
RAIRO. INFORMATIQUE THÉORIQUE

HERMANN K.-G. WALTER

JOANNIS KEKLIKOGLOU

WERNER KERN
The behaviour of parsing time under
grammar morphisms
RAIRO. Informatique théorique, tome 12, no 2 (1978), p. 83-97
<http://www.numdam.org/item?id=ITA_1978__12_2_83_0>

© AFCET, 1978, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1978__12_2_83_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(vol. 12, n° 2, 1978, p. 83 à 97)

THE BËHAVIOUR OF PARSING TIME UNDER
GRAMMAR MORPHISMS (*)

by Hermann K.-G. WALTER (1) Joannis KEKLIKOGLOU (1)

and Werner KERN (*)

Communicated by J. BERSTEL

Abstract. — We show that expanding transformations appîied to context-free grammars
preserve parsing time {and space) in order of magnitude*

0. INTRODUCTION

Many problems related to grammars, languages, syntax analysis, etc. are
solved with the help of certain transformations of grammars (for example:
normal forms).

A great part of these transformations can be interpreted in such a way,
that they give rise to grammar morphisms with certain properties, especially
the property of preserving the generated language (Hotz [7, 8], Benson [2]).

With respect to context-free grammars grammar morphisms are one-state-
tree-transductions.

The aim of this paper is to discuss in which way the parsing time is carried
over if a grammar morphism is applied.

E. Bertsch [3] has shown, that parsing time is preserved applying strictly
length-preserving morphisms to context-free grammars. We generalize this
resuit to a class of grammar morphisms which is much more greater.

As a conséquence we'll get the resuit that related context-free grammars (in
the sensé of Hotz [7, 8]) have (asymptotically) the same parsing time.

1. GRAMMAR MORPHISMS

We use syntactical catégories (X-categories) as a framework for our défini-
tional apparatus (G. Hotz [6], D. Benson [1]). If G = (Z, ƒ, P, a) is a grammar

(*) Reçu décembre 1977.
(*) Institut fur Theoretische Informatik, Fachbereich Informatik, Technische Hochschule

Darmstadt, D-6100 Darmstadt

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. 12, n° 2, 1978

2

84 H. K.-G. WÀLTER, J. KEKXIKOGLOU, W. KERN

with terminal alphabet E, intermediate alphabet ƒ, productionsystem P and
startsymbol a, we dénote by S (G) the associated syntactical category. A
rough description of S (G) is the following :

Objects of S (G) are words over S u / , morphisms are the classes of iness-
entially different dérivations. For convenience, we write ƒ e S (G) tö dénote
that ƒ is a dérivation (class). If ƒ e S (G), the functions d (domain) and c
(codomain) assign to ƒ the word w (= d(f)) to which ƒ is applied and the
word w' (= c{f)) which results by applying/.

Each / e S (G) has a definite length | | / | | . The dérivations ƒ with | | / | | = 0
are the identities of S (G), which we identify with the corresponding objects.

S (G) is structured by two opérations "<>*' and " x ", where "o" dénotes the
concaténation and " x " the parallel composition of dérivations. It is well-
known that in the context-free case classes of dérivations can be identified
with so called dérivation trees.

The most interesting set of dérivation is

then the generated language is given by

= c(D(G)).

All details about syntactical catégories can be found in Hotz [6],
D. Benson [1].

In this paper we only consider context-free grammars, though this restriction
is not necessary in any case.

DÉFINITION 1.1: Consider two grammars

G ; = (S 1 S IU Pl9 a,), G2 = ÇE2, I2, P2, a2).

A (grammar) morphism cp from G1 to G2 (cp : Gj —> G2) is a pair q> = (q)A, (pp),
where :

is a monoidhomomorphism and (pp : Px —> S (G2) is a mapping, such that the
following conditions hold:

(1) For ail r (= / 7 - » ?) 6 ? 1 :

<PA (P) = ^ (<PP W) and q>A («) = c (cpP (r)),

(2) <PA Oi) = C72)

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSINO TIME UNDER GRAMMAR MORPfflSMS 85

(3) q^ (A) <= I29

(4) «PxP^SSÏ.

REMARK: Since it is not necessary to distinguish q>A and cpp by subsèripts
we shall omit these subscripts from now on. It can be shown, that'we'can
extend cp to a syntactical functor cp : S (Gx) —• S (G2) in a unique wàyj'Using
this extension we get cp (D (GJ) ç D (G2) and therefore <p (fl (GJ) ç £ (G2).

One can single out various classes of morphisms. An overview of all these
classes is given in Walter [10]. We repeat those, which are necessary td'dérive
our results. Again, some of our results are true for more gênerai classes of
morphisms.

Consider cp : Gx —• G2. cp is called internai if E t = E2 = E and cp (t) = t
for t e E. cp is called closed if (p (D (Gi)) = D (G2). A closed internai morphism
is called a transformation. If (p is a transformation, then £ (Gx) = fi (G2) holds,
i. e. the language is preserved. A morphism cp is expanding if [[cp (r) || ^ 1
for all r e Px ; if [| cp (r) | | = 1 for all r E PU we call cp a ƒ#£ morphism. A
fine transformation is called a réduction. Reynolds covers (Benson p] , Gray-
Harrison [5]) are réductions. Furthermore we get réductions by embedding
the theory of grammars as the généralisation of réductions of finite automata
(G. Hotz [8]). A second class of transformations is given by well-known
normal-form theorems like the binary form of a context-free grammar.
Rougbly, such normal-form-theorems include constructions in which any
production is simuiated by a certain dérivation of the normal-form.

We want to formalize this property.

If G = (S, /, P, o) is a grammar, then G' ~ (S', / ' , P', a') is a subgr'ammar
of G (G' e G) if S' £ £ , / ' £ ƒ, P ' s P, a' = a.

Set-theoretic opérations transfer to subgrammars in a natural way.

Let G be a grammar and M ç S (G) . We dénote by < M > the smaliest
subgrammar of G with M ç S « M » . If M = {ƒ} we write < M > = < ƒ >.

Consider an expanding transformation cp : Gx —> G2. We call cp a simulation
if cp opérâtes identically on Ix and bijective between D (G^) and D (G2) and
if the foliowing holds :

(i) < 9 (r) > n < cp (r') > s (E, ïl9 0, ax) for ail r, r' G P X with r * r';

(îi) for any r ePx there exists exactly one

röeP(<cp(r)>) with ^ (O e / i -

We want to show, that we can restrict ourselves to simulations and réductions
if we are discussing transformations.

vol. 12, n° 2, 1978

86 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

THEORJEM 1 : If 9 : Gx —» G2 is an expanding transformation, then there is a
factorisation cp = (p2 ° 9i suc^ ^hat <p1 is a simulation and (p2 w a réduction.

Proof: Part 1; "Construction of <J3, cpt ; Gt -> G3 and <p2 • G3 —• <?2".
Consider r e Px and a so called sequential représentation of <p (r)

(G. Hotz [6]):

<P (r) = (M, x r , x o l) o . . . o (u 1 x r l x r j (s ^ 1).

We want to construct a set P (r) of rules "simulating" r. Consider for any
1 ^ Ï S s:

ft = (tt{ x rt x üj) o . . . o (Ml x rj x ÜX)

and

We détermine inductively ff, Pt (r), It (r) and <pl5 <p2 with ƒ* — <pt (r),
p s (r) = /> (r) and ƒ, = q>2 (f*).

I f « e I u / 2 , ƒ e S (Or2) with d(f) = xwy, we say : M is unchanged under f
[relative to (JC, ;>)] iff f = êi x u x %i w i t n ^ fei) = x a n (i ^ fe) — yi otherwise
u is changed under f [relative to (x, y)~\.

Furthermore, if WE (Lu 72)*, then

w = y0Z>ly1 . . . ^mym with }?0, . . . , y m e l * ^ , . . . , £me / 2 .

This décomposition is called I-decomposition of w.

Initial step: Consider the /-décomposition of c(rt) — y0 ^ . . . £>mym.

Let d (r) = ^ with <p (£) = rf (r J . Now create to any Çx which is changed

under / j relative to (wx ^0 §1 • • • A-i» A ^+1 • • -̂m üi) a n e w letter Çx (1, r)
(1 ^ X. S w). If a Çx is unchanged it corresponds to an unique ^ in c (r).

Define

S . _ J ^ (l 5 r)9 if x̂ is changed,
1 ^*» otherwise.

Construct:

h(r) = {^(1, r) | ^ is changed under A},

A* = Ml X(Ç

Induction step: Suppose ƒ f_1? Ii.l (r), P ^ j (r) are constructed for i > L

Consider utd(r^ vt and u{ c (r f) t?j. Then c (fjLt) = u^v with Ç e / ^ ! (r),

q>2 (5) = wj, cp2 (5) = t?i and <p2 QQ = d(rt).

R.A.LR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHtSMS 8 7

Let c (/*;) — y0 T|x . . . ti„ yn be the /-décomposition. Again, create to those %
which are changed under ft relative (ŵ y0 r^ . . . j \ - i » yx T|x+1 . . . T|rt j>rt D() a
new letter % (i, r). An unchanged T|x corresponds to an unique nf in c (r).
Dénote by

- f"T|x(i, r), if % is changed under ft,
1 Tl*» otherwise

and r, = E —• Vo rji . . . Tl„ V«-

/f(r) = /i-i(r)u{iix(i , r)|T|x is changed under

By this construction we get for each r e P j a production set P(r) : = i*s (r),
an alphabet / (r) : = ^ (r) and a dérivation ƒ (p) : = ƒ*.

Now define G3 and (Pi by:

(1) G 3 : = (I , / 1 u (J /(r)s IJ ƒ>(/•), at).

Part 2: "Çj is a simulation and q>2 is a réduction".

Obviously, for all r, r' e Pi :

P(r)nP(r')*0 => /& = /*">

holds. Using this fact it is easy to see that <pj is a simulation.

On the other hand q> = <p2 ° 9i- Since 9 is surjective on Z) (Gi), <p2 must be
surjective too. But this implies that <p2

 i s a réduction.

REMARK: The construction given above can be used to décide the property
"closed" for expanding internai cp : G1 —» G2. The algorithm works as follows:

Stage 1: Perform the factorisation <p = <p2 ° 91» where <Pi is a simulation
and (p2 is length-preserving, i. e. <p2 (P J ç P 2 .

Stage 2: Décide with Schnorr's algorithm [9], whether or not cp2 is a réduc-
tion. If the answer is "yes" then cp is closed, otherwise 9 is not closed.

2. PARSING TIME AND INVERSE TRANSFORMATIONS

In this section we want to dérive the main resuit. Consider a grammar
Gt = (£, /, P9 a). As analysers we use Turing machines which — faced with

vol. 12, n° 2, 1978

88 H. K.-G. WALTER, J. KEKUKOGLOU, W. KERN

w e £*,— produce a dérivation whenever it is possible and a failure-message
if nots that means if w £ 2 (G).

We indicate in which form the output is performed. We assign to any
dérivation ƒ a représentation ƒ which is in its essence the preorder représentation
of the corresponding dérivation tree, more formally:

Consider to each % e I a pair of brackets [,].
% ç

Let/e S (G):

« | | / | | = < > = > ƒ - f i : / - * ;

(n)

(iii) \\f\\ >l=>f=(uxrxv)ofi; with

fx=u'd(r)v'.
Definç

REMARK 1 : It is easy to see that ƒ is well-defined.

REMARK 2: As usual we can define the bracketing depth bd(f).
Now, our analyser — faced with w — should produce ƒ with d(f) = a and

c (ƒ) = w if such an ƒ exists, otherwise the relation w $ 2 {G) should be
indicated by producing a special signal.

Given such an analyser $lG, we can define the time function T^G {W) as
usuaî. Note that always

if ƒ is the output to the input w.

TjffiOREM 2 : If cp : G1 —> G2 is an expanding transformation and 9tG2 is an
analyser such that

where F : Z+ —̂ Z + is a function, then there is a constant c and an analyser
$ïGl such that

Proof: By theorem 1 we can factorize (p = q>2 ° 9i with cp2 a réduction and (pt

a simulation. E. Bertsch has shown that the resuit is true for réductions [3],
Thus the theorem follows if we can show the resuit under the additional
assumption that (p is a simulation.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPfflSMS 89

To prove tbis we first show:
Consider an expanding morpbism (p : Gx —» G2, which opérâtes identically

on Iv Suppose, for every rePx there exists exactly one ra e / »« (p (r) »
with d{r^elx, Define the homomorphism h by

h(x) = {a' tf ^e{[']Kei2-/l},
(x, otherwise.

Then for any f e S (Gx) with d(f) e Ix :

(•) /Ï((P(7)) = / holds.
Proof by induction on | | / | | :

«II ƒ 11 = 1" then ƒ = reP 1 .

We show the assertion by induction on bd (<p (r)) :

"bd (<p(r)) = 1" then cp

and therefore cp (r) = r (cp opérâtes identically on S u /j !), which proves
the assertion,

Consider the case "bd(y(r)) = ^ > 1":
First observe r = [c (r)] .

Since d (q> (r)) = d (r) and c (9 (r)) = c (r) we can décompose 9 (r) = g
in the following way

where wl5 . . . , wft e (^ u X)* and

and tïj contains no word of the form [«],

u e ^ u S) * for j = 0, . . . , fc.

Now, define G2 and cp' as foliows:
Eliminate the rules ££ —> M(by substituting ^ by wf in all predecessor rules

of P « cp (r) » . We obtain G2, g changes into a dérivation g' e S (G2) with

g' = t?ow1z;1 . . . ukvk and M (g ') ^ ^ - 1 .
Define, q>' : Gt -> G2 by

J g' if r' = r'
fr') otherwise,

again <p' fulfills the presumptions, as before define h' for Gf
2.

vol. 12, nB 2, 1978

9 0 H. K>G. WALTER, J. KEKXIKOGLOU, W. KERN

It is seen immediately that:
(i) g' = v0u1v1u2 ... vk_t uk vk;

(ii) bdQ') < bd(g);
(iii) h'Q') = h(g) holds.
By the induction hypothesis we get h (g) = h' (g') = r.
Induction step:

i l / l l - ' - i - Il/Il-*"-
Observe that

f = (uxrxv)of0 with rePl9 foeSiGi).

Then/is obtained from/0 by substituting d (r) by r using the décomposition
f0 = Wt d(r) w2 with appropriate wl9 w2.

Applying q> to ƒ we get

<P(/) = (M x <p(r) x v)o (p(/0).

By our assumption we get

and (p (/0) = M?irf(r)u;2 with appropriate u^, u?j. By this cp (ƒ) is obtained
from <p (/0) by substituting d(r) by 9 (r).

Application of h yields:

h (tt?i d (r) u?2) — wtd (r) u>2 = / 0 (induction hypothesis)
and

But then

w1 — wl = h(w't) and w2 = w2 = h(w2)9

we get

= 7
and the proof of (^) is complete.

Now, we are able to design the analyser 9IGl.
Consider an input w e E*.
Stage 1: Using 9IG2 produce ƒ with */ (ƒ) = a2 and c (ƒ) = w if

M? e fi (G2) = fi (GJ. Otherwise 5IG2 indicates that w $ fi (G2), and 9ïGi gives
a message that w $ fi (Gj).

2; Compute A (ƒ).

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 9Î

By the above assertion, we get

[9 " 1 (ƒ) exists and is a dérivation of w in

This proves that the algorithm $IGl is correct.

To perform stage 1 we need time

To perform stage 2 we need time

T>*c'.\f\
with a constant c'.

Since 2lG2 has to produce the output ƒ we get

\f\£TVa2(w).
Combining both we get

TVo(w) ^ T„Oi(w)+c'. TaOj(M>) é (

But this proves our result.

3. PARSING HME AND TRANSFORMATIONS

Now we will show a converse result:
If <p : Gt —• G2 is a expanding transformation, then from the analyzability

of £ (Gt) in time ^ / (| t ü |) it results that 2(G2)is analyzable in time
^ c./(|u?|) . First we show this for réductions and then for simulations.
Then by theorem 1 the result also holds for expanding transformations.

PROPOSITION: Let cp : Gt —• G2 be a réduction, %Gi an analyser for fi (Gt>
with

where F : Z + —• Z+ is a function, then there is a constant c and an analyzer
« G 2 for fi (G2) such that

Proof: We remark that w e & (Gt) o (p (w) = u> e £ (G2). Let be ƒ e D

with d(f) = &! and c (ƒ) = u? and ƒ defined as in 2.

vol. 12, n° 2, 1978

92 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

Consider the homomorphism g defined by

cp(x) if
[ir r

II X — I ,

if X =] ,

Then it is easy to see that

<••)
Now we construct the analyser 2tG2 in the same way as in theorem % with the
homomorphism g instead of h. Using (^nfc) instead of (je) the assertion
follows by the same argument.

To prove a similar resuit for q> being a simulation, we require^that $IGi

analysing w e £ (G)̂ gives an output/, which is again a parenthesis-represen.-
tation of a dérivation ƒ but contains some more information about the used
rules :

Consider a grammar G and to each Ce/and each r e ? a pair of brackets

Let / e S (G) then:

© II/II = 0 :

f =

(iii)

<v, ƒ = « [c(r)

:v) ofii with

define

For abbreviation we set
f = u'rv'.

and

p

p

i U

R.A.I.R.O. Informatique théonque/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 93

Now we assume, that an analyzer $tGi produces this parenthesis-represen-
tation of a dérivation if possible.

The rôle of the homomorphisms h respective g in the proofs of theorem 2

and 3 is played by a pushdown-transducer which transduces ƒ into q> (ƒ) for
ƒ e D (G^). We use the conception of a pdt as given in [4].

THEOREM 3 : Let <p : G^ —• G2 be a simulation, $tGy an analyzer with

\), toeï*,

where F : Z + —> Z + is a function, then there exists an analyzer 3IG2 and a
constant c with

Proof: First we construct a one-state-/tt#/> which transduces ƒ into q> (ƒ) for
an arbitrary ƒ e D (Gx):

5P = {5}; ^ = 0 ^ ^ $, fco=$3 5 0 =5 and 8,

defined as foliows:
Initialisation of the pushdown store:

r Pi

x= [e[

output of an symbol in c(f):

Sj,(x, s9y) = (s, n>y\

output of symbols of simulation rules:

u

storing the simulated rule cp (r) instead of d (r) of the top at the pushdown

store, producing the first parenthesis x' of (p (r) as output:
r Pi

öpO, s, y) = (s, y, x'), x = [e [, y = d(r),
d(r) Ji

Let Fp : Ip —> 6>J be the realized transduction, then

(• • •) feDiGJ =* Fp(/) = (?(ƒ) holds.

vol. 12, n" 2, 1978

9 4 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

We give a short idea how to prove this: (induction on s = || ƒ ||):

(i) " | | ƒ || = 1" then ƒ = r holds and we can verify:

[s, [c(r) J , $, • 11-(s, c(r)] , Y$» [• I h- . . . h-(s, •> $, y(r)\
\ d(r) d(r)) P \ d(r) d (r) / P P

analoguous we get

(5, r, d(r)v, D) i- . . . h-(5, D, P, ç(r)),

which we need in (ii).

Let be | | / | | =s > 1 t h e n / = (Mxrx»)o/ l5 H^ || = s - l .

We can décompose ƒ, <p (ƒ), flt cp (/x) as follows:

ƒ = !!'?!>',

/x=u'd(r) t ; ' ,

/? transduces u' d (r) v' into u" d (r) v" by induction hypothesis, then one can
show using the construction of p:

(s, u'd(r)v', I, D) H . . . Ks , d(r)v\ d(r)y$9 u")
p p

[// (r) is at the top of the pushdown store because it is the next output symbol] :

Then also

h- (5, i>\ y$f u"d(r))\- ... H(5, D, $, tt'
p p p

(s, u' ru', $, D) H . . . I- (s, rv'> d{r)y%9 u") holds.
p p

Now we can insert the computation on r using part (i) :

(5, rv\ d(r)y$, u")\- . . . H (5, I/,Y*, U > " W)
P p

and again using the induction hypothesis continuing the computation like

that of f%:

(
p p

which proves the assertion.

Now we construct the analyzer $IG2 similar to that of theorems 2 and 3 :

Given an input w e X*.

R.A.LR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 95

Stage 1; Using SIGl produce ƒ, ƒ e D (G^), with

d(f) = au c(f) = w if

or a failure message if w? $ £ ((?2).

Stage 2: Compute Fp (ƒ) .

Again the assertion follows with the same argument as in the proofs before,

if one has in mind that TF (ƒ) ^ | <p (ƒ) | (at each step/? produces one output

symbol!) and | <p (ƒ) | ^ c ' . | / | with c' = 2max { || cp (r) || \rePt}.

REMARK 1 : If Gx and G2 are linear grammars we can perform the transduction

f—* <P (ƒ) by an homomorphism.
Proof: All rules of (7l5 G2 are of the form

u,
or

^•^u? , w e l * .

Consider r =* (4 —• M T| V), r| e / t u { • } then

(p(r) = (M 1 . . . « s - 1 x r s x i ; J _ 1 . . . y 1) ° . . . < ' (M 1

with

a n d

It follows immediately that

^ = '1 f2

Let be

U2 • • • ["s1! vs] vs-1 • • • ̂ i] holds.

and define a homomorphism ƒ- as follows:

ƒ,(*)'

D

u(r)

v(r)

if
if

if

xellt

r

X = f É
d(r)

r

P i

= rlx

if x =

vol. 12, n° 2, 1978

96 n. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

Then it is easy to see, that for f e D (Gt) :

REMARK 2: With remark 1 we have seen, that the transduction of dérivations
in Gx into dérivations in G2 can be done by a device which is less powerful
than the device which is used for analyzing. That means: a deterministic pdt
for context-free languages, which require a non-deterministic/?^a for analyzing,
and an finite state-transducer (to perform the homomorphisms) in the case
of linear grammars.

4. CONCLUDING REMARKS

We give some comments to our results.

REMARK 1 : As indicated in the introduction expanding transformations are
induced by certain wellknown normal-form theorems. The binary form of
context-free grammars and the élimination of e-rules in a context-free grammar
are of this type.

Therefore we can conclude (with some minor addition to our proofs in the
latter case) that parsing time remains unchanged under both constructions.

REMARK 2: We can deal with parsing space too. If the space définition
includes the output tape all the constructions, both Bertsch's and ours, preserve
space. (For theorem 3 one should have in mind that the maximal length of the
pushdown store of the pdt p does not exceed the output length.) Therefore
parsing space remains unchanged in order of magnitude under inverse
expanding transformations and expanding transformations.

REFERENCES

1. D. B. BENSON, The Basic Algebmic Structures in Catégories of Dérivations,
Inform. and Control, Vol. 28, 1975, pp. 1-29.

2. D. B. BENSON, Some Préservation Properties of Normal Form Grammars,
S.I.A.M. J. Comput., Vol. 6, No. 2, June 1977, pp. 381-402.

3. E. BERTSCH, An Observation on Relative Parsing Time, J.A.C.M., Vol. 22, No. 4,
October 1975, pp. 493-498.

4. S. GINSBURG, The Mathematica! Theory of Contextfree Languages, 1966,
McGraw-Hill, New York.

5. J. N. GRAY and M. A. HARRISON, On the Covering and Réduction Problems
for Contextfree Grammars, J.A.C.M., Vol. 19, 1972, pp. 675-698.

6. G. HOTZ, Eindeutigheit und Mehrdeutigheit formaler Sprachen, E.I.K., Vol. 2,
1966, pp. 235-246.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRÀMMAR MORPfflSMS 9 7

7. G. HOTZ, Homomorphie und Aquivalenz formaler Sprachen, 3. Kolloquium über
Automatentheorie, W. HÂNDLER, E. PESCHL, H. UNSER, Eds., Birkhàuser-Verlag,
1967.

8. G. HOTZ, Übertragung automatentheoretischer Satze auf Chomsky-Sprachen*
Computing, Vol. 4, 1969, pp. 30-42.

9. C.-P. SCHNORR, Vier Entscheidbarkeitsprobleme für kontextsensitive Sprachen^
Computing, Vol. 3, 1968, pp. 311-317.

10. H. WALTER, Die Verwandtschaft kontextfreier Grammatiken (to appear).

vol. 12, n° 2, 1978

