RAIRO. INFORMATIQUE THÉORIQUE

Hermann K.-G. Walter Joannis Keklikoglou Werner Kern
 The behaviour of parsing time under grammar morphisms

RAIRO. Informatique théorique, tome $12, \mathrm{n}^{\circ} 2$ (1978), p. 83-97
http://www.numdam.org/item?id=ITA_1978__12_2_83_0
© AFCET, 1978, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS (*)

by Hermann K.-G. Walter (${ }^{1}$) Joannis Keklikoglou (${ }^{1}$)
and Werner Kern (${ }^{1}$)

Communicated by J. Berstel

Abstract

We show that expanding transformations applied to context-free grammars preserve parsing time (and space) in order of magnitude.

0. INTRODUCTION

Many problems related to grammars, languages, syntax analysis, etc. are solved with the help of certain transformations of grammars (for example: normal forms).

A great part of these transformations can be interpreted in such a way, that they give rise to grammar morphisms with certain properties, especially the property of preserving the generated language (Hotz [7, 8], Benson [2]).

With respect to context-free grammars grammar morphisms are one-state-tree-transductions.

The aim of this paper is to discuss in which way the parsing time is carried over if a grammar morphism is applied.
E. Bertsch [3] has shown, that parsing time is preserved applying strictly length-preserving morphisms to context-free grammars. We generalize this result to a class of grammar morphisms which is much more greater.

As a consequence we'll get the result that related context-free grammars (in the sense of Hotz [7, 8]) have (asymptotically) the same parsing time.

1. GRAMMAR MORPHISMS

We use syntactical categories (X-categories) as a framework for our definitional apparatus (G. Hotz [6], D. Benson [1]). If $G=(\Sigma, I, P, \sigma)$ is a grammar
(*) Reçu décembre 1977.
(1) Institut für Theoretische Informatik, Fachbereich Informatik, Technische Hochschule Darmstadt, D-6100 Darmstadt
with terminal alphabet Σ, intermediate alphabet I, productionsystem P and startsymbol σ, we denote by $\mathbf{S}(G)$ the associated syntactical category. A rough description of $S(G)$ is the following:

Objects of $\mathbf{S}(G)$ are words over $\Sigma \cup I$, morphisms are the classes of inessentially different derivations. For convenience, we write $f \in \mathbf{S}(G)$ to denote that f is a derivation (class). If $f \in \mathbf{S}(G)$, the functions d (domain) and c (codomain) assign to f the word $w(=d(f))$ to which f is applied and the word $w^{\prime}(=c(f))$ which results by applying f.

Each $f \in \mathbf{S}(G)$ has a definite length $\|f\|$. The derivations f with $\|f\|=0$ are the identities of $\mathbf{S}(G)$, which we identify with the corresponding objects.
$\mathbf{S}(G)$ is structured by two operations " 0 " and " x ", where " 0 "' denotes the concatenation and " x " the parallel composition of derivations. It is wellknown that in the context-free case classes of derivations can be identified with so called derivation trees.

The most interesting set of derivation is

$$
\mathbf{D}(G)=\left\{f \in \mathbf{S}(G) \mid d(f)=\sigma \text { and } c(f) \in \Sigma^{*}\right\}
$$

then the generated language is given by

$$
\mathfrak{L}(G)=c(\mathbf{D}(G)) .
$$

All details about syntactical categories can be found in Hotz [6], D. Benson [1].

In this paper we only consider context-free grammars, though this restriction is not necessary in any case.

Definition 1.1: Consider two grammars

$$
G_{1}{ }^{\prime}=\left(\Sigma_{1}, I_{1}, P_{1}, \sigma_{1}\right), \quad G_{2}=\left(\Sigma_{2}, I_{2}, P_{2}, \sigma_{2}\right)
$$

A (grammar) morphism φ from G_{1} to $G_{2}\left(\varphi: G_{1} \rightarrow G_{2}\right)$ is a pair $\varphi=\left(\varphi_{A}, \varphi_{P}\right)$, where:

$$
\varphi_{A}:\left(\Sigma_{1} \cup I_{1}\right)^{*} \rightarrow\left(\Sigma_{2} \cup I_{2}\right)^{*}
$$

is a monoidhomomorphism and $\varphi_{P}: P_{1} \rightarrow \mathrm{~S}\left(G_{2}\right)$ is a mapping, such that the following conditions hold:
(1) For all $r(=p \rightarrow q) \in P_{1}$:

$$
\varphi_{A}(p)=d\left(\varphi_{P}(r)\right) \quad \text { and } \quad \varphi_{A}(q)=c\left(\varphi_{P}(r)\right)
$$

(2) $\varphi_{A}\left(\sigma_{1}\right)=\sigma_{2}$,
(3) $\varphi_{A}\left(I_{1}\right) \subseteq I_{2}$,
(4) $\varphi_{A}\left(\Sigma_{1}\right) \subseteq \Sigma_{2}^{*}$.

Remark: Since it is not necessary to distinguish φ_{A} and φ_{P} by subsčripts we shall omit these subscripts from now on. It can be shown, that we can extend φ to a syntactical functor $\varphi: \mathbf{S}\left(G_{1}\right) \rightarrow \mathbf{S}\left(G_{2}\right)$ in a unique way.' 'Using this extension we get $\varphi\left(\mathbf{D}\left(G_{1}\right)\right) \subseteq \mathbf{D}\left(G_{2}\right)$ and therefore $\varphi\left(\mathcal{L}\left(G_{1}\right)\right) \subseteq \mathfrak{L}\left(G_{2}\right)$.

One can single out various classes of morphisms. An overview of all these classes is given in Walter [10]. We repeat those, which are necessary to derive our results. Again, some of our results are true for more general classes of morphisms.

Consider $\varphi: G_{1} \rightarrow G_{2} . \varphi$ is called internal if $\Sigma_{1}=\Sigma_{2}=\Sigma$ and $\varphi(t)=t$ for $t \in \Sigma . \varphi$ is called closed if $\varphi\left(\mathbf{D}\left(G_{1}\right)\right)=\mathbf{D}\left(G_{2}\right)$. A closed internal morphism is called a transformation. If φ is a transformation, then $\mathcal{L}\left(G_{1}\right)=\mathscr{L}\left(G_{2}\right)$ holds, i. e. the language is preserved. A morphism φ is expanding if $\|\varphi(r)\| \geqq 1$ for all $r \in P_{1}$; if $\|\varphi(r)\|=1$ for all $r \in P_{1}$, we call φ a fine morphism. A fine transformation is called a reduction. Reynolds covers (Benson [2], GrayHarrison [5]) are reductions. Furthermore we get reductions by embedding the theory of grammars as the generalisation of reductions of finite automata (G. Hotz [8]). A second class of transformations is given by well-known normal-form theorems like the binary form of a context-free grammar. Roughly, such normal-form-theorems include constructions in which any production is simulated by a certain derivation of the normal-form.

We want to formalize this property.
If $G=(\Sigma, I, P, \sigma)$ is a grammar, then $G^{\prime}=\left(\Sigma^{\prime}, I^{\prime}, P^{\prime}, \sigma^{\prime}\right)$ is a subgrammar of $G\left(G^{\prime} \subseteq G\right)$ if $\Sigma^{\prime} \subseteq \Sigma, I^{\prime} \subseteq I, P^{\prime} \subseteq P, \sigma^{\prime}=\sigma$.

Set-theoretic operations transfer to subgrammars in a natural way.
Let G be a grammar and $\mathbf{M} \subseteq \mathbf{S}(G)$. We denote by $\langle\mathbf{M}\rangle$ the smallest subgrammar of G with $\mathbf{M} \subseteq \mathbf{S}(\langle\mathbf{M}\rangle)$. If $\mathbf{M}=\{f\}$ we write $\langle\mathbf{M}\rangle=\langle f\rangle$.

Consider an expanding transformation $\varphi: G_{1} \rightarrow G_{2}$. We call φ a simulation if φ operates identically on I_{1} and bijective between $\mathbf{D}\left(G_{1}\right)$ and $\mathbf{D}\left(G_{2}\right)$ and if the following holds:
(i) $\langle\varphi(r)\rangle \cap\left\langle\varphi\left(r^{\prime}\right)\right\rangle \subseteq\left(\Sigma, I_{1}, \varnothing, \sigma_{1}\right)$ for all $r, r^{\prime} \in P_{1}$ with $r \neq r^{\prime}$;
(ii) for any $r \in P_{1}$ there exists exactly one

$$
r_{a} \in P(\langle\varphi(r)\rangle) \quad \text { with } \quad d\left(r_{a}\right) \in I_{1}
$$

We want to show, that we can restrict ourselves to simulations and reductions if we are discussing transformations.

Theorem 1: If $\varphi: G_{1} \rightarrow G_{2}$ is an expanding transformation, then there is a factorisation $\varphi=\varphi_{2} \circ \varphi_{1}$ such that φ_{1} is a simulation and φ_{2} is a reduction.

Proof: Part 1. "Construction of $G_{3}, \varphi_{1}: G_{1} \rightarrow G_{3}$ and $\varphi_{2}: G_{3} \rightarrow G_{2}$ ".
Consider $r \in P_{1}$ and a so called sequential representation of $\varphi(r)$ (G. Hotz [6]):

$$
\varphi(r)=\left(u_{s} \times r_{s} \times v_{s}\right) \circ \ldots \circ\left(u_{1} \times r_{1} \times v_{1}\right) \quad(s \geqq 1) .
$$

We want to construct a set $P(r)$ of rules "simulating" r. Consider for any $1 \leqq i \leqq s:$

$$
f_{i}=\left(u_{i} \times r_{i} \times v_{i}\right) \circ \ldots \circ\left(u_{1} \times r_{1} \times v_{1}\right)
$$

and

$$
\overline{f_{i}}=\left(u_{s} \times r_{s} \times v_{s}\right) \circ \ldots \circ\left(u_{i+1} \times r_{i+1} \times v_{i+1}\right)
$$

We determine inductively $f_{i}^{*}, P_{i}(r), I_{i}(r)$ and φ_{1}, φ_{2} with $f_{s}^{*}=\varphi_{1}(r)$, $P_{s}(r)=P(r)$ and $f_{s}=\varphi_{2}\left(f_{s}^{*}\right)$.

If $u \in \Sigma \cup I_{2}, f \in \mathbf{S}\left(G_{2}\right)$ with $d(f)=x u y$, we say: u is unchanged under f [relative to (x, y)] iff $f=g_{1} \times u \times g_{2}$ with $d\left(g_{1}\right)=x$ and $d\left(g_{2}\right)=y$; otherwise u is changed under f [relative to $(x, y)]$.

Furthermore, if $w \in\left(\Sigma \cup I_{2}\right)^{*}$, then

$$
w=y_{0} \xi_{1} y_{1} \ldots \xi_{m} y_{m} \quad \text { with } \quad y_{0}, \ldots, y_{m} \in \Sigma^{*}, \quad \xi_{1}, \ldots, \xi_{m} \in I_{2}
$$

This decomposition is called I-decomposition of w.
Initial step: Consider the I-decomposition of $c\left(r_{1}\right)=y_{0} \xi_{1} \ldots \xi_{m} y_{m}$. Let $d(r)=\bar{\xi}$ with $\varphi(\bar{\xi})=d\left(r_{1}\right)$. Now create to any ξ_{λ} which is changed under \bar{f}_{1} relative to ($u_{1} y_{0} \xi_{1} \ldots y_{\lambda-1}, y_{\lambda} \xi_{+1} \ldots y_{m} v_{1}$) a new letter $\xi_{\lambda}(1, r)$ $(1 \leqq \lambda \leqq m)$. If a ξ_{λ} is unchanged it corresponds to an unique ξ_{λ}^{*} in $c(r)$.

Define

$$
\hat{\xi}_{\lambda}:=\left\{\begin{array}{cl}
\xi_{\lambda}(1, r), & \text { if } \xi_{\lambda} \text { is changed } \\
\xi_{\lambda}^{*}, & \text { otherwise }
\end{array}\right.
$$

Construct:

$$
\begin{gathered}
P_{1}(r)=\left\{\bar{\xi} \rightarrow y_{0} \hat{\xi}_{1} \ldots \hat{\xi}_{m} y_{m}\right\} \\
I_{1}(r)=\left\{\xi_{\lambda}(1, r) \mid \xi_{\lambda} \text { is changed under } \bar{f}_{1}\right\} \\
\left.f_{1}^{*}=\vec{u}_{1} \times \overline{(\xi)} \rightarrow y_{0} \hat{\xi}_{1} \ldots \hat{\xi}_{m} y_{m}\right) \times \bar{v}_{1} \\
\varphi_{2}\left(\xi_{\lambda}(1, r)\right)=\xi_{\lambda} ; \quad \varphi_{2}\left(\xi_{\lambda}^{*}\right)=\varphi\left(\xi_{\lambda}^{*}\right)
\end{gathered}
$$

Induction step: Suppose $f_{i-1}^{*}, I_{i-1}(r), P_{i-1}(r)$ are constructed for $i>1$. Consider $u_{i} d\left(r_{i}\right) v_{i}$ and $u_{i} c\left(r_{i}\right) v_{i}$. Then $c\left(f_{i-1}^{*}\right)=\bar{u} \xi \bar{v}$ with $\xi \in I_{i-1}(r)$, $\varphi_{2}(\bar{u})=u_{i}, \quad \varphi_{2}(\bar{v})=v_{i}$ and $\varphi_{2}(\xi)=d\left(r_{i}\right)$.

Let $c\left(r_{i}\right)=y_{0} \eta_{1} \ldots \eta_{n} y_{n}$ be the I-decomposition. Again, create to those η_{λ} which are changed under \bar{f}_{i} relative $\left(u_{i} y_{0} \eta_{1} \ldots y_{\lambda-1}, y_{\lambda} \eta_{\lambda+1} \ldots \eta_{n} y_{n} v_{i}\right)$ a new letter $\eta_{\lambda}(i, r)$. An unchanged η_{λ} corresponds to an unique η_{λ}^{*} in $c(r)$. Denote by

$$
\hat{\eta}_{\lambda}:=\left\{\begin{array}{cl}
\eta_{\lambda}(i, r), & \text { if } \eta_{\lambda} \text { is changed under } \bar{f}_{i} \\
\eta_{\lambda}^{*}, & \text { otherwise }
\end{array}\right.
$$

and $\hat{r}_{i}=\xi \rightarrow y_{0} \hat{\eta}_{1} \ldots \hat{\eta}_{n} y_{n}$.
Construct:

$$
\begin{gathered}
P_{i}(r)=P_{i-1}(r) \cup\left\{\hat{r}_{i}\right\}, \\
I_{i}(r)=I_{i-1}(r) \cup\left\{\eta_{\lambda}(i, r) \mid \eta_{\lambda} \text { is changed under } \overline{f_{i}^{\prime}}\right\}, \\
f_{i}^{*}=\left(\bar{u} \times \hat{r}_{i} \times \bar{v}\right) \circ f_{i-1}^{*}, \\
\varphi_{2}\left(\eta_{\lambda}(i, r)\right)=\eta_{\lambda}, \quad \varphi_{2}\left(\eta_{\lambda}^{*}\right)=\varphi\left(\eta_{\lambda}^{*}\right) .
\end{gathered}
$$

By this construction we get for each $r \in P_{1}$ a production set $P(r):=P_{s}(r)$, an alphabet $I(r):=I_{s}(r)$ and a derivation $f^{(r)}:=f_{s}^{*}$.

Now define G_{3} and φ_{1} by:
(1) $G_{3}:=\left(\Sigma, I_{1} \cup \bigcup_{r \in P_{1}} I(r), \bigcup_{r \in P_{1}} P(r), \sigma_{1}\right)$.
(2) $\varphi_{1}(r):=f^{(r)}$.

Part 2: " φ_{1} is a simulation and φ_{2} is a reduction".
Obviously, for all $r, r^{\prime} \in P_{1}$:

$$
P(r) \cap P\left(r^{\prime}\right) \neq \varnothing \Rightarrow f^{(r)}=f^{\left(r^{\prime}\right)}
$$

holds. Using this fact it is easy to see that φ_{1} is a simulation.
On the other hand $\varphi=\varphi_{2} \circ \varphi_{1}$. Since φ is surjective on $D\left(G_{1}\right), \varphi_{2}$ must be surjective too. But this implies that φ_{2} is a reduction.

Remark: The construction given above can be used to decide the property "closed" for expanding internal $\varphi: G_{1} \rightarrow G_{2}$. The algorithm works as follows:

Stage 1: Perform the factorisation $\varphi=\varphi_{2} \circ \varphi_{1}$, where φ_{1} is a simulation and φ_{2} is length-preserving, i. e. $\varphi_{2}\left(P_{1}\right) \subseteq P_{2}$.

Stage 2: Decide with Schnorr's algorithm [9], whether or not φ_{2} is a reduction. If the answer is "yes" then φ is closed, otherwise φ is not closed.

2. PARSING TIME AND INVERSE TRANSFORMATIONS

In this section we want to derive the main result. Consider a grammar $G_{1}=(\Sigma, I, P, \sigma)$. As analysers we use Turing machines which-faced with
$w \in \Sigma^{*},-$ produce a derivation whenever it is possible and a failure-message if not, that means if $w \notin \mathscr{Q}(G)$.

We indicate in which form the output is performed. We assign to any derivation f a representation \bar{f} which is in its essence the preorder representation of the corresponding derivation tree, more formally:

Consider to each $\xi \in I$ a pair of brackets $\left.{ }_{\xi},\right]$.
Let $f \in \mathbf{S}(G)$:
(i) $\|f\|=0 \Rightarrow f=u: \bar{f}=u$;
(ii) $\|f\|=1 \Rightarrow f=u \times(\xi \rightarrow w) \times v$:

$$
\bar{f}=u[w]
$$

(iii) $\|f\|>1 \Rightarrow f=(u \times r \times v) \circ f_{1}$; with

$$
\overline{f_{1}}=u^{\prime} d(r) v^{\prime}
$$

Define

$$
\bar{f}=u^{\prime} \bar{r} v^{\prime}
$$

Remark 1: It is easy to see that \bar{f} is well-defined.
Remark 2: As usual we can define the bracketing depth $b d(\bar{f})$.
Now, our analyser-faced with w-should produce \bar{f} with $d(f)=\sigma$ and $c(f)=w$ if such an f exists, otherwise the relation $w \notin \mathscr{L}(G)$ should be indicated by producing a special signal.

Given such an analyser \mathfrak{A}_{G}, we can define the time function $T_{\mathscr{H}_{G}}(w)$ as usual. Note that always

$$
\|f\| \leqq T_{थ_{G}}(w)
$$

if \bar{f} is the output to the input w.
Theorem 2: If $\varphi: G_{1} \rightarrow G_{2}$ is an expanding transformation and $\mathfrak{N}_{G_{2}}$ is an analyser such that

$$
T_{\mathfrak{M}_{G_{2}}}(w) \leqq F(|w|) \quad\left(w \in \Sigma^{*}\right)
$$

where $F: Z_{+} \rightarrow Z_{+}$is a function, then there is a constant c and an analyser $\mathfrak{U}_{G_{1}}$ such that

$$
T_{थ_{G_{1}}}(w) \leqq c \cdot F(|w|) \quad\left(w \in \Sigma^{*}\right)
$$

Proof: By theorem 1 we can factorize $\varphi=\varphi_{2} \circ \varphi_{1}$ with φ_{2} a reduction and φ_{1} a simulation. E. Bertsch has shown that the result is true for reductions [3]. Thus the theorem follows if we can show the result under the additional assumption that φ is a simulation.

To prove this we first show:
Consider an expanding morpbism $\varphi: G_{1} \rightarrow G_{2}$, which operates identically on I_{1}. Suppose, for every $r \in P_{1}$ there exists exactly, one $r_{a} \in P(\langle\varphi(r)\rangle)$ with $d\left(r_{a}\right) \in I_{1}$. Define the homomorphism h by

$$
h(x)=\left\{\begin{array}{cl}
\square, & \text { if } \left.x \in\{\underset{\xi}{[},]_{\xi} \mid \xi \in I_{2}-I_{1}\right\} \\
x, & \text { otherwise. }
\end{array}\right.
$$

Then for any $f \in \mathbf{S}\left(G_{1}\right)$ with $d(f) \in I_{1}$:
(\star)

$$
h(\overline{\varphi(f)})=\bar{f} \text { holds }
$$

Proof by induction on $\|f\|$:

$$
"\|f\|=1 " \quad \text { then } f=r \in P_{1} .
$$

We show the assertion by induction on $b d(\overline{\varphi(r)})$:

$$
" b d(\overline{\varphi(r)})=1 " \quad \text { then } \varphi(r) \in P_{1}
$$

and therefore $\varphi(r)=r$ (φ operates identically on $\Sigma \cup I_{1}$!), which proves the assertion.

Consider the case " $b d(\overline{\varphi(r)})=t>1 ":$
First observe $\bar{r}=\underset{d(r)}{[} c(r) \underset{d(r)}{]}$.
Since $d(\varphi(r))=d(r)$ and $c(\varphi(r))=c(r)$ we can decompose $\overline{\varphi(r)}=\bar{g}$ in the following way

$$
\bar{g}=v_{0}\left[u_{\xi_{1}}\left[u_{1}\right] v_{\xi_{1}} \ldots{ }_{\xi_{k}}\left[u_{k}\right] v_{\xi_{k}},\right.
$$

where $u_{1}, \ldots, u_{k} \in\left(I_{1} \cup \Sigma\right)^{*}$ and

$$
v_{0}, \ldots, v_{k} \in\left(I_{1} \cup \Sigma \cup\left\{\left.[,]\right|_{\xi} \xi \in I_{2}\right\}\right)^{*}
$$

and v_{j} contains no word of the form $[u]_{\xi}$,

$$
u \in\left(I_{1} \cup \Sigma\right)^{*} \quad \text { for } \quad j=0, \ldots, k .
$$

Now, define G_{2}^{\prime} and φ^{\prime} as follows:
Eliminate the rules $\xi_{i} \rightarrow u_{i}$ by substituting ξ_{i} by u_{i} in all predecessor rules of $P(\langle\varphi(r)\rangle)$. We obtain G_{2}^{\prime}, g changes into a derivation $g^{\prime} \in \mathbf{S}\left(G_{2}^{\prime}\right)$ with

$$
\bar{g}^{\prime}=v_{0} u_{1} v_{1} \ldots u_{k} v_{k} \quad \text { and } \quad b d\left(\bar{g}^{\prime}\right) \leqq t-1
$$

Define $\varphi^{\prime}: G_{1} \rightarrow G_{2}^{\prime}$ by

$$
\varphi^{\prime}\left(r^{\prime}\right)=\left\{\begin{array}{cl}
g^{\prime} & \text { if } r^{\prime}=r \\
\varphi\left(r^{\prime}\right) & \text { otherwise }
\end{array}\right.
$$

again φ^{\prime} fulfills the presumptions, as before define h^{\prime} for G_{2}^{\prime}.

It is seen immediately that:
(i) $\bar{g}^{\prime}=v_{0} u_{1} v_{1} u_{2} \ldots v_{k-1} u_{k} v_{k}$;
(ii) $b d\left(\bar{g}^{\prime}\right)<b d(\bar{g})$;
(iii) $h^{\prime}\left(\bar{g}^{\prime}\right)=h(\bar{g})$ holds.

By the induction hypothesis we get $h(\bar{g})=h^{\prime}\left(\bar{g}^{\prime}\right)=\bar{r}$.
Induction step:

$$
"\|f\|=s-1 \quad \Rightarrow \quad\|f\|=s " .
$$

Observe that

$$
f=(u \times r \times v) \circ f_{0} \quad \text { with } \quad r \in P_{1}, \quad f_{0} \in \mathbf{S}\left(G_{1}\right) .
$$

Then \bar{f} is obtained from \bar{f}_{0} by substituting $d(r)$ by \bar{r} using the decomposition $\bar{f}_{0}=w_{1} d(r) w_{2}$ with appropriate w_{1}, w_{2}.

Applying φ to f we get

$$
\varphi(f)=(u \times \varphi(r) \times v) \circ \varphi\left(f_{0}\right) .
$$

By our assumption we get

$$
\overline{\varphi(f)}=w_{1}^{\prime} \overline{\varphi(r)} w_{2}^{\prime}
$$

and $\overline{\varphi\left(f_{0}\right)}=w_{1}^{\prime} d(r) w_{2}^{\prime}$ with appropriate $w_{1}^{\prime}, w_{2}^{\prime}$. By this $\overline{\varphi(f)}$ is obtained from $\overline{\varphi\left(f_{0}\right)}$ by substituting $d(r)$ by $\overline{\varphi(r)}$.

Application of h yields:

$$
h\left(w_{1}^{\prime} d(r) w_{2}^{\prime}\right)=\tilde{w}_{1} d(r) \tilde{w}_{2}=\overline{f_{0}} \quad \text { (induction hypothesis) }
$$

and

$$
h(\overline{\varphi(r)})=\bar{r} .
$$

But then

$$
\tilde{w}_{1}=w_{1}=h\left(w_{1}^{\prime}\right) \quad \text { and } \quad \tilde{w}_{2}=w_{2}=h\left(w_{2}^{\prime}\right),
$$

we get

$$
h \overline{(\varphi(f))}=w_{1} h \overline{(\varphi(r))} w_{2}=w_{1} \bar{r} w_{2}=\bar{f}
$$

and the proof of (\star) is complete.
Now, we are able to design the analyser $\mathfrak{Q}_{G_{1}}$.
Consider an input $w \in \Sigma^{*}$.
Stage 1: Using $\mathfrak{\Re}_{G_{2}}$ produce \bar{f} with $d(f)=\sigma_{2}$ and $c(f)=w$ if $\boldsymbol{w} \in \mathfrak{Z}\left(G_{2}\right)=\mathfrak{L}\left(G_{1}\right)$. Otherwise $\mathfrak{A}_{G_{2}}$ indicates that $w \notin \mathfrak{L}\left(G_{2}\right)$, and $\mathfrak{Q}_{G_{1}}$ gives a message that $w \notin \mathbb{L}\left(G_{1}\right)$.

Stage 2: Compute $h(\bar{f})$.
R.A.I.R.O. Informatique théorique/Theoretical Computer Science

By the above assertion, we get

$$
\left.h(\bar{f})=h \overline{\left(\varphi\left(\varphi^{-1}(f)\right)\right.}\right)=\overline{\varphi^{-1}(f)}
$$

[$\varphi^{-1}(f)$ exists and is a derivation of w in $\left.D\left(G_{1}\right)!\right]$.
This proves that the algorithm $\mathfrak{A}_{G_{1}}$ is correct.
To perform stage 1 we need time

$$
T_{\boldsymbol{I}_{\sigma_{2}}}(w) \leqq F(|w|) .
$$

To perform stage 2 we need time

$$
T_{h} \leqq c^{\prime} \cdot|\bar{f}|
$$

with a constant c^{\prime}.
Since $\mathfrak{A}_{G_{2}}$ has to produce the output \bar{f} we get

$$
|\bar{f}| \leqq T_{\mathfrak{I I}_{G_{2}}}(w) .
$$

Combining both we get

$$
T_{\mathfrak{I G}_{G_{1}}}(w) \leqq T_{\mathscr{I G}_{\sigma_{2}}}(w)+c^{\prime} \cdot T_{\mathfrak{I I}_{G_{2}}}(w) \leqq\left(c^{\prime}+1\right) \cdot F(|w|) .
$$

But this proves our result.

3. PARSING TIME AND TRANSFORMATIONS

Now we will show a converse result:
If $\varphi: G_{1} \rightarrow G_{2}$ is a expanding transformation, then from the analyzability of $\mathscr{L}\left(G_{1}\right)$ in time $\leqq f(|w|)$ it results that $\mathcal{L}\left(G_{2}\right)$ is analyzable in time $\leqq c \cdot f(|w|)$. First we show this for reductions and then for simulations. Then by theorem 1 the result also holds for expanding transformations.

Proposition: Let $\varphi: G_{1} \rightarrow G_{2}$ be a reduction, $\mathfrak{G}_{G_{1}}$ an analyser for $\mathfrak{L}\left(G_{1}\right)$ with

$$
T_{\mathfrak{v i}_{\sigma_{1}}}(w) \leqq F(|w|) \quad\left(w \in \Sigma^{*}\right),
$$

where $F: Z_{+} \rightarrow Z_{+}$is a function, then there is a constant c and an analyzer $\mathfrak{U}_{G_{2}}$ for $\mathfrak{L}\left(G_{2}\right)$ such that

$$
T_{u G_{2}}^{\sharp}(w) \leqq{ }_{1} c \cdot F\left(\left|w^{\prime}\right|\right) \cdot \mid
$$

Proof: We remark that $w \in \mathfrak{I}\left(G_{1}\right) \Leftrightarrow \varphi(w)=w \in \mathfrak{E}\left(G_{2}\right)$. Let be $f \in \mathbf{D}\left(G_{1}\right)$ with $d(f)=\sigma_{1}$ and $c(f)=w$ and \bar{f} defined as in 2.

Consider the homomorphism g defined by

$$
g(x)=\left\{\begin{array}{lll}
\varphi(x) & \text { if } & x \in \Sigma \cup I_{1}, \\
{\left[\begin{array}{ll}
{[(\xi)} & \text { if }
\end{array} \quad x=\left[, \quad \xi \in I_{1}\right.\right.} \\
]_{\xi(\xi)} & \text { if } & x=]_{\xi}, \quad \xi \in I_{1}
\end{array}\right.
$$

Then it is easy to see that

$$
(\star \star) \quad g(\bar{f})=\overline{\varphi(f)}
$$

Now we construct the analyser $\mathfrak{H}_{G_{2}}$ in the same way as in theorem 2 with the homomorphism g instead of h. Using ($\star \star$) instead of (\star) the assertion follows by the same argument.

To prove a similar result for φ being a simulation, we require that $\mathfrak{A}_{\mathbf{G}_{1}}$ analysing $w \in \mathscr{L}\left(G_{1}\right)$ gives an output $\overline{\bar{f}}$, which is again a parenthesis-representation of a derivation f but contains some more information about the used rules:

Consider a grammar G and to each $\xi \in I$ and each $r \in P$ a pair of brackets ${ }_{\xi}^{r},{ }_{\xi}^{r}$.

Let $f \in \mathbf{S}(G)$ then:
(i) $\|f\|=0$:

$$
f=1_{u}, \quad \overline{\bar{f}}=u ;
$$

(ii) $\|f\|=1$:

$$
\left.f=u \times r \times v, \quad \overline{\bar{f}}=u{ }_{d(r)}^{r} c(r)\right]_{d(r)}^{r} v ;
$$

(iii) $\|f\|>1 \Rightarrow f=(u \times r \times v) \circ f_{1}$; with

$$
\overline{\bar{f}}_{1}=u^{\prime} d(r) v^{\prime}
$$

define

$$
\overline{\bar{f}}=u^{\prime} \overline{\bar{r}} v^{\prime}
$$

For abbreviation we set

$$
{ }_{I}^{P}:=\left\{\left.\begin{array}{l}
r \\
{[}
\end{array} \right\rvert\, \xi \in I, r \in P\right\}
$$

and

$$
]_{I}^{P}:=\left\{\left.\begin{array}{l}
r \\
]
\end{array} \right\rvert\, \xi \in I, r \in P\right\} .
$$

R.A.I.R.O. Informatıque théorıque/Theoretical Computer Science

Now we assume, that an analyzer $\mathfrak{X}_{G_{1}}$ produces this parenthesis-representation of a derivation if possible.

The role of the homomorphisms h respective g in the proofs of theorem 2 and 3^{\prime} is played by a pushdown-transducer which transduces $\overline{\bar{f}}$ into $\overline{\overline{\varphi(f)}}$ for $f \in D\left(G_{1}\right)$. We use the conception of a pdt as given in [4].

Theorem 3: Let $\varphi: G_{1} \rightarrow G_{2}$ be a simulation, $\mathfrak{A}_{G_{1}}$ an analyzer with

$$
T_{\mathfrak{U}_{G_{1}}}(w) \leqq F(|w|), \quad w \in \Sigma^{*}
$$

where $F: Z_{+} \rightarrow Z_{+}$is a function, then there exists an analyzer $\mathfrak{Y}_{G_{2}}$ and a constant c with

$$
T_{\mathfrak{U}_{G_{2}}}(w) \leqq c \cdot F(|w|)
$$

Proof: First we construct a one-state-pdt p which transduces $\overline{\bar{f}}$ into $\overline{\overline{\varphi(f)}}$ for an arbitrary $f \in D\left(G_{1}\right)$:

$$
\begin{array}{cl}
I_{p}=\Sigma \cup I_{1} \cup\left[\cup_{I_{1}}^{P_{1}} \cup\right]_{I_{1}}^{P_{1}}, & O_{p}=\Sigma \cup I_{2} \cup[\cup]_{I_{2}}^{P_{2}} \cup \\
S_{p}=\{s\} ; \quad K_{p}=O_{p} \cup \$, & k_{0}=\$, \quad s_{0}=s \quad \text { and } \quad \delta_{p}
\end{array}
$$

defined as follows:
Initialisation of the pushdown store:

$$
\begin{gathered}
\delta_{p}(x, s, \$)=\left(s, \gamma \$, x^{\prime}\right), \\
x={\underset{d(r)}{r} \in\left[I_{I_{1}},\right.}_{P_{2}} \quad x^{\prime} \gamma=\overline{\overline{\varphi(r)}}
\end{gathered}
$$

output of an symbol in $c(f)$:

$$
\delta_{p}(x, s, y)=(s, \square, y), \quad x=y \in \Sigma \cup I_{1} ;
$$

output of symbols of simulation rules:

$$
\delta_{p}(\square, s, y)=(s, \square, y), \quad y \in{\underset{I_{2}-I_{1}}{P_{2}} \cup I_{I_{2}-I_{1}}^{P_{2}},}^{[},
$$

storing the simulated rule $\overline{\overline{\varphi(r)}}$ instead of $d(r)$ of the top at the pushdown store, producing the first parenthesis x^{\prime} of $\overline{\varphi(r)}$ as output:

$$
\begin{gathered}
\delta_{p}(x, s, y)=\left(s, \gamma, x^{\prime}\right), \quad x=\sum_{d(r)}^{r} \in\left[I_{I_{1}}^{P_{1}}, \quad y=d(r),\right. \\
\overline{\overline{\varphi(r)}}=x^{\prime} \gamma .
\end{gathered}
$$

Let $F_{P}: I_{P}^{*} \rightarrow O_{P}^{*}$ be the realized transduction, then

$$
f \in D\left(G_{1}\right) \Rightarrow F_{p}(\overline{\bar{f})}=\overline{\overline{\varphi(f)}} \text { holds. }
$$

We give a short idea how to prove this: (induction on $s=\|f\|$):
(i) " $\|f\|=1$ " then $f=r$ holds and we can verify:

$$
(s, \underset{d(r)}{[} c(r) \underset{d(r)}{r}, \$, \square) \stackrel{\vdash}{P}(s, c(r) \underset{d(r)}{r}, \gamma \$, \underset{d(r)}{[1}) \stackrel{\vdash_{P}}{\vdash} \ldots \underset{P}{\vdash_{P}}(s, \square, \$, \overline{\overline{\varphi(r)}}),
$$

analoguous we get

$$
(s, \overline{\bar{r}}, d(r) v, \square) \vdash_{p} \ldots \vdash_{p}(s, \square, v, \overline{\overline{\varphi(r)}})
$$

which we need in (ii).
(ii) " $\|f\|=s-1 \Rightarrow\|f\|=s$ ".

Let be $\|f\|=s>1$ then $f=(u \times r \times v) \circ f_{1},\left\|f_{1}\right\|=s-1$.
We can decompose $\overline{\bar{f}}, \overline{\overline{\varphi(f)}}, \overline{\bar{f}}_{1}, \overline{\overline{\varphi\left(f_{1}\right)}}$ as follows:

$$
\begin{array}{cc}
\overline{\bar{f}}=u^{\prime} \overline{\bar{r}} v^{\prime}, & \overline{\overline{\varphi(f)}}=u^{\prime \prime} \overline{\overline{\varphi(r)}} v^{\prime \prime} \\
\overline{\bar{f}}_{1}=u^{\prime} d(r) v^{\prime}, & \overline{\overline{\varphi\left(f_{1}\right)}}=u^{\prime \prime} d(r) v^{\prime \prime}
\end{array}
$$

p transduces $u^{\prime} d(r) v^{\prime}$ into $u^{\prime \prime} d(r) v^{\prime \prime}$ by induction hypothesis, then one can show using the construction of p :

$$
\left(s, u^{\prime} d(r) v^{\prime}, \$, \square\right) \vdash_{p} \ldots \vdash_{p}\left(s, d(r) v^{\prime}, d(r) \gamma \$, u^{\prime \prime}\right)
$$

\underset{p}{\vdash}\left(s, v^{\prime}, \gamma \$, u^{\prime \prime} d(r)\right) \vdash_{p} ··· \vdash_{p}\left(s, \square, \$, u^{\prime \prime} d(r) v^{\prime \prime}\right) .
\]

Then also

$$
\left(s, u^{\prime} \overline{\bar{r}} v^{\prime}, \$, \square\right) \vdash_{p} \ldots \vdash_{p}\left(s, \overline{\bar{r}} v^{\prime}, d(r) \gamma \$, u^{\prime \prime}\right) \text { holds. }
$$

Now we can insert the computation on $\overline{\bar{r}}$ using part (i):

$$
\left(s, \overline{\bar{r}} v^{\prime}, d(r) \gamma \$, u^{\prime \prime}\right) \vdash_{p} \ldots \vdash_{p}\left(s, v^{\prime}, \gamma \$, u^{\prime \prime} \overline{\overline{\varphi(r)}}\right)
$$

and again using the induction hypothesis continuing the computation like that of $\overline{\bar{f}_{1}}$:

$$
\vdash_{p} \ldots \vdash_{p}\left(s, \square, \$, u^{\prime \prime} \overline{\overline{\varphi(r)}} v^{\prime \prime}\right)
$$

which proves the assertion.
Now we construct the analyzer $\mathfrak{U}_{\boldsymbol{G}_{2}}$ similar to that of theorems 2 and 3 :
Given an input $w \in \Sigma^{*}$.

Stage 1: Using $\mathfrak{\Re}_{G_{1}}$ produce $\overline{\bar{f}}, f \in D\left(G_{1}\right)$, with

$$
d(f)=\sigma_{1}, \quad c(f)=w \quad \text { if } \quad w \in \mathfrak{L}\left(G_{1}\right)=\mathfrak{L}\left(G_{2}\right)
$$

or a failure message if $w \notin \mathbb{L}\left(G_{2}\right)$.
Stage 2: Compute $F_{p}(\overline{\bar{f}})$.
Again the assertion follows with the same argument as in the proofs before, if one has in mind that $T_{F_{p}}(\overline{\bar{f}}) \leqq|\overline{\overline{\varphi(f})}|$ (at each step p produces one output symbol!) and $|\overline{\overline{\varphi(f)}}| \leqq c^{\prime} \cdot|\overline{\bar{f}}|$ with $c^{\prime}=2 \max \left\{\|\varphi(r)\| \mid r \in P_{1}\right\}$.

Remark 1: If G_{1} and G_{2} are linear grammars we can perform the transduction $\overline{\bar{f}} \rightarrow \overline{\overline{\varphi(f)}}$ by an homomorphism.

Proof: All rules of G_{1}, G_{2} are of the form

$$
\xi \rightarrow u \eta v, \quad u, v \in \Sigma^{*}
$$

or

$$
\xi \rightarrow w, \quad w \in \Sigma^{*} .
$$

Consider $r=(\xi \rightarrow u \eta v), \eta \in I_{1} \cup\{\square\}$ then

$$
\varphi(r)=\left(u_{1} \ldots u_{s-1} \times r_{s} \times v_{s-1} \ldots v_{1}\right) \circ \ldots \circ\left(u_{1} \times r_{2} \times v_{1}\right) \circ\left(\square \times r_{1} \times[\right.
$$

with

$$
\begin{aligned}
& r_{i}=\left(\xi_{i} \rightarrow u_{i} \xi_{i+1} v_{i}\right), \quad 1 \leqq i \leqq s, \\
& \xi_{1}=\xi, \quad \xi_{s+1}=\eta \quad \text { and } \quad u_{1} \ldots u_{s}=u, \quad v_{s} \ldots v_{1}=v .
\end{aligned}
$$

It follows immediately that

Let be

$$
\begin{array}{r}
u(r)=\stackrel{r}{\xi}_{\left[u_{1}\right.}^{u_{1}} \ldots{\stackrel{\Gamma}{\xi_{s}}}_{r_{s}}^{r_{s}}, \\
\left.\left.v(r)=v_{s}\right]_{\xi_{s}}^{r_{s}} \ldots\right]_{\xi}^{r_{1}}
\end{array}
$$

and define a homomorphism f_{p} as follows:

$$
f_{p}(x)=\left\{\begin{array}{cc}
x & \text { if } \\
\square \in I_{1}, \\
\square & \text { if } \\
u(r) & \text { if } \\
u=\Sigma \underset{d(r)}{[} \in\left[I_{I_{1}}\right. \\
v(r) & \text { if } \\
\left.u=]_{d(r)}^{r} \in\right]_{I_{1}}
\end{array}\right.
$$

vol. $12, \mathrm{n}^{\circ} 2,1978$

Then it is easy to see, that for $f \in D\left(G_{1}\right)$:

$$
f_{p}(\overline{\bar{f}})=\overline{\overline{\varphi(f)}} \text { holds. }
$$

Remark 2: With remark 1 we have seen, that the transduction of derivations in G_{1} into derivations in G_{2} can be done by a device which is less powerful than the device which is used for analyzing. That means: a deterministic $p d t$ for context-free languages, which require a non-deterministic $p d a$ for analyzing, and an finite state-transducer (to perform the homomorphisms) in the case of linear grammars.

4. CONCLUDING REMARKS

We give some comments to our results.
Remark 1: As indicated in the introduction expanding transformations are induced by certain wellknown normal-form theorems. The binary form of context-free grammars and the elimination of ε-rules in a context-free grammar are of this type.

Therefore we can conclude (with some minor addition to our proofs in the latter case) that parsing time remains unchanged under both constructions.

Remark 2: We can deal with parsing space too. If the space definition includes the output tape all the constructions, both Bertsch's and ours, preserve space. (For theorem 3 one should have in mind that the maximal length of the pushdown store of the $p d t p$ does not exceed the output length.) Therefore parsing space remains unchanged in order of magnitude under inverse expanding transformations and expanding transformations.

REFERENCES

1. D. B. Benson, The Basic Algebraic Structures in Categories of Derivations, Inform. and Control, Vol. 28, 1975, pp. 1-29.
2. D. B. Benson, Some Preservation Properties of Normal Form Grammars, S.I.A.M. J. Comput., Vol. 6, No. 2, June 1977, pp. 381-402.
3. E. Bertsch, An Observation on Relative Parsing Time, J.A.C.M., Vol. 22, No. 4, October 1975, pp. 493-498.
4. S. Ginsburg, The Mathematical Theory of Contextfree Languages, 1966, McGraw-Hill, New York.
5. J. N. Gray and M. A. Harrison, On the Covering and Reduction Problems for Contextfree Grammars, J.A.C.M., Vol. 19, 1972, pp. 675-698.
6. G. Hotz, Eindeutigheit und Mehrdeutigheit formaler Sprachen, E.I.K., Vol. 2, 1966, pp. 235-246.
7. G. Hotz, Homomorphie und Äquivalenz formaler Sprachen, 3. Kolloquium über Automatentheorie, W. HÄndler, E. Peschl, H. Unser, Eds., Birkhäuser-Verlag, 1967.
8. G. Hoтz, Übertragung automatentheoretischer Sätze auf Chomsky-Sprachen, Computing, Vol. 4, 1969, pp. 30-42.
9. C.-P. Schnorr, Vier Entscheidbarkeitsprobleme für kontextsensitive Sprachen, Computing, Vol. 3, 1968, pp. 311-317.
10. H. Walter, Die Verwandtschaft kontextfreier Grammatiken (to appear).
