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R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(vol. 12, n° 2, 1978, p. 83 à 97)

THE BËHAVIOUR OF PARSING TIME UNDER
GRAMMAR MORPHISMS (*)

by Hermann K.-G. WALTER (1) Joannis KEKLIKOGLOU (1)

and Werner KERN (*)

Communicated by J. BERSTEL

Abstract. — We show that expanding transformations appîied to context-free grammars
preserve parsing time {and space) in order of magnitude*

0. INTRODUCTION

Many problems related to grammars, languages, syntax analysis, etc. are
solved with the help of certain transformations of grammars (for example:
normal forms).

A great part of these transformations can be interpreted in such a way,
that they give rise to grammar morphisms with certain properties, especially
the property of preserving the generated language (Hotz [7, 8], Benson [2]).

With respect to context-free grammars grammar morphisms are one-state-
tree-transductions.

The aim of this paper is to discuss in which way the parsing time is carried
over if a grammar morphism is applied.

E. Bertsch [3] has shown, that parsing time is preserved applying strictly
length-preserving morphisms to context-free grammars. We generalize this
resuit to a class of grammar morphisms which is much more greater.

As a conséquence we'll get the resuit that related context-free grammars (in
the sensé of Hotz [7, 8]) have (asymptotically) the same parsing time.

1. GRAMMAR MORPHISMS

We use syntactical catégories (X-categories) as a framework for our défini-
tional apparatus (G. Hotz [6], D. Benson [1]). If G = (Z, ƒ, P, a) is a grammar

(*) Reçu décembre 1977.
(*) Institut fur Theoretische Informatik, Fachbereich Informatik, Technische Hochschule
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84 H. K.-G. WÀLTER, J. KEKXIKOGLOU, W. KERN

with terminal alphabet E, intermediate alphabet ƒ, productionsystem P and
startsymbol a, we dénote by S (G) the associated syntactical category. A
rough description of S (G) is the following :

Objects of S (G) are words over S u / , morphisms are the classes of iness-
entially different dérivations. For convenience, we write ƒ e S (G) tö dénote
that ƒ is a dérivation (class). If ƒ e S (G), the functions d (domain) and c
(codomain) assign to ƒ the word w (= d(f)) to which ƒ is applied and the
word w' (= c{f)) which results by applying/.

Each / e S ( G ) has a definite length | | / | | . The dérivations ƒ with | | / | | = 0
are the identities of S (G), which we identify with the corresponding objects.

S (G) is structured by two opérations "<>*' and " x ", where "o" dénotes the
concaténation and " x " the parallel composition of dérivations. It is well-
known that in the context-free case classes of dérivations can be identified
with so called dérivation trees.

The most interesting set of dérivation is

then the generated language is given by

= c(D(G)).

All details about syntactical catégories can be found in Hotz [6],
D. Benson [1].

In this paper we only consider context-free grammars, though this restriction
is not necessary in any case.

DÉFINITION 1.1: Consider two grammars

G ; = (S 1 S IU Pl9 a,), G2 = ÇE2, I2, P2, a2).

A (grammar) morphism cp from G1 to G2 (cp : Gj —> G2) is a pair q> = (q)A, (pp),
where :

is a monoidhomomorphism and (pp : Px —> S (G2) is a mapping, such that the
following conditions hold:

(1) For ail r ( = / 7 - » ? ) 6 ? 1 :

<PA (P) = ^ (<PP W) and q>A («) = c (cpP (r)),

(2) <PA Oi) = C72)

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



THE BEHAVIOUR OF PARSINO TIME UNDER GRAMMAR MORPfflSMS 85

(3) q^ (A) <= I29

(4) «PxP^SSÏ.

REMARK: Since it is not necessary to distinguish q>A and cpp by subsèripts
we shall omit these subscripts from now on. It can be shown, that'we'can
extend cp to a syntactical functor cp : S (Gx) —• S (G2) in a unique wàyj'Using
this extension we get cp (D (GJ) ç D (G2) and therefore <p (fl (GJ) ç £ (G2).

One can single out various classes of morphisms. An overview of all these
classes is given in Walter [10]. We repeat those, which are necessary td'dérive
our results. Again, some of our results are true for more gênerai classes of
morphisms.

Consider cp : Gx —• G2. cp is called internai if E t = E2 = E and cp (t) = t
for t e E. cp is called closed if (p (D (Gi)) = D (G2). A closed internai morphism
is called a transformation. If (p is a transformation, then £ (Gx) = fi (G2) holds,
i. e. the language is preserved. A morphism cp is expanding if [[ cp (r ) || ^ 1
for all r e Px ; if [| cp (r ) | | = 1 for all r E PU we call cp a ƒ#£ morphism. A
fine transformation is called a réduction. Reynolds covers (Benson p ] , Gray-
Harrison [5]) are réductions. Furthermore we get réductions by embedding
the theory of grammars as the généralisation of réductions of finite automata
(G. Hotz [8]). A second class of transformations is given by well-known
normal-form theorems like the binary form of a context-free grammar.
Rougbly, such normal-form-theorems include constructions in which any
production is simuiated by a certain dérivation of the normal-form.

We want to formalize this property.

If G = (S, /, P, o) is a grammar, then G' ~ (S', / ' , P', a') is a subgr'ammar
of G (G' e G) if S' £ £ , / ' £ ƒ, P ' s P, a' = a.

Set-theoretic opérations transfer to subgrammars in a natural way.

Let G be a grammar and M ç S ( G ) . We dénote by < M > the smaliest
subgrammar of G with M ç S « M » . If M = {ƒ} we write < M > = < ƒ >.

Consider an expanding transformation cp : Gx —> G2. We call cp a simulation
if cp opérâtes identically on Ix and bijective between D (G^) and D (G2) and
if the foliowing holds :

(i) < 9 (r ) > n < cp (r') > s (E, ïl9 0, ax) for ail r, r' G P X with r * r';

(îi) for any r ePx there exists exactly one

röeP(<cp(r)>) with ^ ( O e / i -

We want to show, that we can restrict ourselves to simulations and réductions
if we are discussing transformations.

vol. 12, n° 2, 1978



86 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

THEORJEM 1 : If 9 : Gx —» G2 is an expanding transformation, then there is a
factorisation cp = (p2 ° 9i suc^ ^hat <p1 is a simulation and (p2 w a réduction.

Proof: Part 1; "Construction of <J3, cpt ; Gt -> G3 and <p2 • G3 —• <?2".
Consider r e Px and a so called sequential représentation of <p (r)

(G. Hotz [6]):

<P (r) = (M, x r , x o l ) o . . . o ( u 1 x r l x r j (s ^ 1).

We want to construct a set P (r) of rules "simulating" r. Consider for any
1 ^ Ï S s:

ft = (tt{ x rt x üj) o . . . o (Ml x rj x ÜX)

and

We détermine inductively ff, Pt (r), It (r) and <pl5 <p2 with ƒ* — <pt (r),
p s ( r) = /> (r) and ƒ, = q>2 (f*).

I f « e I u / 2 , ƒ e S (Or2) with d(f) = xwy, we say : M is unchanged under f
[relative to (JC, ;>)] iff f = êi x u x %i w i t n ^ fei) = x a n ( i ^ fe) — yi otherwise
u is changed under f [relative to (x, y)~\.

Furthermore, if WE (Lu 72)*, then

w = y0Z>ly1 . . . ^mym with }?0, . . . , y m e l * ^ , . . . , £me / 2 .

This décomposition is called I-decomposition of w.

Initial step: Consider the /-décomposition of c(rt) — y0 ^ . . . £>mym.

Let d (r ) = ^ with <p (£) = rf (r J . Now create to any Çx which is changed

under / j relative to (wx ^0 §1 • • • A-i» A ^+1 • • -̂m üi) a n e w letter Çx (1, r)
(1 ^ X. S w). If a Çx is unchanged it corresponds to an unique ^ in c (r).

Define

S . _ J ^ ( l 5 r)9 if x̂ is changed,
1 ^*» otherwise.

Construct:

h(r) = {^(1, r ) | ^ is changed under A},

A* = Ml X(Ç

Induction step: Suppose ƒ f_1? Ii.l (r), P ^ j (r) are constructed for i > L

Consider utd(r^ vt and u{ c (r f) t?j. Then c (fjLt) = u^v with Ç e / ^ ! (r),

q>2 (5) = wj, cp2 (5) = t?i and <p2 QQ = d(rt).

R.A.LR.O. Informatique théorique/Theoretical Computer Science



THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHtSMS 8 7

Let c (/*;) — y0 T|x . . . ti„ yn be the /-décomposition. Again, create to those %
which are changed under ft relative (ŵ  y0 r^ . . . j \ - i » yx T|x+1 . . . T|rt j>rt D() a
new letter % (i, r). An unchanged T|x corresponds to an unique nf in c (r).
Dénote by

- f"T|x(i, r), if % is changed under ft,
1 Tl*» otherwise

and r, = E —• Vo rji . . . Tl„ V«-

/f(r) = /i-i(r)u{iix(i , r)|T|x is changed under

By this construction we get for each r e P j a production set P(r) : = i*s (r),
an alphabet / ( r ) : = ^ ( r ) and a dérivation ƒ ( p ) : = ƒ*.

Now define G3 and (Pi by:

(1) G 3 : = ( I , / 1 u (J /(r)s IJ ƒ>(/•), at).

Part 2: "Çj is a simulation and q>2 is a réduction".

Obviously, for all r, r' e Pi :

P(r)nP(r')*0 => /& = /*">

holds. Using this fact it is easy to see that <pj is a simulation.

On the other hand q> = <p2 ° 9i- Since 9 is surjective on Z) (Gi), <p2 must be
surjective too. But this implies that <p2

 i s a réduction.

REMARK: The construction given above can be used to décide the property
"closed" for expanding internai cp : G1 —» G2. The algorithm works as follows:

Stage 1: Perform the factorisation <p = <p2 ° 91» where <Pi is a simulation
and (p2 is length-preserving, i. e. <p2 ( P J ç P 2 .

Stage 2: Décide with Schnorr's algorithm [9], whether or not cp2 is a réduc-
tion. If the answer is "yes" then cp is closed, otherwise 9 is not closed.

2. PARSING TIME AND INVERSE TRANSFORMATIONS

In this section we want to dérive the main resuit. Consider a grammar
Gt = (£, /, P9 a). As analysers we use Turing machines which — faced with

vol. 12, n° 2, 1978



88 H. K.-G. WALTER, J. KEKUKOGLOU, W. KERN

w e £*,— produce a dérivation whenever it is possible and a failure-message
if nots that means if w £ 2 (G).

We indicate in which form the output is performed. We assign to any
dérivation ƒ a représentation ƒ which is in its essence the preorder représentation
of the corresponding dérivation tree, more formally:

Consider to each % e I a pair of brackets [ , ].
% ç

Let/e S (G):

« | | / | | = < > = > ƒ - f i : / - * ;

(n)

(iii) \\f\\ >l=>f=(uxrxv)ofi; with

fx=u'd(r)v'.
Definç

REMARK 1 : It is easy to see that ƒ is well-defined.

REMARK 2: As usual we can define the bracketing depth bd(f).
Now, our analyser — faced with w — should produce ƒ with d(f) = a and

c ( ƒ ) = w if such an ƒ exists, otherwise the relation w $ 2 {G) should be
indicated by producing a special signal.

Given such an analyser $lG, we can define the time function T^G {W) as
usuaî. Note that always

if ƒ is the output to the input w.

TjffiOREM 2 : If cp : G1 —> G2 is an expanding transformation and 9tG2 is an
analyser such that

where F : Z+ —̂  Z + is a function, then there is a constant c and an analyser
$ïGl such that

Proof: By theorem 1 we can factorize (p = q>2 ° 9i with cp2 a réduction and (pt

a simulation. E. Bertsch has shown that the resuit is true for réductions [3],
Thus the theorem follows if we can show the resuit under the additional
assumption that (p is a simulation.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPfflSMS 89

To prove tbis we first show:
Consider an expanding morpbism (p : Gx —» G2, which opérâtes identically

on Iv Suppose, for every rePx there exists exactly one ra e / »« (p (r) »
with d{r^elx, Define the homomorphism h by

h(x) = {a' tf ^e{[']Kei2-/l},
( x, otherwise.

Then for any f e S (Gx) with d(f) e Ix :

( • ) /Ï((P(7)) = / holds.
Proof by induction on | | / | | :

«II ƒ 11 = 1" then ƒ = reP 1 .

We show the assertion by induction on bd (<p (r)) :

"bd (<p(r)) = 1" then cp

and therefore cp (r) = r (cp opérâtes identically on S u /j !), which proves
the assertion,

Consider the case "bd(y(r)) = ^ > 1":
First observe r = [ c (r) ] .

Since d (q> (r)) = d (r) and c (9 (r)) = c (r) we can décompose 9 (r) = g
in the following way

where wl5 . . . , wft e (^ u X)* and

and tïj contains no word of the form [«],

u e ^ u S ) * for j = 0, . . . , fc.

Now, define G2 and cp' as foliows:
Eliminate the rules ££ —> M( by substituting ^ by wf in all predecessor rules

of P « cp (r) » . We obtain G2, g changes into a dérivation g' e S (G2) with

g' = t?ow1z;1 . . . ukvk and M ( g ' ) ^ ^ - 1 .
Define, q>' : Gt -> G2 by

J g' if r' = r'
fr') otherwise,

again <p' fulfills the presumptions, as before define h' for Gf
2.

vol. 12, nB 2, 1978



9 0 H. K>G. WALTER, J. KEKXIKOGLOU, W. KERN

It is seen immediately that:
(i) g' = v0u1v1u2 ... vk_t uk vk;

(ii) bdQ') < bd(g);
(iii) h'Q') = h(g) holds.
By the induction hypothesis we get h (g) = h' (g') = r.
Induction step:

i l / l l - ' - i - Il/Il-*"-
Observe that

f = (uxrxv)of0 with rePl9 foeSiGi).

Then/is obtained from/0 by substituting d (r) by r using the décomposition
f0 = Wt d(r) w2 with appropriate wl9 w2.

Applying q> to ƒ we get

<P(/) = (M x <p(r) x v)o (p(/0).

By our assumption we get

and (p (/0) = M?irf(r)u;2 with appropriate u^, u?j. By this cp (ƒ) is obtained
from <p (/0) by substituting d(r) by 9 (r).

Application of h yields:

h (tt?i d (r) u?2) — wtd (r) u>2 = / 0 (induction hypothesis)
and

But then

w1 — wl = h(w't) and w2 = w2 = h(w2)9

we get

= 7
and the proof of (^) is complete.

Now, we are able to design the analyser 9IGl.
Consider an input w e E*.
Stage 1: Using 9IG2 produce ƒ with */ (ƒ) = a2 and c (ƒ) = w if

M? e fi (G2) = fi (GJ. Otherwise 5IG2 indicates that w $ fi (G2), and 9ïGi gives
a message that w $ fi (Gj).

2; Compute A ( ƒ ).

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 9Î

By the above assertion, we get

[ 9 " 1 (ƒ) exists and is a dérivation of w in

This proves that the algorithm $IGl is correct.

To perform stage 1 we need time

To perform stage 2 we need time

T>*c'.\f\
with a constant c'.

Since 2lG2 has to produce the output ƒ we get

\f\£TVa2(w).
Combining both we get

TVo(w) ^ T„Oi(w)+c'. TaOj(M>) é (

But this proves our result.

3. PARSING HME AND TRANSFORMATIONS

Now we will show a converse result:
If <p : Gt —• G2 is a expanding transformation, then from the analyzability

of £ (Gt) in time ^ / ( | t ü | ) it results that 2(G2)is analyzable in time
^ c./( |u?|) . First we show this for réductions and then for simulations.
Then by theorem 1 the result also holds for expanding transformations.

PROPOSITION: Let cp : Gt —• G2 be a réduction, %Gi an analyser for fi (Gt>
with

where F : Z + —• Z+ is a function, then there is a constant c and an analyzer
« G 2 for fi (G2) such that

Proof: We remark that w e & (Gt) o (p (w) = u> e £ (G2). Let be ƒ e D

with d(f) = &! and c (ƒ) = u? and ƒ defined as in 2.

vol. 12, n° 2, 1978



92 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

Consider the homomorphism g defined by

cp(x) if
[ ir r

II X — I ,

if X = ] ,

Then it is easy to see that

<•• )
Now we construct the analyser 2tG2 in the same way as in theorem % with the
homomorphism g instead of h. Using (^nfc) instead of (je) the assertion
follows by the same argument.

To prove a similar resuit for q> being a simulation, we require^that $IGi

analysing w e £ (G )̂ gives an output/, which is again a parenthesis-represen.-
tation of a dérivation ƒ but contains some more information about the used
rules :

Consider a grammar G and to each Ce/and each r e ? a pair of brackets

Let / e S (G) then:

© II/II = 0 :

f =

(iii)

<v, ƒ = « [ c(r)

:v) ofii with

define

For abbreviation we set
f = u'rv'.

and

p

p

i U

R.A.I.R.O. Informatique théonque/Theoretical Computer Science
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Now we assume, that an analyzer $tGi produces this parenthesis-represen-
tation of a dérivation if possible.

The rôle of the homomorphisms h respective g in the proofs of theorem 2

and 3 is played by a pushdown-transducer which transduces ƒ into q> (ƒ) for
ƒ e D (G^). We use the conception of a pdt as given in [4].

THEOREM 3 : Let <p : G^ —• G2 be a simulation, $tGy an analyzer with

\), toeï*,

where F : Z + —> Z + is a function, then there exists an analyzer 3IG2 and a
constant c with

Proof: First we construct a one-state-/tt#/> which transduces ƒ into q> (ƒ) for
an arbitrary ƒ e D (Gx):

5P = {5}; ^ = 0 ^ ^ $ , fco=$3 5 0 =5 and 8,

defined as foliows:
Initialisation of the pushdown store:

r Pi

x= [ e[

output of an symbol in c(f):

Sj,(x, s9y) = (s, n>y\

output of symbols of simulation rules:

u

storing the simulated rule cp (r) instead of d (r) of the top at the pushdown

store, producing the first parenthesis x' of (p (r) as output:
r Pi

öpO, s, y) = (s, y, x'), x = [ e [, y = d(r),
d(r) Ji

Let Fp : Ip —> 6>J be the realized transduction, then

( • • • ) feDiGJ =* Fp(/) = (?(ƒ) holds.

vol. 12, n" 2, 1978
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We give a short idea how to prove this: (induction on s = || ƒ ||):

(i) " | | ƒ || = 1" then ƒ = r holds and we can verify:

[s, [ c(r) J , $, • 11-( s, c(r) ] , Y$» [ • I h- . . . h-(s, •> $, y(r)\
\ d(r) d(r) ) P \ d(r) d (r) / P P

analoguous we get

(5, r, d(r)v, D) i- . . . h-(5, D, P, ç(r)),

which we need in (ii).

Let be | | / | | =s > 1 t h e n / = (Mxrx»)o/ l5 H^ || = s - l .

We can décompose ƒ, <p (ƒ), flt cp (/x) as follows:

ƒ = !!'?!>',

/x=u'd(r) t ; ' ,

/? transduces u' d (r) v' into u" d (r) v" by induction hypothesis, then one can
show using the construction of p:

(s, u'd(r)v', I, D) H . . . Ks , d(r)v\ d(r)y$9 u")
p p

[// (r) is at the top of the pushdown store because it is the next output symbol] :

Then also

h- (5, i>\ y$f u"d(r))\- ... H(5, D, $, tt'
p p p

(s, u' ru', $, D ) H . . . I- (s, rv'> d{r)y%9 u") holds.
p p

Now we can insert the computation on r using part (i) :

(5, rv\ d(r)y$, u")\- . . . H (5, I/,Y*, U > " W )
P p

and again using the induction hypothesis continuing the computation like

that of f%:

(
p p

which proves the assertion.

Now we construct the analyzer $IG2 similar to that of theorems 2 and 3 :

Given an input w e X*.

R.A.LR.O. Informatique théorique/Theoretical Computer Science



THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 95

Stage 1; Using SIGl produce ƒ, ƒ e D (G^), with

d(f) = au c(f) = w if

or a failure message if w? $ £ ((?2).

Stage 2: Compute Fp ( ƒ ) .

Again the assertion follows with the same argument as in the proofs before,

if one has in mind that TF (ƒ ) ^ | <p (ƒ ) | (at each step/? produces one output

symbol!) and | <p ( ƒ ) | ^ c ' . | / | with c' = 2max { || cp (r) || \rePt}.

REMARK 1 : If Gx and G2 are linear grammars we can perform the transduction

f—* <P ( ƒ ) by an homomorphism.
Proof: All rules of (7l5 G2 are of the form

u,
or

^•^u? , w e l * .

Consider r =* (4 —• M T| V), r| e / t u { • } then

(p(r) = ( M 1 . . . « s - 1 x r s x i ; J _ 1 . . . y 1 ) ° . . . < ' ( M 1

with

a n d

It follows immediately that

^ = '1 f2

Let be

U2 • • • [ "s1! vs ] vs-1 • • • ̂ i ] holds.

and define a homomorphism ƒ- as follows:

ƒ,(*)'

D

u(r)

v(r)

if
if

if

xellt

r

X = f É
d(r)

r

P i

= rlx

if x =

vol. 12, n° 2, 1978



96 n. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

Then it is easy to see, that for f e D (Gt) :

REMARK 2: With remark 1 we have seen, that the transduction of dérivations
in Gx into dérivations in G2 can be done by a device which is less powerful
than the device which is used for analyzing. That means: a deterministic pdt
for context-free languages, which require a non-deterministic/?^a for analyzing,
and an finite state-transducer (to perform the homomorphisms) in the case
of linear grammars.

4. CONCLUDING REMARKS

We give some comments to our results.

REMARK 1 : As indicated in the introduction expanding transformations are
induced by certain wellknown normal-form theorems. The binary form of
context-free grammars and the élimination of e-rules in a context-free grammar
are of this type.

Therefore we can conclude (with some minor addition to our proofs in the
latter case) that parsing time remains unchanged under both constructions.

REMARK 2: We can deal with parsing space too. If the space définition
includes the output tape all the constructions, both Bertsch's and ours, preserve
space. (For theorem 3 one should have in mind that the maximal length of the
pushdown store of the pdt p does not exceed the output length.) Therefore
parsing space remains unchanged in order of magnitude under inverse
expanding transformations and expanding transformations.
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