):
while KK (r)#Q do

T1: (preparing q, 4}, ¢,, g5 for the while loop T2):
if My (r)=M(r) and M,(r)=M(r) then
begin; take p={q,, q;}EKK(V), _
KK(r)=KK(r)\{pr};
qg—s(ra ‘12)’
if g5 =q, then g1 =5(r, 4,);
else g =qy;
end;
else begin; q, =M, (r); ¢, =M, (r);
a,=M} (r); a3 =M50;
end:
T2: (examining whether { g3, g} } e KK (r) for qi €lq,), g5€lq,]):
while q, #q, or g3#q, do
{qh 422}
1fp € KK (r) then
begin: KK (1)= KK(N\{r'}s

9=S0,q) .
if g5=4q, then ¢} =S8(r, q1);
else;

end;
else (interruption due to an edge of type T):
begin; M, (r)=4q,; M,(r)=4q,;
Mi(r)=q}; M5@)=g5;
go to EDGE;
end;
end T2;

T3: (union of classes [q,], [g,])
begin; ny =E(r, q,); n,=E(r, q,);
if card B(r, n,)<card B(r, n,) then
begin; n=n,; no=n,; end;
else begin; n=n,; ny=n,; end;
for each ge B(r, ny) do
E(r, g9)=n;
end;
B(r, n)=B(r, n) U B(r, ny);
M, (1) =M} () =q,; My () =M} () =45
end T3;
end TRANSITIVITY;
go to NEW LABEL:

EDGE: (changes due to discovering of a new edge leading from the component K (r) to the vertex p’):
begin; V(r)=p’;
if L(pY#L (r) then
El: (no new cycle has been closed):
begin; T=T\{r};
if L (p')=0 then
begin; L (p")=L (r);

F=F\{r'};
r=p;
end;
else go to NEW LABEL;
end El;

else

E2: (2 new cycle has been closed):
begin: r'=rir,=R(p'):
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E3: (finding the biggest class in the new cycle):
while r, #r do

if card K (ry)>card K (r')
then r'=ry;

else;
ri=RV (r));

end E3;

r=R(V (')

E4: (creating the new component):
while r#r' do

T=T\{r};
K()=K() VK,
KK(r')=KK(@')wK(r);
for each pe K(r) do

R(p)=r';
end;
r=R(V (r));
end E4;
end E2;
end EDGE:
go 1o LETTER;

The proof of correctness of algorithm £ follows from Lemmas 2.2-2.8. 1t
remains to prove the time bound.

Statement NEW LABEL takes a fixed amount of time and it is executed at
most once for every pe P.

The statements inside the loop LETTER take a fixed amount of time and they
- are executed at most once for every pe P and xe X.

Statement EDGE consists of two branches: El and E2. Statement E1 takes a
fixed amount of time and the number of executions of it is proportional to card P
(see Lemma 2.4). Statement E2 needs the time proportional to k.log k, where
k=card P (see Lemma 2.5).

It remains to prove the time bound of Statement TRANSITIVITY. Statement
T1 takes a fixed amount of time and the number of executions of T1 is the same as
the number of executions of T2 and T3. In Statement T2 one element is removed
from KK (r)for every pair g, q5. Thus the time needed for one execution of T2 is
proportional to the number of pairs removed from KK (r). The time needed for
one execution of Statement T3 is proportional to the cardinality of the smaller of
classes [g], [g,]. But this cardinality is less or equal to the number of pairs
removed from KK (r) for [q,] and [g,].

First, assume that no edge of type T was discovered. Then KK (r)=Q after
execution of TRANSITIVITY and this strongly connected component is not
going to be examined for transitivity any more. Hence the time needed for one
execution of TRANSITIVITY is proportional to card KK (r) <card K (r).
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Now, assume that an edge of type T was discovered. Then the execution of
TRANSITIVITY is interrupted and this strongly connected component either is
not examined for transitivity any more or it is examined. In the latter case, a cycle
was closed between the old and the new execution of TRANSITIVITY. Our
strongly connected component was the largest oge in the cycle. Thus the time
needed for the new execution is proportional to the time needed for union of
strongly connected components contained in the cycle (i.e. proportional to the
number of pairs added to old KK (r)) plus the time saved in the previous
execution due to the interruption when an edge of type T was found.

Therefore, using this trick and Lemma 2.5, the total time needed for
Statement TRANSITIVITY is proportional to k:log k, where k=card P. Since
card P<n?, where n=card Q, we get that the total time needed for the work of
the whole algorithm £ is proportional to n?.(m+log n), where m=card X.
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