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COMPLEXITY OF A/-TERM REDUCTIONS (*)

by M. DEZANI-CIANCAGLINI,
S. RONCHI DELLA RSCCA and L. SAITTA (1)

Communicated by J.-F. PERROT

Résumé. — Dans cet article on définit une mesure de la complexité d'un X-terme comme le nombre de
^-réductions nécessaires pour arriver à sa forme normale, si elle existe. On étudie d'abord quelques
propriétés générales de la complexité d'applications entre formes normales, ensuite on calcule un
maximum pour la complexité dans le cas d'applications entre formes normales appartenant à des classes
particulières.

Abstract. — The complexity ofa X-term is defined as the number of ^-réductions needed to reach its
normal form («.ƒ.). In the present paper some gênerai properties of the complexity of applications of
n. ƒ s. are stated and this complexity is maximized, in some interesting cases, as a function of
parameters describing the structures of the current n.f. s.

1. INTRODUCTION

As the very considérable quantity of literature on the subject shows ([13]
and [1] are merely the first and last studies published, chronologically speaking),
the use of X-calculus in the study of programming languages is now a classic
topic.

Formerly it was usual to consider, in the said approach, only that subset (of the
set A of ail X-terms) which represents programs and data. Since it has been
found that both programs [19] and data [16] can be represented by À,-terms in
normal form (n. f.) they are naturally related to a subset of the n. f. set Jf.

Our starting point is somewhat different, in that we consider the whole A as a
programming language, whose properties we will examine. The définition of
semantics for A [15,17^ 18,20] acts as a support to this approach. Considering A
as a programming language, the exécution ofa program, applied to some data, is
defined by the (3-reduction ofa X- term until one attains its n. f., if it exists. In A
models too, the set Jf is pre-eminent, in that:

— two different n. f. s. have different meanings, otherwise the model becomes
inconsistent [20];

(*) Received May 1978, revised January 1979.
(*) Istituto di Scienza delFInformazione, Université di Torino, Torino, Italia.
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258 M. DEZANI-CIANCAGLINI, S. RONCHÏ DELLA ROCCA, L. SAITTA

— only À.-terms that have n. f. represent finite computations, hence such terms
are more significant from the programming point of view [20].

In the present work we will define and compute the "complexity" of
applications such as:

NM1 ... Mk, (1)

where N and Mt (1 <Li^k) are n. f. s. By complexity we mean the number of
P-reductions ( = steps) needed to reach the n. f. of (1), if it has a n. f., according to
a given réduction strategy. This complexity measure satisfies Blum's axioms for
step counting fonctions [6].

It is well known that the property of having n. f. (hait problem) is, in gênerai,
semirecursive, but we will use a resuit given in [5], which states that applications
of n. f. s. of a given shape have n. f. More precisely, the set Jf is split into co +1
disjoint classes J^h(h^0). If a n.f. NejVh, then ail À-terms obtaîned by
applying N to h arbitrary n. f. s., with k^h, have n. f. too, but there exist
(h+i)n. f. s. Mx . . ., Mh+1 such that

NM, . . . Mh+lt

does nqt have n. f. If NeJ^^, then ail ^-terms obtained by applying N to k
(7c ̂ 0) arbitrary n. f. s. have n. f. too. So the problem treated in this paper is to
compute the maximum of the complexity of À,-terms like NMX . . . Mk, when
NeJfh, Mte Jf (l^Li^k^h). This maximum is found to be an elementary
function of some integer parameters, which we introducé to describe the
structures of N', Mx, .. ., Mk. These parameters are not measures of size as
defined in [6], since there exist infinité applications of n. f. s. with given values of
such parameters.

The relations between À,-calculus, combinatory logic and URS are well
known. The notion of "complexity" inside the other two formalisms has been
studied in [4, 7, 8 and 2].

In [4], Batini and Pettorossi give the axioms for structural and computational
complexity in the case of weak réductions inside combinatory logic. Moreover
they introducé some possible measures and connect structural and
computational measures in special cases. By using the same approach, Canal
and Vignolle [7, 8] have obtained new and more far-reaching results.

Barendregt introduces in [2] a "norm" for URS which represents a measure of
the computation length according to [14].

The present paper may be viewed as a continuation of and an improvement
on [11]. In fact, a correspondance was established in [11] between n. f. s. and
trees (which is used hère too) and the complexity of applications like (1) was
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COMPLEXITY OF A.-TERM REDUCTIONS 259

upper-bounded in certain cases. Here, gênerai properties of complexity are
established and the complexity of applications like (1) is maximized in certain
cases different from those treated in [11]. In [12] we use the same approach as
here to compute the maximum of the complexity of applications studied in [11].

In Section 2 we state some gênerai properties of complexity, which are
independent of the réduction algorithm; these properties justify further
définitions and a tree représentation of n. f. s.

In Section 3 we study applications like (1), when N corresponds to a tree which
is confined to a single root; in this case we get simple properties of complexity.

Section 4 shows the complexity évaluation of an application NM where N
and M are n. f. s. which satisfy suitable conditions.

We believe that the present paper may be a step towards a rigorous complexity
theory for A,-calculus. Further studies will be carried out by the authors to
compute the complexity of more extended classes of À,-terms.

2. KEY NOTIONS AND GENERAL PROPERTIES

In the present section we clarify some gênerai properties of the complexity of
applications of n. f. s. Besides their intrinsic interest, these properties are an help
in understanding the intuitive meaning of the définitions we will introducé here.
In [11] we took already into account some of these properties although we did
not state them explicitly.

First we briefly recall the nomenclature referring to À,-terms. It is well known
that any n. f. can be represented as follows:

where = dénotes identity (modulo a-reduction); Ç is a variable and Nt . . . Nm

are n.f.s.
In N, Çis the head, N i(l^z^m)is the i-ih main argument and Xx1 ... xnisthe,

prefixed séquence [9] (p. 88, 162). A n.f. without prefixed séquence is a
À,-free n.f.#(iV) will dénote the number n, i.e. the number of variables in the
prefixed séquence of N.

We will assume that different variables in a À,-term have different labels. This
may always be achieved by oc-reductions. In this way we may talk of occurrences
of both free and bound variables without danger of confusion.

A À--term is X-free iff it reduces to a X-free n. f. According to [9] (p. 162), if T, U
and F are itérais, we will say that a given occurrence of ^in U is afunctional
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260 M. DEZANI-CIANCAGLINI, S. RONCHI DELLA ROCCA, L. SAITTA

occurence jus t when Toccurs in a component TVoî U. A given occurrence of T
is an argument occurrence in U just when T occurs in a component VT of U.

As usual, a context is a X-term C [ , . . . , ] in which a given number (say p) of
components is missing; then C[M ±, . . . , M p] dénotes the resuit of filling the
missing components wit h Mx, . . . , Mp.

Let <€\T\ dénote the complexity of the X-term T, i. e. the number of
P-reductions necessary to reach the n. f. (if it exists) of T according to a given
réduction strategy (and infinité otherwise). In the present paper we will study the
complexity of applications of n. f. s.

The properties which we consider in this section do not depend on the
réduction algorithm, so we can choose it later.

The first lemma states the complexity independence of the abstractions which
can never be reduced because there are too few arguments.

LEMMA 1: Let N = Xxx . . . xn.^Nx . . . Nm be a n.f. and

Nm, withk^n. For any Xlt ...,XkeA:

. . . Xk] = ̂ [N*Xx . . . Xkl (2)

Proof: NXX . . . Xk and N* Xt . . . Xk reduce in k steps respectively to
Xx f e + 1 . . .x w .Ç 'JVi . . . iV; M and ÇN'x...N'm where Ç^ixJXi] and
Nj = Nj [Xf/Xi] (1 ̂ j ' ^ m), (1 ̂  i ̂  k). As the possible further réductions may take
place only in the component Ç N[ . . . N'mt equàlity (2) holds. D

While lemma 1 allows us to eliminate some variables bound in the prefixed
séquence of N, folio wing lemma 2 allows us to neglect some arguments, when
the head of AT is a free variable.

LEMMA 2: IfN = Xxx . . . xn.aNx . . . Nm, a is free in N and n^k, then, for
any Xlf . . . , XkeA:

Proof: As the head a of N is free then NX x . .. Xk is reduced, in k steps, to
aNl...N'mXn + 1...Xk, where N'j = Nj[xJXt] ( lgj^m) ( lg ï^n) . As
further réductions cannot involve Xn+1, ..., Xk, we get the proof. D

Folio wing lemma 3 proves that the introduction of a free variable as head of
a n. f. N does not modify the complexity of the application NXX .. . Xk when
#(N) = k.

LEMMA 3: Let N = \xl . . . x^ÇA^ . . . Nmbe a n.f and
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COMPLEXITY OF À--TERM REDUCTIONS 261

then,for any X1} . .., XkeA:

<ê[NXx ... Xk]=<$[N*X1 . . . Xk], (3)

Proof: NX, ... Xk and JV* Xt . . . Xk are reduced, in k steps, respectively to:
ÇN\ ...N'm and a{ÇN\ . • - N^) where Ç'= Ç [x t/X,-] and N j s N ^ x . V X , ]
( l S i ^ w ) ( l^ i^fe) . All the further réductions take place in the component
ÇN[ . . . N'm; so equality (3) holds true. D

In lemma 1 the bound variables xk+1> ..., xn, never reduced, behave as free
variables. This fact may be generalized, obtaining a refmement of the distinction
bet ween free and bound variables. This refinement was already givenin [5], We
recall here the following:

DÉFINITION l : I n a n . ï,N = Xxt . . . xk.CiNl . . . Nm we recursively define the
h-replaceable (l^h^k) variables as follows:

— the variables xt (ISiSh) are /i-replaceable;
— if Z = Xzt . . . zr.QZt . . . Zs is a componentof JV and Gis fo-replaceable,

then all the variables which are bound in the prefixed séquence of Zj (l^j^ s) are
ft-replaceable.

A variable which does not satisfy the previous définition is said non-
h-replaceable.

Moreover we say that a variable is (ù-replaceable (non-m-replaceablé) if it is
/ï-replaceable for some h^l (non-/i-replaceable for every h).

Example 1: In the following n. f. the h-replaceable variables which are non-
(ft— l)-replaceable are underlined by h lines:

In [5] it is proved that iff a variable is /i-replaceable then it can be replaced by an
arbitrary n, f. whenever the n. f., in which it occurs, is applied successively to (at
least) ii suitable n. f. s.

As an application of définition 1, we prove the following lemma, which assures
us that the complexity of a À,-term of the shape NXt . . . Xk is independent of the
number of non-lc-replaeeable variables which occur in "particular" positions
in AT.

LEMMA 4: Let Nbean. ƒ and Zbea component ofN such that either Z is X-free
and it has a non-k-replaceàble heador the variables bound in the prefixed séquence
ofZ are non-k-replaceable. Iffor some context C{ ]}N = C [Z], N*~C[aZ] and
a is non-k-replaceable when itfills the hole of C[ ] thentfor any Xlt . . .,XkeA;

(ig[NX1 ... Xk]=<$[N*X1 . . . Xk].
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Proof: By hypothesis Z is either of the shape: Z = bZ x . . . Zqor ofthe shape:
Z = Xy1 . . . y.p.Z where yt ( l ^ i ^ p ) and b are non-/c-replaceable variables.
When N = Xxx .. •. xn.N is applied to X±, .. .,Xk, the réductions involving Z
involve respectively only Z x , . . . , Z f l in the first case and Z in the second case. If
Z is changed into a Z the previous réductions remain unchanged; moreover, as a
is non-Zc-replaceable, then we are sure that the introduction of a does not create
new.redexes. So the lemma is proved. G

In [5] the notion of /i-replaceable variables allo wed a partition of the n. f. s.
into classes tA

r
h(h^0)t such that applications of a n. f. belonging to Jfh to

k^h n. f. s., possess n. f. too. To make self-contained the present paper, we
recall here this partition. First we need the notion of nested occurrences of
variables. Two occurrences of variables are said nested in a n. f. N iff the first one
is the head of a component Z of N, being the other the head of some main
argument of Z. More formally we have:

DÉFINITION 2:IfZ = À,z1 . . . zr,^Zx . . . Z s is a component of an . f. JV,then
this occurrence of 0 and the occurrence of the head of Zj (1 SjSs) are nested
in N.

Let us note that this relation is irreflexive, symmetrie and non-transitive.

Example 2: In the n. f. of example 1:

— the leftmost occurrence of x and the occurrence of a are nested;
— the leftmost occurrence of x and the occurrence of y are nested;

— the occurrence of a and t are nested, etc.
Moreover, let us define group of nested occurrences in a n. f. N a séquence

(yi> • • • > yù °f variable occurrences, such that:
— y1 is the head of N;
— yt and yi+x are nested (1 ̂ i ^ t — 1);
— yt is an argument occurrence.

Example 3: In the n. f. of example 1 we have two groups of nested occurrences:
(x, a, t, b, u, c, x) and (x, y, d, z, x).

We can now define the classes J

DÉFINITION 3: A n. f. N with # (N) = n belongs to JTh (0 S h S n -1) iff in N:

— there exist no two nested occurrences of/z-replaceable variables;
— there exist at least two nested occurrences of (h + l)-replaceable variables.

DÉFINITION 4: A n. f. N with #(N) = n belongs to Jfn u Jf^ iff in N there exist
no two nested occurrences of n-replaceable variables. More specifically N G Jfn

or Ne Jfm according to the head of N is bound or free.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



COMPLEXITY OF À,-TERM REDUCTIONS 263

Example 4: The n. f. of example 1 belongs to Jf x since:
— there are no two nested occurrences of 1-replaceable variables;

— in the subterm zx the occurrences of z and x are nested and moreover these
variables are both 2-replaceable.

REMARK 1: From définition 4 the components which occur in N e Jfm as main
arguments of components whose heads are (ö-replaceable belong in their turn tö
Jf a- Moreover, if Z is one of such components of N, and Xxx . . . xn is the
prefixed séquence of Nt then also Xxx . . . xn. Z e JV&.

In [5] it is proved that a n. f. N belongs to the class Jfh iff all the A,-terms
obtained by applying JV to h arbitrary n. f. s. possess n. f. too, but there exist
fc+1 n. f. s. Mlt . . .',Mh+i s u c n that NM1 ... Mh+X possesses no n. f. More
precisely the following theorems are stated:

THEOKEM 1: A n.f. NejVh (h^O) iff:

— VM1( . . . , MheJf\ NMX ... Mh possesses n.f;
— 3 Mj , . . . , Mh+1 e Jf : NMX ... Mh + 1 possesses no n. f.

T H E O R E M 2 : A n.f N G J ^ ^ iff:

- V h ( f t ^ O ) , V - M i , . . ., M h e J T : NMX ... Mh p o s s e s s e s n . f

REMARK 2: From theorem 2 it foliows that, if Ne Jf^ and MeJf, then the
n. f. of NM will belong to..^Kœ too.

The previous classification assures us that some applications of n. f. s. reduce
to n. f. in a finite number of steps. More precisely from theorems 1 and 2, we can
assure that the application:

NM\ ... Mk, (4)

has n.f. when NeJVh, h^k (© is considered greater than any integer) and
Ml,...>Mk are ni.s. We wont evaluate finite complexities, then only
applications satisfying the latest conditions will be considered in the following.
Moreover, utilizing the results of the present section, we can limit ourselves to
consider application NMX.. .Mk with NeJ^^ and # (N) = k. Namely we can
prove the following lemma:

LEMMA 5: IfN e Jfh and k ̂  h,for any Xlt . . . , I k 6 A there exists a n.f. iV* and
an integer r^k such that N*ejV*(a> # (N*) = r and moreover:

Proof: Let # (N)~n~ If iVeJ^^ we consider separately two cases:
— if n ̂  k let r = k and let us choose iV* as defined in lemma 1. We point out

that JV* e 7 ^ ;
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264 M. DEZANI-CIANCAGLINI, S. RONCHI DELLA ROCCA, L. SAITTA

— if n < k let r = n and N* = N. Lemma 2 assures us that the complexity does
not change.

If NejVh (/i#œ) by définitions 3 and 4 we have n^h; let then
JV = XjCi.. .xk. . .Xn.ÇNi. . .Nm. In this case we choose r = k. By lemma 1, we
can replace N by the n.f.:

Since N e Jfh and h^k,Nf e Jfk u «yK̂ ; then if AT' e ̂ T^ we can choose AT* = N'.
Otherwise, by lemma 3, we can replace AT by: N* = Xxt.. .xk.a(C)N1, . ,Nm).
Since N'ejV>

k, then JV*^/^ and it is the desired n.f. n
We point out that the existence of N*t in lemma 5, is proved in a constructive

way.
To summarize the resuit s of this section, we can say that, in what folio ws, only

applications NMX... Mkt where N e Jf^* #(N)^k and Mlt . . . , Mk are ni.s.,
will be considered. We call complete such applications. Let us note that a
À,-free n.f. N is a complete application according to this définition, since N e Jf^
and #(AT) = /c = O. The word complete is suggested by the fact that the
complexity does not rise up by increasing either the number of variables bound
in the prefixed séquence of N or the number of arguments tawhich N is applied.

In a n.f. N eJfh a variable is said to be replaceable (non-replaceable) if it is
/i-replaceable (non-/i-replaceable). Obviously a variable which is replaceable is
also co-replaceable (but the converse is not al way s true). Only in the particular
case of N e JV'ffl the repiaceable variables of N coincide with the co-replaceable
ones. From définitions 3 and 4 it follows that, in any n.f., there are no two
occurrences of replaceable variables which are nested.

Example 5: In the n.f. of example 1, which belongs to Jflt the replaceable
variables are the 1-replaceable variables. We rewrite this n.f. and encircle its
replaceable variables:

Xxy. 0 (A.tu. a (©(À,v. b (@ (c(x)))))) (y (Xz. d (z0))).

Using the définition of replaceable variables, we can rewrite lemma 4 by
substituting non-replaceable for non-/c-replaceable, provided that iVe^^
and k^h. Then lemma 4 states that the complexity is independent of the number
of non-replaceable, nested variables. Now we introducé a tree représentation
of n.f.s. which is independent of this number but makes evident the occurrences
of replaceable variables as heads of components whose main arguments are not
all X,-free. This représentation will be used to compute the complexity of
applications of ni.s. The same représentation was used, in an analogous way,
in [11].
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COMPLEXITY OF X-TERM REDUCTIONS 265

Given a n.f. JV, we build up the corresponding tree according to the following
(alternative) mies:

RULE 1: If in JV every replaceable variable is head of a component whose main
arguments are all X-free n.f.s., then the corresponding tree is a single root
labelled by N.

RULE 2: Otherwise we scan N from left to right and every time we find a
component whose head is replaceable we store its main arguments and then
replace each of these in JV by a *. After this procedure let Mx, . . . , Ms ( s ^ 1) be
the stored n.f.s. and iV^ the obtained string. Then the tree which represents N is
a root with label N* connected by s (ordered) branches to the trees which
represent respectively Mlt . . .» Ms.

REMARK 3: We notice that (according to rule 1) a n.f. without occurrences of
replaceable variables is represented by a single root.

The above construction may be visualized as in figure 1.

P(Ni t h e n

e I s e

Tree corresponding Tree corresponding

to M 1
 t o Ws

Figure 1. — Tree corresponding to a n.f. N, where: P is the predicate tested in rule 1;
JV* and Mj(l Sj~*s) have the same meaning as in rule 2.

Example 6; The tree which represents the n.f. of example 1 is shown in figure 2.

About the labels of nodes in trees which represent n.f.s. we notice that:
— the labels of terminal nodes are n.f.s.;
— the labels of non-terminal nodes are n.f.s. with some main arguments

replaced by *.
We may extend in an obvious way the given définitions of head, main

arguments and prefixed séquence including * into the set of n.f.s.

vol. 13, iio 3, 1979



266 M. DEZANI-CIANCAGLINI, S. RONCHI DELLA ROCCA, L. SAITTA

2v.b(u(cx

Figure 2. — Tree corresponding to the n.f. of exemple 1.

Since in any n.f. there are no two nested occurrences of replaceable variables,
then ail labels of nodes different from the root have heads which are non-
replaceable.

We say that the level of a node in a tree is the maximum number of branches
which may belong to a path from this node to a terminal node. More formally,
we have:

— the level of terminal nodes is 0;
— the level of a non-terminal node is the maximum between the levels of its

sons plus 1.
Now, let us classify the n.f.s. according to the levels of the roots in the

corresponding trees.

DÉFINITION 5: N G ^ if the root of the tree corresponding to N has levelI.

Example 7: The n.f. of example 1 belongs to #"2 since the root of the tree in
figure 2 has level 2.

As the 0-level n.f.s. have quite simple properties in regard to the p-reduction, in
next section we will examine applications of such n.f.s.

In the last définition of the present section we associate to some variables the
level at which they are bound.

DÉFINITION 6: Let x be the tree corresponding to a n.f. N. The t-bound
variables in N are the variables which are bound in the prefixed séquence of
labels of nodes at level t in x.

Example 8: In the n.f. whose tree is shown in figure 2:
— x, y are 2-bound;
— t, u are 1-bound;
— v is 0-bound.
We notice that in a ni . N e Jf :
— the l -bound variables are œ-replaceable (since they are bound in the

prefixed séquence of JV);

R.A.I.R,O. Informatique théorique/Theoretical Informaties



COMPLEXITY OF X-TERM REDUCTIONS 267

— the t-bound variables (0 ̂  t ̂  / -1) are replaceable (since they are bound in
the prefixed séquence of components of N which are main arguments of other
components whose heads are replaceable).

3. PROPERTIES OF N.F.S. OF LEVEL 0

In section 2 we associated to each n.f. the Ie vel of the corresponding tree;
the n.f.s. corresponding to trees consisting of a single root (n.f.s. of level 0) look
quite simple. This simplicity in the représentation corresponds to an analogous
simplicity in evaluating the complexity of applications. In fact let us consider a
complete application:

NM1,..Mk (5)

where Ne^0. In order to obtain the ni . of (5) it is sufficient to reduce:
— the prefixed séquence of N, obtaining thus a À,-ter m N';
— the prefixed séquence of the functional occurrences of Mt (1S i ̂  k) in N'.
The conditions on N assure us that all the arguments of Mt in Nf are X-free

Arterms, and hence the réduction ol the prefixed séquences of Mt does not
generate new redexes.

To obtain further results in studying such applications we need some
parameters, in order to quantify the number of occurrences of effectively
replaced variables, i. e. variables bound in the prefixed séquences
of N, Mlt . . . , Mfc. We will distinguish variables bound in different abstractions
of N and in different Mt (1 ̂  i ̂  k).

DÉFINITION 7: If NMX... Mk is an application and N = Xxx.. .xk.N, wedefine:
— <jj maximum number of occurrences of Xj (1 ̂ j^k) within a group in N;
— n number of groups of nested occurrences of replaceable variables in JV;
— v maximum number of main arguments of the components of N whose

head is replaceable;
— pj number of occurrences in M, of the variables bound in its prefixed

séquence ( l ^ /^k ) ;
— 8 maximum of # (MJ) (1 ^J^k).

Example 9: Let
N = À,xyz. a (kt. x (ty) (ex)) (z (d (ze))),

M2 = Xu. u (^w. ww) f,

M 3 = Xuv. v (Aw. w) u.
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268 M. DEZANI-CIANCAGLINI, S. RONCHI DELLA ROCCA, L. SAITTA

We have in this case:
CTl=2, n = 3 , pi = 3, 5 = 2,

By means of the parameters introduced in définition 7 we can evaluate how the
number of occurrences of a variable in a n i . N e Wo, jVm will increase in the n i .
of the application NM. We notice that the proof of the following lemma cloes not
requiré that NM is a complete application. This maximization is obviously
independent of the used réduction strategy, and moreover we are sure to reach
the n i . , whatever the réduction strategy is, thanks to the given conditions on N.
This is proved in [5] for the gênerai case of N e J\ ' h(h^k) and #~ f ( /^0) . Then in
the proof of the following lemma we will use a "suitable" réduction strategy,
which permit s us to induce on the parameter ax. We define

V if r > 0 ,

if r"=0.

LEMMA 6: Let NM be an application, where NetFQf Jf& and MeJf. If a
variable a occurs y tintes in N, andadoes not occur in M, then in the nf. of NMa
occursatmosty. [p j 0 1 tintes, where ax and px are computedfor NMaccording to
définition 7.

Proof: We make this proof by induction on Ux- Let N = Xxx-N.

First step: ax = 0 means that the desired n i . is N, and the lemma is obviously
true.

Inductive step: We assume this lemma true for Oxèv and we will prove it
for Gx = v+1. N will contain a given number (say n) of groups of nested
occurrences. Let JV* be obtained from N by replacing, in each group, the
outermost occurrence of xx by a variable (say b) which does not occur in N.
N* contains a given number (say q) of free occurrences of b; clearly it will
be q^n, since one occurrence of b may belong to more than one group. Let
F !, . . ., Pq be the components of JV* whose head is b [we notice that some P 7

(lSjSq) may coincide with one argument occurrence offo]. Since these
components are disjoint by construction, there exists a context C [ , . . . , ] such
that N * = C [P,, . . ., P J . We distinguish the occurrences of a according to they
occur in one Pj(l Sj^Q) or not. More precisely we defme:

— Yj as the number of occurrences of a in Py,

Y*=Y-
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For (Xx1,Pj) M we have ai ^v and then, by inductive hypothesis, its n.f. P j
contains at most y ;- [p j \ v occurrences of a. By construction C [P [', . . . , P£] is the
n.f. N' of (Xxt.N^M. Again by construction (X,x1.N)M = (^fe-.iV')M. Let
Pj = bP^..,P^ for l^j^q. Then in N'[b/M] we must reduce at most
q redexes of the- shape: MPf . . . P® for l^j^q. From above, in P^\
P{{\ . . . , P(Jja occurs y,- times if pi = 0 and y j[pi]v times if px >0. In the first
case, by reducing the variables of the prefixed séquence of M, the number of
occurrences of a cannot increase, and in the n.f. of (k x 1. N) M a occurs at most
y times. Otherwise, at most p! copies of the same component are created and
so a occurs at most y j.[pi\v+i times in the n.f.ofMP^ .. . P^. Then in the n.f.

q

of {\xi.N)Ma will occur at most £ y j f[pj i ;+1-f-y*^y.[pi] t ï+1 times. D

Necessary conditions to reach the maximum evaluated in lemma 6 are:
— all occurrences of xx are functional;
— the occurrences of a are all inner to thé innermost functional occurrence

of x ! ;
— M has exactly px occurrences of a variable bound in its prefixed séquence.
We avoid to analyze all the possible structures of N and M, and we confine

ourselves to prove that a particular choice of N and M reaches this maximum.

LEMMA 7: The maximum of lemma 6 is reached by choosing:

(a... a))) . . .
' —— ̂ -

Y l an ï«

The proof of this lemma is performed by executing the réductions of NM and
hence it is omitted. •

Example 10: If the values of the parameters are the following:

O l = 2 , n = 3, pi=2, 7 = 3,
we build

N = Xx,.c(Xi (c(Xi a))) (xx (c (Xl a))) (Xi (c(Xl a))),

M = Xz. zz.
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The ni . of NM is

N ' = cRRR where R = c (aa) (c (aa))

and a occur s really y. pi1 = 3.22 = 12 times in N'

Now we must choose a réduction strategy, because we will consider also the
behaviour of intermediate redexes. As in [5] it has been proved that any complete
application reaches its normal form whatever strategy is applied, we choose the
leftmost-innermost one. This strategy is efficient in the ^-I-calculus, i.e. for
À,-terms in which ail bound variables occur at least once (it is well known [3] that
no recursive strategy minimizes the complexity of all À-terms).

As usual ^ will dénote reducibility in a finite (possibly zero) number of steps
and ^ will dénote reducibility in exactly i steps.

IfJV = À.x1...xfc.Z,Ol the réduction of (5), according to the leftmost-
innermost strategy, yields consecutively:

(A.Xi . . . xk.LQ)M1 .. . M k ^ i(A,x2 .. • xk.L0[x1/M 1])M2 . •. Mk

..xk. L1)M2... Mk^x(Xx3 ...xk.Lx[x2/M2]M3 . . . Mk ^ . ..

where Lj(l Sjûk) dénotes the ni. of Lo[xx/M x> . . . , xj/M J . At present we
disregard the number of réductions needed to obtain L} from Ls-X [xj/Mj]
(1 ̂ 7^/c), even if it is easy to evaluate, as we will see later.

We notice that ail redexes of NM x . . . Mk which look as:
(kxj+1 . . . xk.Lj)M j+1 . . . Mk are applications of n.f.s, again. We call these
redexes principal redexes of NMX . . . Mk and we use them to examine the
properties of applications like (5).The ni. LkoîNM1 . . . Mfcis also a principal
redex.

First we prove that ail functional occurrences of ni.s. in principal redexes
belong to IFQ, and such principal redexes are still complete applications.

LEMMA 8: AH principal redexes of a complete application

JVM! . . . Mk,
where Ne^0 are complete applications too, where the n.f.s. occurring in
functional position belong to ^0.

The proof of this lemma is given in the appendix.
Now we prove that the number of nested occurrences of replaceable variables

of AT does not increase during the réduction, even if the total number of variable
occurrences do (since Ne^0, Jf'm, the replaceable variables of N are the
variables bound in its prefixed séquence).
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LEMMA 9: Let NMt ... Mkbe a complete application, where Ne^FOf and let
(Xxj+1 . . . xk.Lj)Mj+1 ... Mk be one of Us principal redexes (OSj^k — 1).
In Lj there are at most Ui occurrences of the variables xt inside a group, for
( / + l £ / ^ k ) , where olt ,.., ak are computed for NMX . . . Mk according to
définition 7.

The proof of this lemma is given in the appendix, too.

To evaluate the complexity it is more convenient first maxjmize, by means of
lemmas 6, 8 and 9, the number of occurrences of the variables bound in the
prefixed séquence of N inside the principal redexes of NM x . . . Mk.

LEMMA 10: Let NMX ... Mk be a complete application where Ne^F0 and let
(Xxj+i . . . xk.Lj)Mj+1 . . . Mk be gne of its principal redexes (Ö^j^fc—1).

j

In Lj the variables Xi(j+l^l^k) will occur at most n.Ox. f ] [piT1 times,
i = l

where all parameters are computed for NM x . . . Mk according to définition 7.

Proof: We will prove this lemma by induction on the index j .
o

First step: For j = 0 we have f\ [p i]
<Tt= 1, and the lemma obviousLy holds,

£ = 1

because the principal redex is just NMx . . . Mk, where xt occurs at most
n.cjj times.

Inductive step: Suppose that the lemma holds for j = r, and let us prove that it
holds for j = r + l . In (Xxr+1 ... xk.Lr)Mr+1 . >. Mk there are at most

r
n*ui* I I [Pi]°£ occurrences of xt (by inductive hypothesis) and at most Cj

occurrences of xt inside a group (by lemma 9) for r + l^l^k. Now we must
reduce(Xxr+ x.Lr)Mr+1 whereXxr+ t.Lre^0, Jfm(bylemma 8).Tocompute
the number of occurrences of xx in Lr [xr+t/Mr+x] we can then apply lemma 6»
with y equal to the number of occurrences of x, in Lr, and p*, erf computed for
(Xxr+1.Lr)Mr+i (the * has been adjoint to avoid confusion with the values of
the same parameters computed for NMX ... Mk). Then we have:

So, Xi occurs at most Y-[pï]a'* timfe§, i.e. n .a z . Y\ [piT1 times in the n i . of

(Xxr + 1.Lr)Mr+l. O

The maximum computed in lemma 10 is actually reached if:
— in JV each group of nested occurrences of variables contains exactly a (

functional occurrences of JC ̂  (1 ̂  i^ k) and moreover they occur from left to right
in non-decreasing order of the index i ;
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— M i has p £ occurrences of the same variable.

We prove that there exists a choice of N, M t, . . . , Mk which reaches these
maxima.

LEMMA 11: The maxima of lemma 10 are obtainedfor the choice:

where:

V — 1 V — 1 V — 1

~ -i) if P.

V — 1

We omit the proof of this lemma, because it consists in executing the
réductions, D

We can now evaluate the complexity (according to the leftmost-innermost
réduction strategy) of the complete application NM t . r. Mk, when Ne^0. For
a function f (x t , . . ., xn) (n > 0), we will write f (x t, . . . , xn) ̂  s to indicate that
VXi, . , . , x n , f ( x l t . . . , x n )^ s andin thecurrentdomainofffXi, . . . , x n ) there
exist x i , . . . , x„ such that f(xi, . . . , x )̂ = s.

THEOREM 3: Let NM± . . . Mk be a complete application and Ne^0.
According to the leftmost-innermost réduction strategy:

<ê[NM, .,. Mk}^k + n.min[v, 8]. £ ar+1.f\ [pJOi-
r=Q i = l

Proof: First we prove that the given expression is an upperbound for the
complexity of NMX . . » Mfc. To prove this it is convenient to prove somewhat

r

more, i.e., that we need at most l + n,<jr+1 f\ [p J^.min[v, S] steps to obtain
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from one principal redex the folio wing one (r is the order number of the principal
redex which is reduced). In fact, to obtain from a redex:

(kxr+1 . . .xk.Lr)Mr+1 . . . Mfe

the folio wing one, we must exécute one réduction to get

(kxr + 2 . . . x fc.L r[x r + 1 / M r + 1 ] ) M r + 2 . . . Mfc

and then we must reduce L r [ x r + 1 / M r + 1 ] to n i . By lemma 10 there will be at
r

most n.Gr+1 Y[ [pi]C| occurrences of x r + 1 in Lr. So we will have at most the
i=i

same number of components to reduce in Lr[xr+1/Mr+1]. Each one of these
components needs at most min [v, 8] réductions. So the first point of the theorem
is proved; in fact

X (l + n .a r + 1 . f l [p<]ff'.min[v, 5]) = fc + «.min[v, 8]. £ or+1.f\ [p,]<\
r=0 i = l r = 0 i = l

To prove this expression is really a maximum for the complexity it will be
sufficient to choose N, M 1( . . ., Mk as in the proof of lemma 11. •

Example 11: If the values of the parameters are the following:

k = 2, a1 = lf o2 = 2, n = 2, p t = 2 , p2 = 0, v = 2, 8 - 1

we build:

N 2 = (x2(c(x2cc))c),

Mi =Xz.zz,

M2-A,t.d,

NM 1M 2^ 1(U 2 .cN 1[x 1 /M 1]N 1[x 1 /M 1])M 2

where:

In the principal redex (Xx2. cNi Ni) M2, x2 occurs n. a2. pi1 = 8 times, as stated
in lemma 10.

(Xx2 .cNiNi)M2^ l CNi[x2 /M2]Ni[x2 /M2]
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where:
Ni [x2/M2] = (c(M2(c(M2 ce))c)(c(M2 (c(M2ce))c))c^4(c(de)(c(de))c).

Then the total number of P-reductions is exactly

>. [1 + 2.2] =12.
r=0 i=l J

4. PROPERTIES OF LEVELLED N.F.S.

Now we will consider n. f. s. represented by trees of level greater than 0. Since
we are unable to give gênerai properties of applications of these n. f. s. we will
study a subset of Jf. The interest of this subset is that it is, in some sensé,
complementary to the subset considered in [11]. In fact, as said explicitly in [12],
each ni . can be split into nested contexts such that each one of these belongs
either to the subset- considered hère or to the subset considered in [11] (with an
obvious generalization of the définitions from n. f. s. to contexts). In this section
we will study n. f. s. such that, in the corresponding trees, the replaceable
variables which occur in labels of non-terminal nodes are bound in the prefixed
séquence of the same label. More precisely, we will study the complexity of
applications of levelled n. f. s., dëfined in the following way:

DÉFINITION 8: Let T be the tree corresponding to an. f. N. N is levelled iff in T ail
replaceable variables which occur in labels of nodes of level i are ï-bound
for i>0.

Example 12: The n. f. of example 1 is non-levelled, since the variable y, which
is 2-bound, occur s in the label of a node of level 1. On the contrary, the n. f. :

is levelled. This may be easily verified on the tree représentation of M (see fig. 3).

r A z . z *

Â u . g u

Fig. 3. - Tree which represents the n. f. of example 12.
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Example 13: From définition 9, it follows that:
- if a n.f.N belongs to ^0, then N is levelled;
— if Yx, . . . , Yr are r levelled n.f.s., which do not contain the variables

i , . . . , x s , then N = A,Xi . . . xg.Xj Yj . . . Yr is a levelled n.f.

REMARK 4: From définition 8 it clearly follows that, if N is a levelled n. f., in its
representing tree all the proper subtrees represent levelled n. f. s. too.

In what follows we will consider n. f. s. such that we must reduce at most one
abstraction for each prefixed séquence. Hence we will give the following
définition:

DÉFINITION 9: A n. f.- AT is monadic iff all component s of N, whose head is
replaceable, have at most one main argument with at most one variable bound in
its prefixed séquence.

Example 14: The n. f. M of example 12 is monadic.

REMARK 5: From the given définition it follows that, if N is a monadic n. f., in
its representing tree all the subtrees represent monadic n. f. s. too.

Now we try to represent the first réductions necessary to reach the n. f. of the
complete application NM, when M is levelled and monadic, by extending the
tree représentation to X-terms not in n. f. In such a way we describe a réduction
strategy which is a slight modification of the leftmost-innermost one.

If N = Xx.^f then NMi> x N[x /M] . We can represent N [x/M] simply by
replacing, in the treex that represents N, the occurrences of x by M. So we will
obtain a tree that, in gênerai, does not represent an . f., but it is an useful toolfor
studying next réductions. Since N is levelled, x can occur only in the terminal
nodes and in the root of x. If, in x, the labels of terminal nodes were Tu . . ., Tq,
then there exists a context C [ , . . . , ] such that N = C[Tlt . . . , TJ. In the tree
of N [x/M] first we reduce to n. f. these labels. This corresponds to fill the missing
componentsofC[ ] [x/M] with the n.f.s. of(A,x. jTf) M for l ^ i ^ g . t h e n
we obtain a tree such that ail labels of its nodes, except the root, are in n. f. In the
label of the root there is a certain number, say p, of functional occurrences of M;
each of these ones will be applied to an * which represents a n. f. Let Zlf . . ., Zp

be these n. f. s., which we will call primary n.f. s. of the application NM. Then
the problem of reaching the n. f. of NM is reduced to the reaching the n. f. of:

U . . . , MZP.

We can so compute the complexity of NM as a function of the complexities of
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In the foliowing lemma we will prove that Zif . . . , Zp are levelled and
monadic n. f, s., which belong to Jfm and whose le vel is less than the le vel of N.

LEMMA 12: For a complete application NM, where N is a levelled and
monadic n.f., the primary n.f. s. are levelled, monadic n.f. s. belonging to Jf^
and their levels are less than the level of N,

The proof of this lemma is given in the appendix.
Now we will introducé some parameters for a levelled n. f. which will be useful

for Computing the complexity of NM, when N and M are n. f. s. satisfying
suitable conditions.

DÉFINITION 10: Let N be a levelled n. f., and let x be the tree which represents
it» of level/. Let us define» in x:

— |i(/V) number of occurrences of i-bound variables at level i (l^iSl)l
— n(JV> maximum number of groups of nested occurrences of replaceable

variables in the labels of a node at level 0;
— 9 f) maximum number of occurrences of i-bound variables within a group

in labels of nodes at level 0 (O^i^I).
j?*0 and <p(N) will dénote respectively the vectors < u.(f}, . . , , p,f} > and (

REMARK 6: About the parameters of définition 10, we notice that:

— all \i{P for I ^ Ï ^ I are positive;
— if n = 0f then 9 ^ = 0 for O^fgl; if n#0, there exists at least one index

j (0 é / ^ 1) such that q> f} > 0;
— if N is a monadic n, f., then the number of terminal nodes in the tree which

represents it is less than or equal to u^.

Example 15: In then. f. M of example 12,theparametersjustdefinedhavethe
folio wing values:

The folio wing lemma computes a maximum for the values of the parameters,
given in définition 11, in the primary n. f. s. of the complete application NM,
where JV is a levelled and monadic n. f.

LEMMA 13: IfZ is a primary n, f. ofthe complete application NM, where N e^t

and it is a levelled and monadic n. ƒ., thefollowing disequalities hold;
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where p(M) is the number of occurrences in M of variables bound in its prefixed
séquence,

The proof of this lemma is given in the appendix.

Now we are able to compute the complexity of NM, where N, M e / œ and
they are levelled and monadic n. f. s.

Example 16: If we choose N = ^x.a(x(A,u.b(uc)))(x(À, v.d(v(ex))))e Wx and
*3§4 a§ in example 12, we obtain an application satisfying the given requests. The
tree représentation of N is given in figure 4.

/u.b(u

Fig. 4. — Tree whkh represents the n. f. of example 16.

We defme now a fonction % of the given parameters, which we will prove to
maximize the complexity of the application N M . Let p dénote a vector,
p/dénote the vector obtained from p by erasing the last component , and v.p

dénote the vector obtained by multiplying each component of p by the
constant v.

DÉFINITION 11: Let lt, l2, nx, n2 be integer s, p, qbe respectively the vectors

(Pi> - •> P / J > a n d < g 0 » • • -*% >;s",?be respectively the vectors < slf . . . . , sh}

a n d (tOt . . . , t h } .

We defme:

X {'ï»' *2," nx; n2; p ; q; s ; î} = ifll=0 then l+n1.qQ else

lJrnl.pï.qli+pli.x{l2; lx-l; n2; n1.[slx+s1.n2.tli]
qi>; s; t; pi; q / } .

We notice that the function % of définition 11 is a monotonie function in respect
to all arguments, since it is built up by opérations of sum, product and [ ] (as
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defined at page 268) applied to non-negative integers. Moreover we notice that, if
l2 =0, slz and sx are undefined, but in this case the value of % is independent of
that of its fourth argument.

THEOREM 4: Let N, MeJf^ be levelled and monadic, and let the levels of the
corresponding trees be respectiveiy l and}. Then if one follows the described
réduction strategy:

Proof: First we prove that the given expression is an upperbound for the
complexity of NM. We will make this proof by induction on the sum of the levels
of AT and M.

First step: If 7=0, we can apply theorem 3, taking into account that:
— O^k, v, 5 ^ 1 since N and M are monadic n. f. s.;
— n = nm by définition;

o
— YJ ar+i=<Po° by définition;

r = 0

the complexity of NM is then upperbounded by:

Inductive step: Let us suppose that the theorem is true for l+j^u. We must
prove it ÎOT l+j = u+l.

If / =0, we are in the case studied in the first step. Otherwise, let N = \x.N;

obviously NM ^ j N [x/M]. To obtain the n. f. of NM, we can exécute, in the tree

which represents N[x/M], the necessary réductions in the following order:

1) the functional occurrences of M in the terminal nodes;
2) the applications MZ, for ever y primary n. f. Z of NM.

Let us compute how many réductions are effected in each one of the previous
steps:

1) one réduction for every functional occurrence of M in the terminal nodes of

the tree which represents N [x/M]. The terminal nodes are ât most [i{i\ and each
one contains at most n(A°. <p(f° functional occurrences of M. Then the number of
effected réductions is less than or equal to:
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2) there are at most \xf} applications of the shape MZ. Each of these
applications satisfies, by lemma 12, the conditions of the present theorem. The
level of Z is less than or equal tol — 1, then the sum of levels of M and Z is less
than or equal to w, and by inductive hypothesis the complexity of their
application is rnaximized by:

<€ [MZ] S%{j;l-l; n{M) ; riZ) ; ? M ) ; 9 ( M ) ; ? 2 ) ; $ ( 2 ) } .

The maximum values of the parameters of Z as given in lemma 13, taking into
account that p(M) ̂  pf > -f ̂ f>. niM). cpf >; are:

. cp f } ]

Since % is a monotonie functión, we obtain:

Taking into account points 1 and 2 we have:

<€[NM]g 1 + n f . w w . W ^ . + n f J . x { j ; / - 1 ; n(iV); n(iV)

[(M)+(M)n(M)^(M)](pW; -(

To prove that this expression is really a maximum for the complexity it is
sufficient to choose:

1/ {l; 0; n; 5; q} = X x0. aV{l; qh-^jl £}

(e dénotes the empty vector)

. . . (x ; t/ {l; i -1; n; p( i7; « })

(p(i) dénotes the vector {p1, ..., pt >) and
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N=U{l;l; nltp;q},

M = U {j; j ; n2; 7; F}.

Then, foliowing the described réduction strategy:

<$[NM] = x{l;j; ni; n2; p ; q; I; F } . •

Example 17: If the values of the parameters are the following:

we have:
V{1;<2, 1>}=(X1(C(XO(C(XOC)))))>

U { l ; 0 ; l;i;<2)l>}=?.xo.a(x1(c(xo(c(xoc)))))

N = U { 1 ; 1 ; 1; <1>; <2. iy} = Xx1.a(x1Xxo.â(

and:
V{0;<2>}S(y0(d(yo .d))),

Then:

where:

X x0. a (e (c (x0 (c (x0 c))) (d (c (x0 (c (x0 c))) d)))) s M*,

MM*^1e(M*(d(M*d))),
M * d ̂  ! a (e (c (d (c (de))) (d (c (d (c (de))) d)))) = M,

M* (dM ) ̂  i a (e (c (dM (c (dMc))) (d (c (dM (c (dM c))) d)))) = M '.

Then.f. of NM is (aM').
It is easy to verify that % {1; 0; 1; 1; < 1 >; < 2,1 >; e; < 2 > } = 5 which is the total

number of effected réductions.
We use now previous results in order to study the complete application NM

where AT is a levelled and monadic n. f., and M is a simple n. f. The simple n. f. s.
are defined as foliows:

DÉFINITION 13: A n. f. M is said simple when in M every co-replaceable variable
is head of a component whose main arguments are ail X-free n. f. s., and
moreover, if two occurrences of co-replaceable variables are nested in M, then the
innermost occurrence is in argument position.
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Clearly any simple n. f. belongs to !F0.

Example 18; M = X z. z (a (zz)) (bz) is a simple n. f.

It is interesting to study complete applications whose arguments are simple
n. f. s., since there are some numerical Systems in which the numbers are
représentée! by simple n. f. s.

Let us remind the définition of numerical system, according to [10] (p. 212).
A numerical system is a class of À,-terms Jt = {[(0)], [(1)], . . . } to be represented
by a quadruple of À,-terms [(0)], [(a)], [(n)], [(S)] called respectively zero,
successor, predecessor, discriminator of the zero. More precisely, if the following
relations hold for every integer n^O:

(a) [(n+l)] = [(a)][(n)];

(b) [(*)] = tt*)][(«+l)h
(c) [{S)W)] = O = Xxy.y9

(d) [(6)][(n + l)] = K = Xx.v.x or l = Xx.x,
the set Mt whose éléments may be built up from'(a) by itération

n
is isomorphic wit h the set of integer s.

Example 19; We may give two examples of numerical Systems such that ail
[(n)] are simple n. f. s. (n^O).

If we choose:

[(0)] = C = À, xyz. xzy, [(a)].= B = X xyz. x (yz),

[(*)] = À, x .x l , [(ô)] = Xx.xI(xII)KKK,

then:
[(• )] = Xx1 . . . xnuvw.x1 . . . ^uwv .

If we choose:
[(0)] = O, [(a)] = À,uvx.uvxv,

[(n)] = Xuvx. uv (Xy. x), [(ô)] = Xx. xIO,

then:

n

Now we will compute how many réductions we need to reach the n.f. of NM,

when N = Xx.N and Msatisfy previous conditions. We will reduce in the same

order as before, i. e., after the réduction of the prefixed séquence of N and of the

occurrences of M in the terminal nodes of the tree which represents N [x ƒ M]/we
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must reduce a certain number of applications of the shape MZ, where M is a
simple n i . and Z is a primary n i . of NM. By lemmas 12 and 13, Z is a
n.f. e Jf mt levelled, monadic and its parameters can be maximized in function of
the parameters of N and M. To study the complexity of MZ, we split the
parameter p(M) (defined in lemma 13) into three addenda, so defined:

DÉFINITION 14: Let us defme, in a simple n.f. M = Xy.M:

— r|(f ) number of functional occurrences of y in M such that their first main
argument is y;

— i]^) number of functional occurrences of y in M whose first main argument
is different from y;

— *H(f° number of argument occurrences of y in M.
Obviously P ^ ^ T I ^ + T I ^ + T I ^ and

Example 20; In M as defined in Example 18 we have:

If M = X y. M, MZ ^ 1 M [y/Z]. In M [y /Z] there will be exactly r|(1
M) redexes of

the shape ZZ and T](^) redexes of the shape ZR where R is a À,-free A.-term. The
complexity of ZZ can be maximized by the function x* The redexes of the
shape ZR are reduced to n.f. in one step, if JR is in n.f. We define now the
function T, that we will prove to maximize the complexity of NM.

DÉFINITION 15: Let I, n, mt, m2, m3 be integers, p, <? be respectively the vectors
and <g 0 , qlf . , ., q,>. Then:

r { l ; n; p; q; mx; m2; m3}=if 1 = 0 then l + n.q0

else l+p1.n.ql + pl.[l + ml.%{l—l; / — 1 ; n.[m1+m2-\rrn3]
qi;

n.[ml+m2~\-m3]
qi; p/; q/; pi; q/}+m2].

THEOREM 5: Let NejV^, !Fx be a levelled and monadic nf., and let M be a
simple n.f. Then if one follows the descrïbed réduction strategy:

Proof: First we prove that the given expression is an upperbound for the
complexity of NM. In the case / =0 , we obtain a value which upperbounds the
complexity (by th. 3). In the case / > 0 (by the argument given in the proof of
theorem 4) after at most 14- \i{iJ. n{N). (p\N) réductions, we have to reduce at
most p.{p applications of the shape MZ, where Z is a primary n i . of NM. In
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each MZ, after the réduction of the prefixed séquence of M, we obtain rff0

redexes of the shape ZZ and r ^ redexes of the shape ZR where JR is a À,-free
À,-term.

By theorem 4, each redex ZZ reaches its n.f. after at most

X { / - 1 ; Z - l ; n^.lTi ^ ' ^N)

réductions, where the parameters of Z are computed according to lemma 13.
Therefore, if we use the innermost réduction algorithm, each À,-free X-term R, in
the application ZR, is now in n.f. Then for each application ZR we must effect
only one réduction.

It may be verified that, through the choice:

M = Xz.z(d . . . z{d{zz) . . . (zz) z . . . z) . . . )

m 2 'H i " '3 ~ ' " i

and

N=U{1; l; n;p;q}

as defined in the proof of theorem 4, we have:

<g[NM] = T{l; n;p;q;m1;m2;m3}. •

Example 21: If we choose N as in example 17, and M = A,z.z(d(zz)z) then:

NM ^ x a (MX,x0. a (M (c (x0 (c (x0 c)))))),

where

N = Xx0. a (c (x0 (c (x0 c))) (d (c (x0 (c (x0 c))) (c (x0 (c (x0 c))))) (c (x0 (c (x0 c)))))).

N N ^ t a (c (N (c (Ne))) (d (c (N (c (Ne))) (c (N (c (Ne))))) (c (N (c (Ne)))))) = N.

In N there are 4 applications N c; each one reduces in 1 step to its n.f. N ' . Then

we must reduce 4 applications N(cN') ; each one reduces in 1 step to its n.f. N ".

Let N* be the n.f. of NN, i.e. N*sa(cN"(d(cN")(cN"))(cN")).
N(dN*N) reduces in 1 step to its n i .N ' .

Clearly the n.f. of NM is (aN'), and the number of effected réductions is 13.
It is easy to verify that: T { 1; 1; < 1 >; <2, 1 >; 1; 1; 2} = 13.-
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APPENDIX

The proofs of lemmas 8,9,12 and 13 may be easily obtained from the proof of
the folio wing:

PROPERTY 1: Let JV = Xx. JV e jVa and let T be the tree which represents JV.
Let .v occur only in labels of terminals nodes of x. We claim that, for an
arbitrary n.f.M, the n i . JV' of NM is such that:

1) if J V e ^ , then N ' e i ^ , ;
2) if y is any co-replaceable variable in JV, then the maximum number of

occurrences of y within a group in JV' is equal to or less than that one in JV;

3) if JV is monadic, then JV' is monadic too;

4) if JV is levelled, then JV' is levelled too.

Proof: Instead of pro ving conditions 1, 2, 3 and 4, we will prove
conditions 2, 3 and the following condition 5, which obviously implies
conditions 1 and 4:

5) the tree x' of JV' is obtained from the tree x simply by replacing (without
ot-reductions) each label T of a terminal node with the n i . of T[x/M].

We make this proof by induction on the number t of occurrences of x in JV.

First step: t = 0 means N'~N and the conditions obviously hold.

Inductive step: Let these conditions be true for t^v and let us prove them

fort = u + l . Let P be the n i . obtained from JV by replacing one of the

outermost occurrences of x by a variable (say a) which does not occur in JV.

Then by construction: NM = (Xa .(Xx. P) M) M.

Let us observe, about JV, that:
(i) each occurrence of x in JV is nested with occurrences of variables which are

ail non-oo-replaceable in JV, since N ejV&\
(ii) the main arguments of components whose head is x are A,-free ni.s.,

since x occur s only in labels of terminal nodes in x.
About the n.î. Q oî(Xx.P)M, we observe that:
(iii) Q contains exactly one occurrence of a, since a replaces one of the

outermost occurrences of x;

(iv) a occurs in the label of a terminal node in the tree représentation of Q,
since x occurs only in labels of terminal nodes of x and condition 5 must be
satisfied by inductive hypothesis;

vol. 13, n° 3, 1979



286 M. DEZANI-CIANCAGLINI, S. RONCHI DELLA ROCCA, L. SAITTA

(v) observations (i) and (ii) are true again for the occurrence of a in Q, i. e. a is
nested only with variables which are non-œ-replaceable in Xa. Q and it has A.-free
main arguments, since a replaces one of the outermost occurrence of x.

From observations (iii) (iv) and (v) it follows that the label of exactly one
terminal node in the tree which represents Q has a component of the shape:
VZ where V is À,-free, has a head which is non-œ-replaceable in Xa.Q,
Z = Xyx .. . yp.aZ1 ... Zq and Zlt . . . , Zq are A--free n.f.s. whose heads are
non-œ-replaceable in g; i.e. there exists a context C[ ] such that
Q = C[aZi . . . ZJ . To obtain JV' from (ka.Q)M we have one component to
reduce, i.e.:

MZ1...Zq (6)

provided that q^l and M îs not X-free. The n.f. M' of (6) is reached simply by
reducing min [4, # (M)] variables bound in the prefixed séquence of M. Then N'
may be obtained simply by filling with M' the missing component of C[ ],
i.e. N' = C[Mf]. By inductive hypothesis Q = C[aZ1 . . . Zq] satisfies condi-
tions 2, 3 and 5. Then it is sufflcient to prove that the replacement of a Zx . . . Zq

by M' does not affect these conditions. To this aim we observe that:

(vi) the variables of M' are all non-œ-replaceable in N\ In fact, the (possible)
rightmost ^ (M) — q variables bound in the prefixed séquence of M' are non-co-
replaceable in AT' since the head of Kis non-œ-replaceable in Xa.Q.

(vii) M' may have components of the shape: ZXMX . :. Mr (1^/^g) where
some M i ( l ^ i ^ ) may have as components some Z ^ ( l ^ j ^ ) . The variables
which occur in Ml , .. ., Mr are then nested only with the head of Zx, which is
non-œ-replaceable in JV'.

From observation (iv) and from the sketch of réduction of Q to n.f., it follows
that condition 5 is satisfied. Observation (vii) implies condition 2, and
observations (vi) and (vii) together imply condition 3. G

Proof of lemma 8: Let Lj (O^yg/c) be defined as in the next, i.e.
N^XXi . ..xfe.LoandLi+1bethen.f. of {Xxj+^L^M j+1{O^j<.k-l). We
prove the lemma by induction on the index j .

First step: when 7 = 0 the principal redex is NMt . . . Mk and the lemma
obviously holds.

Inductive step: Suppose that the lemma holds for j = r, i.e.
Xxr+1 . , . xk.LrejV'a, J% and # (kxr + 1 .. . xk.Lr) = k — r. Then we have
^x r + 2 .. . xk .L r + 1 e J^()1(byremark2),eJ^0(bycondition 1 ofproperty l)and
# (kxr + 2 . . . xk.Lr+i) = k-r-l since Xxr + 1 ... xk.Lr + 1e a implies that
its head is free. Q
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Proof of lemma 9: We prove this lemma by induction on the index j .

First step: When j = 0 the principal redex is NM x . . . Mk and the lemma
obviously holds.

Inductive step: Suppose that the lemma holds for j = r, i. e. in Lr there are at
mos t a x funct ional occurrences of x x inside a group f o r r + l ^ / ^ / c . Condition 2
of property 1 assures us that Lr + x satisfies this lemma, since x x for r + 2 ̂  / S k are
œ-replaceable variables in Xxr+1 ... xk.Lr. •

Proof of lemma 12: Let N~Xx.N. If we erase the root of the tree

representing N, we obtain a förest of a given nùmber of trees, say p. Let

Zx, . . . , Z p be the n.f.s. represented by these trees. Clearly Zlt . .., Z p are

monadic, levelled and their levels are less than the level of N. The primary n.f.s. of

the application NM are the ni.s. 2 1 of (Xx. Z ;) M (1 ̂  iSp)- Then let us consider

the application (Xx.Z t)M for an arbitrary value of i. First of all, we notice that

Xx.Zi belongs to Jf'^ (see remark 1). Then also Zt belongs to Ji'm (see

remark 2). Moreover N levelled implies that x occurs in Z t only at level 0. Then

Xx.Z i satisfies all hypotheses done in the proof of property 1, and so Z £ has the

same level as Zt (condition 1) and it is monadic (condition 3) and levelled

(condition 4). p

Proof of lemma 13: First-we prove the disequalities where ^ holds.

Let N=Xx.N. As observed in the proof of lemma 12, each redex (Xx.Z) M,

whose n.f. Z is a primary n i . of NM, satisfies the hypotheses of property 1. By
condition 5 the labels of non-terminal nodes of Z and Z coincide, and
so \x{{) = \if)^\if) for l ^ ï ^ / . Again by condition 5, Z is obtained from Z by
replacing each label T of a terminal node by the n i . of {Xx.T)M. Since
Xx.Z e ^ then, by remark 1, Xx. Te Jfa. The application (Xx. T) M satisfies
all hypotheses of lemma 6 and therefore this lemma maximizes the increaing of
variable number. In fact, since 'm Xx.Z there are most n{N). cp (/v) occurrences of i-
bound variables (Ogz^/—1) at level 0, in Z there will be a moste
n{N) .q>{P .[p{M)]^' occurrences of these variables at level 0. Moreover by
condition 2 of property 1 the occurrence number of ca-replaceable variables
inside a group cannot increase, and so we obtain niZ)^n{N) .[p{M)]9t and

To prove the disequalities where = holds, it is sufficient to choose
N~U{1; l; n; fiN)l <PW} as defined in the proof of theorem 4. •
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