
RAIRO. INFORMATIQUE THÉORIQUE

A. EHRENFEUCHT

G. ROZENBERG
On some context free languages that are not
deterministic ETOL languages
RAIRO. Informatique théorique, tome 11, no 4 (1977), p. 273-291
<http://www.numdam.org/item?id=ITA_1977__11_4_273_0>

© AFCET, 1977, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1977__11_4_273_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theorical Computer Science
(vol. 11, n° 4, 1977, p. 273 à 291)

ON SOME CONTEXT FREE LANGUAGES
THAT ARE NOT DETERMINISTIC

ETOL LANGUAGES (*) (*)

by A. EHRENFEUCHT (2) and G. ROZENBERG (3)

Communicated by W. Brauer

Abstract. — It is shown that there exist context free languages which are not deterministic
ETOL languages. The proof is based on an analysis of the structure of dérivations in deter-
ministic ETOL Systems.

I. INTRODUCTION

The theory of L Systems (see, e. g., [8, 11 and 10]) is now a fashionable area
of formai language theory. It brought along a lot of new problems (and
techniques for solving them) and at the same time it put a lot of classical
problems and notions in a new perspective. In particular through the theory
of L Systems we have gained a lot of insight into essential différences between
sequential and parallel rewriting Systems (see, e. g. [13]).

Among various families of L languages, ETOL languages occupy a central
place (see, e. g., [2, 3, 9 and 10]). lts subfamily, the class of EDTOL Janguages,
has a quite nice mathematical structure and at the same time plays an important
rôle in investigating ETOL languages (see, e. g., [4, 5, 6 and 10]). Thus it is quite
natural to compare the language generating power of context free grammars
(which occupy a special place in the Chomsky hierarchy) with this of EDTOL
Systems.

Although one trivially establishes the existence of EDTOL languages
which are not context free (the language { a2" : n ^ 0 } is one of them) it
was an open problem for quite a time, whether or not there exist context
free languages that are not EDTOL.

In this paper we prove the existence of context free languages that are not
EDTOL. Except for (as we have it already indicated) shedding some light on

(*) Received March 8, 1977.
C1) This work supported by NSF Grant # GJ-660,
(2) Department of Computer Science, University of Colorado, Boulder, U.S.A.
(3) Department of Mathematics, University of Antwerp, U.I.A., Wilrijk, Belgium and

nstitute of Mathematics Utrecht University, Utrecht, De Uithof Holland.

R.A.Ï.R.O. Informatique théorique/Theoretical Computer Science, vol. 11, n° 4, 1977

274 A. EHRENFEUCHT, G. ROZENBERG

the différence between sequential and parellel rewriting, this resuit seems to be
also of technical importance. Thus, e. g. :

1) in [6] it is used to show that there exist indexed languages that are not
ETOL;

2) in [7] it is used to show that there exist top-down deterministic tree
transformation languages that are not indexed;

3) it can be used (J. Engelfriet, private communication) to show that there
are context free languages that are not checking automata languages.

Troughout the paper we shall use the standard formai language theoretic
terminology and notation. Also we use:

(i (x) to dénote the smallest positive integer n such that any two disjoint
subwords of x of length n are different;

#a x to dénote the number of occurrences of the letter a in the word x9

and 11 m 11 to dénote the absolute value of an integer m.

n. EDTOL SYSTEMS AND LANGUAGES

In this section we recall (see, e. g., [8]) the définition of an EDTOL System
(and language). We also recall from [4] some basic notions pertinent to the ana-
lysis of dérivations in EDTOL Systems.

DÉFINITION 1 : An extended deterministic table L System without inter-
actions, abbreviated as an EDTOL System, is defined as a construct
G = < V, 0>, co, S > such that.

1) F is a finite set (called the alphabet of G).

2) 0> is a finite set (called the set of tables of G), each element of which is a
finite subset of VxV*. Eeach P in & satisfies the foliowing conditions:
for each a in V there exists exactly one oc in F * such that < a, a > is in P.

3) co e V + (called the axiom of G).

(We assume that F, E and each P in 0* are nonempty sets.)
We call G propagating, abbreviated as an EPDTOL System if each P in 0*

is a subset of Vx V + .

DÉFINITION 2: Let G = < F, 0>9 co, I > be an EDTOL System. Let x e V +

x = al9 ..., ak, where each a^ 1 ^ j ^ k, is an element of F, and let j e F*.
We say that x directly dérives y in G (denoted as x => y) if and only if there exist

G

P in 0> and pl9 ..., pk in P such that pt = < al9 ccl >, . . . , pk = < ak, <xk > and

y = OL1 ... ak. We say that x dérives y in G (denoted as x => y) if and only
G

if either (i) there exists a séquence of words x 0 , xu ..., xn in F * (n ^ 1)
such that x0 = x9 xn = y and x0 =t> xx = > . . . = > xn9 or (ii) x = y.

G G G
R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 275

DÉFINITION 3 : Let G = < V, 0>, co, E > be an EDTOL System. The language

of G, denoted as L (G), is defined as L (G) = { x e P : co =£ x }.

NOTATION: Let G = < F, ^ , co, S > be an EDTOL system.

1) If < a, a) is an element of some P in & then we call it a production and
write a —•> a is in P or « —» a.

p

2) If x => y using table P from 2P9 then we also write x => y.
G P

3) In fact each table P from ^ is a finite substitution. Hence we can use a
"functional" notation and write Pm for an m-folded composition of
P, Px P2-i . . . Pm for a composition of tables Pl9 ..., Pm (first Pl9 then
P2 , • . . , Pm), etc. In this sensé Px ... Pm (x) dénotes the (unique) word y
which is obtained by rewriting x by the séquence of tables Pl9 P29 . . . , Pm,

Hère are two examples of EDTOL Systems and languages.
Example 1 : Let Gx = < V, &, CÛ, S > where

F = { ̂ , B9 a }, S = { a }, œ - ^ 5 and ^ = { Pu P2 },
where :

p x = { ̂ -• A2, B -> B3, a -> a }, P2 = { A -> a, 5 -• a, a -> a }.

Gt is an EPDTOL system where L (Gx) = { a2n+3n; n > 0 }.

Example 2: Let G2 = < { Û, A, v4, 5, C, Z), F }, ^ , CZ), { a, A } > , where
& = { Pl9 P2, P3 } and

p t = { a -> F, b -> F, 1̂ -* A, B -> J3, C }

P2 = { a -• F, b -• F, A -> A, 5 -> B, C -* CJ5, D -> D },

P3 = {a->F, 6 ^ F , ^ ^ a , 5 -^6 , C->A, D-^A},

G2 is an EDTOL system which is not propagating, and

L (G2) = { an bm an : n ^ 0, m ^ /i }.

Now we will recall from [4] various notions and theorems concerning
dérivations in EDTOL Systems. They will be very essentially used in the sequel
of this paper.

DÉFINITION 4: Let G = < V, 0>, co, I > be an EDTOL system. A dérivation
(of y from x) in G is a construct D = ((x0, . . . , xk)9 (T09 . . . , Tk.^)) where
k ^ 2 and

1) x0, . . . , xfc are in F * ;
2) T09 . . . , F,,.! are in ^ ;
3) x0 = x and xfc = y and x£ => x I + 1 for 0 g i < k.

Ti

If x = co then we simply say that D is a dérivation (of y) in G.

vol. 11, n °4, 1977

276 A. EHRENFEUCHT, G. ROZENBERG

DÉFINITION 5: Let G = < F, 9, co, I > be an EDTOL System and let
D = ((x0, . . . , xk), (To, . . . , r ^ . J) be a dérivation in G. For each occurrence
ainxj, 1 ̂ y ^ /:, by a contribution o f a in Z>, denoted as Contr^ (a), we mean
the whole subword of xk which is derived from a. (Then if x is an occurrence
of a word in xj9 Contr^ (x) has the obvious meaning.) Also, for each Tj9

1 ^ j ^ k — 1, Tj (oc) dénotes both the word P such that a => P and the contri-

bution to xj + l by an occurrence (of a word) oc in xj9 but this should not lead
to confusion.

DÉFINITION 6: Let G = < F, ̂ , co, I > be an EDTOL System and let
D = ((x0, . . . , xk)9 (r 0 , . . . , Tk_1)) be a dérivation in G. A subderivation
of Z) is a construct D = ((xIo, . . . , x^), (P io, . . . , P ^ ,)) where:

1) 0 ̂ ï0 ^ Ï! < . . . < /; ̂ * - 1 , and
2) for each y in {0 ^r-1 }, Ptj = Ttj Tij+1 . . . Tij+i_v

Remark: Although a subderivation of a dérivation in G does not have to
be a dérivation in G we shall use for subderivations the same terminology
as for dérivations and this should not lead to confusion. (For example we
talk about tables used in a subderivation.) It is clear that to détermine a
subderivation D of a given dérivation D it suffices to indicate which words of
D form the séquence of words of D. We will also talk about a subderivation D
of a subderivation D of D meaning a subderivation of D the words of which
are chosen from the words of D. (In this sensé we have that a subderivation
of a subderivation of a dérivation D is a subderivation of the dérivation D.)
Given a subderivation DoïD and an occurrence a in a word of D we talk about
Contr^ (a) in an obvious sensé.

DÉFINITION 7: Let G = < F, ̂ , co, E > be an EDTOL System and let ƒ
be a function from ^ p o s into ^p o s . Let D be a dérivation in G and let
Z> = ((x0, . . . , xk)9 (To, . . . , Tk_x)) be a subderivation of D. Let a be an
occurrence (of A from F) in xt for some / i n {0, . . . , / : } , where | xk | = n.

1) a is called (ƒ, Z>)-Wg (/* xt), if | Contr^ (a) | > ƒ («) ;
2) a is called (ƒ, D)-small {in xt), if | ContrD (a) | ^ ƒ(«);
3) <z is called unique (in xt) if a is the only occurrence of A in xt;
4) a is called multiple (in xt) if a is not unique (in xt) ;
5) a is called D-recursive (in xt) if Tt (a) contains an occurrence of A;

6) a is called D-nonrecursive (in xt) if a is not D-recursive (in xt).

Remark: 1) Note that in an EDTOL system each occurrence of the same
letter in a word is rewritten in the same way during a dérivation process.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 2 7 7

Hence we can talk about (ƒ, Z>)-big (in xt), (ƒ, £>)-small (in xt% unique (in xt)9

multiple (in xr), D-recursive (in xt) and Z>-nonrecursive (in xt) letters.
2) Whenever ƒ or D or D is fixed in considérations we will simplify the

terminology in the obvious way (for example we can talk about big letters
(in xt) or about recursive letters (in xt)).

Using standard methods (see, e. g., [9 or 10]) one can easily prove that for
each EDTOL System G there exists an EPDTOL System H such that
L (G) u { A } = L (/ /) u { A } . Hence, for the purpose of this paper, it
suffices to analyze dérivations in EPDTOL Systems only.

Given a dérivation in an EPDTOL System, ail occurrences of the same letter
on a given level are rewritten in the same way. However the behaviour of the
same letter on different levels can be "drastically" different, which is due to
the use of (possibly) different tables on different levels of the dérivation. For
example, the same letter can be big on some levels and small on others.

For this reason it is difficult to analyze an abritrary dérivation, and so we
try to find out a subderivation such that the "behaviour" of a letter does
not depend on the level on which it occurs. We call such subderivations
"neat". What is precisely meant by saying that a letter behaves in the same
way on ail levels of a subderivation is stated by conditions (2) through (7)
of the following définition. It is also required, see condition (1), that in a
neat subderivation the sets of letters occuring on each level are the same.

DÉFINITION 8 : Let G = < V, 0>9 co, S > be EPDTOL system and let ƒ
be a function from ^ p o s into ^p o s . Let D a be dérivation in G and let
1Ö = ((JC0, . . . , xfc), (To, . . . , T 7^)) be a subderivation of D. We say that ~D
is neat {which respect to D and f) if the following holds:

1) Min (x0) = Min (xx) = . . . = Min (xk). (For a word x, Min (x) dénotes
the set of all letters that occur in x).

2) If y is in { 0, . . . , k} and A is a letter from Min (xj)9 then A is big (small,
unique, multiple, recursive, nonrecursive) in Xj if and only if A is big (small,
unique, multiple, recursive or nonrecursive respectively) in xt for every t
in {0, . . . , & } .

3) For every j in {0, . . . , k }, Min (xj) contains a big recursive letter.

4) For every j in {0, . . . , k} and every A in Min (xj)9 if A is big then A
is unique.

5) For every j in { 0, . . . , k— 1 }.
5.1. Tj contains a production of the form A —> a where A is a big letter and

a contains small letters, and
5.2. If £—• p is in Tj9 then:
if B is small recursive, then P = B and
if B is nonrecursive then p consists of small recursive letters only.

vol. 11, n° 4, 1977

278 A. EHRENFEUCHT, G. ROZENBERG

6) For every i, j in { 0, . . . , k) and every A in F, if a is a small occurrence
of A in xt and & is a small occurrence of ^ in Xj then | ContrD (a) | = | ContrD (b) |.

7) For every big recursive letter Z and for every i,j in { 0, . . . , k — 1 }, if
Z —» a and Z —> p then a and (3 have the same set of big letters (and in fact

Ti Tj

none of them except for Z is recursive).
Throughout this paper we shall often use phrases like "(sufficiently) long

word x with a property P " or a "(sufficiently) long (sub) dérivation with
a property P" . Intuitively, this will have the following meaning (for a more
formai définition, see [4]).

1) By a "(sufficiently) long word x with a property P " we mean a word x
with property P which is longer than some constant C the computation of
which does not depend on x itself.

2) By a "(sufficiently) long (sub)derivation with a property P " we mean
a (sub) dérivation D satisfying P of a word x which is longer than | x \c where C
is a constant independant of either x or Z).

The following resuit (proved in [4]) will be used to get long subderivations
from other long subderivations. Bef ore we formulate it we need another
définition.

DÉFINITION 9: Let ƒ be a function from ^ p o s into ^p o s . We say that ƒ is
slow if

(V a)^pos (3 na)^pos(V x)^pos , [if x > na then ƒ (x) < xa] .

Thus a constant function, (log x)k and (log x)l°z los x are examples of slow
functions, whereas (log x)los x, x2, Jx are examples of functions which are
not slow.

Let G be an EPDTOL System and let g be a slow function. Let D be a long
subderivation of a dérivation Z) of x in G. Let us divide the words in D into
classes in such a way that the number of classes is not larger than g (| x \).

LEMMA 1: The re exists a long subderivation of D consisting of all the words
which belong to one class of the above division into classes.

The following notion appears to be very useful in dealing with the structure
of dérivations in EPDTOL Systems.

DÉFINITION 10: Let I be a finite alphabet and let ƒ be a function from
^pos m t o ^pos- ^ e t w b e m ^*- We say that w is an f-random word (over S) if

(V«?i, ul9w2,u2, w3)r

[ifu; = w1 ux w2 u2w3 and | ux | > ƒ(| u; |) then ux ^ w2].

Thus, informally speaking, we call a word w/-random if every two disjoint
subwords of w which are longer than ƒ (| w \) are different.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 279

The following resuit was proved in [4].

THEOREM 1: For every EPDTOL System G and every slow function f there
exist r in 0tpQ% and s in N such that, for every w in L (G), if\w\ > s and w is
f-random, then every dérivation of w in G contains a neat subderivation longer
than | w \r.

The number of/-random words for a function ƒ which is not "too slow"
over an alphabet consisting of at least two letters is "rather large" which is
stated in the following theorem proved in [5].

THEORFM 2: Let I be a finite alphabet such that # I = m ^ 2. Let f be a
function from &pos into &pos such that, for every x in @pos,f(x) ^ 4 log2 x.
Then, for every positive integer n,

{ w G L* : | tü | = n and w is ƒ-random } 1

m" = n'

BINARY BRACKETED LANGUAGES

In this section we introducé binary bracketed languages which are context
free languages but which will be proved in the next section not to be EDTOL
languages.

DÉFINITION 11 : Let i be a positive integer. A binary i-bracketed language,
denoted as ^t, is the language generated by the context free grammar
H(0d = < { S } { [, [, . . . , [,] , . . . ,] ,] } , P, S > where P consists of the

following
i

productions.

S -

2 i

i i

[S] , . .
i i

A.

i

. . .

. , s

s -

—>

2 1

-[ss]
2 2

[S], S
2 2

, s-»[ss],
1 1

-[s],
1 1

In fact we will first prove that Bx is not an EDTOL language and then we
will cobclude that no J^-, i ^ 1, is an EDTOL language. Thus ail our
"technical" définitions concern 08x. (To simplify notation we write " ["
for " [" and "] " for «]".)

i i

DÉFINITION 12: Let x e l j . The depth of x, denoted as Depth (x), is the
depth of the longest nesting of brackets in x. More formally, Depth (x) is
defined inductively as foliows:

(i) Depth (A) = 0;
(ii) For x ^ A let x dénote the word obtained from x by erasing subwords

[] in x. If Depth (x) = k then Depth (x) = k + l.

vol. 11, n° 4, 1977

280 A. EHRENFEUCHT, G. ROZENBERG

DÉFINITION 13: Let xe { [,] } * . The score of x, denoted as Score (x),
is defined by Score (x) = #L(x)-~ #] (x).

Now we shall prove two properties concerning scores of words in ^x and
their depths. These properties will turn out to be very useful later on.

LEMMA 2: Let w be in Mx where for som wu w2, w3 in { [,] }*,

w = w1w2 w3. Then || Score (w2) || ^ Depth (w).
Proof: We prove this resuit by induction on the depth of w.
(i) If Depth (w) = 0 then w = A and the lemma trivially holds.
(ii) Let us assume that the lemma holds for ail w such that Depth (w) <̂ k.
(iii) Let Depth (w) = fc + 1 and let w = w1 w2 w3.

Let w be the word obtained from w by erasing subwords of the form []
from w9 and \etïv = w1w2 w3 where wuw2 and w3 correspond in this manner
to wl9 w2 and w3 respectively. Thus Depth (w) = k and so by the inductive
assumption 11 Score (îv2) 11 ̂ k.

Let us observe that w2 must have one of the following four forms:
1. it begins with] and ends with [;
2. it begins with [and ends with [;
3. it begins with] and ends with] ;
4. it begins with [and ends with] .
It is easy to see that in all these cases || Score (ïv2) — Score (w2) || ^ 1 and

so the lemma holds.

LEMMA 3: (V n)N (3 m)N (V w)ai

[if w = wx w2 w3 and | vo2 | ^ m then w2 = ulu2u3 with 11 Score(u2) 11 ̂ n].

Proof: Let neN and let m = 22n+2. Let M; be a word in &\ such that
| w | ^ m and let wl9 w2, w3 be such that w = wl w2 w3 and \ w2\ ^ m.

Let us consider a dérivation tree T for w 'm H (J^). Let T be a subtree of T
obtained by removing from T all the nodes (and edges leading to them) that
do not "contribute" to w2.

Now, if || Score (w2) \\ ^ n then we set u2 = w2 and the lemma holds.
If not then we proceed as follows.
We divide nodes in T into three catégories :
type 0, neither a node labeled with] nor a node labeled with [is a among

direct descendants of such a node;
unary, among the direct descendants of such a node is either a node labeled

with] or a node labeled with [, but not both;
binary, among the direct descendants of such a node are both, a node labeled

with [and a node labeled with] .

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 281

Please notice that unary nodes can occur only at the left or right edge of T
and all the unary nodes occurring at the same édge form a path with all of
them directly contributing the same terminal symbol (either] or [) to w2.

Hence if T contains such a path of unary nodes not shorter than n, then it
suffices to take as u2 the subword of w2 which is the contribution of this path
to w 2.

If T does not contain such a "long enough" path, then it must contain
at least one path with at least (2/7+2) nodes that are binary. Let p be such a
path in T. Thus there are at least (2 n+2)/2 = n +1 branchings to the one side
(say the left one) of p. Let X be the binary node on p closest to the root of T
and let u2 be the contribution to w2 of all the nodes on p starting with X to
the left of p.

W2

Figure 1.

Clearly Score (u2) ^ n, and so the lemma holds.

MAIN RESULTS

In this section we will prove that, for ail i ^ 1, /-bracketed languages are
not EDTOL languages. Also as a corollary we obtain that Dyck languages
are not EDTOL languages.

vol. 11, n° 4, 1977

282 A. EHRENFEUCHT, G. ROZENBERG

Firts we shall prove that for ƒ (g) = 32 logf g we have arbitrarily long
words in 08 x which are /-random but of a "small" depth.

THEOREM 3:

Qfri)N@y) ^ [| y | > n and Depth (y) < 21og2 | j ; | and \i(y) < 321ogi |^|] .

Proof: Let x b e a word in &1 such that its dérivation tree in H (J^) is of
the form and is hat height n for some n > 1.

\v
Figure 2.

(In other words after erasing in this tree all nodes not labeled by S and
erasing ail connections leading to them one gets a full binary tree.)

Let E = { Bl9 B2 }. Let h be a homomorphism from { 2?l9 i?2 }* i n t °
{ [,] } * defined by h (B,) = [] and A (£2) = [[]] . Let w be an arbitrary
word over { B, B2 } such that the length of w equals the number of occurrence
of the word [] in x. Say w = blb2 . . . bj with bu . . ., bj in { 51 ? B2 }.
Let [a (u;) ^ /: for some k in TV.

Let x (w) be the word (over { [,] }) which is obtained from x by replacing
the /' th (from the left) occurrence of [] in x by \jt (&,)]. (For example if

and
w = B2Bl Bl B2 then x (w)

- [[[[[]]] [[]]] [[[]] [[[]]]]])•

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 283

Let us assume that n > 5.

1) Note that \x\ = 2 / l + 1 - 2 and \x(w)\^ 2 n + 1 - 2 + 2 " > 2n+1. Thus
n ^ log2 | x (w) |.

2) As Depth (x) = « and, for i in { 1 , 2 } ,

Depth {h (Bt)) ^ 2, Depth (x (w)) ^ n+2.

Thus Depth (x (w)) S n+n = 2n^2 log2 | x (w) |.
3) Let us note that the longest subword of x which does not contain []

as its subword is no longer that 2 n — 2. This implies that the longest subword
of x (w) which does not contain as a subword [h (Bt)~\ Z, where f e { 1, 2 }
and Z does not contain [] as a subword, is no longer that 2n — 2 + 5 = 2AZ+4.

4) If x (u?) contains a subword a which contains as a subword

[h (* , ,)] Z J t [A (f c i 2)] Z i 2 . . . [/ , (bik)] Z i k . . . (•)

for some il9 ..., ik in { 1, . . . ,y ' }, where none of Ztl, . . . , Zik contains []
as a subword, then no subword of x (w) disjoint with a is identical to a.

This follows because if x (w) would contain two disjoint occurrences of a
word a of the form (^) then w would contain two disjoint occurrences of an
identical subword of length k. This however contradicts the assumption that
\i (w) ^ k.

5) From 3 and 4 it follows that

\i(x(w)) S k.(2n + 4) ̂ 2k.(n + 2) ̂ 2kAn ^ 2fc.41og2 |x(u?)|.

From Theorem 2 we know that if / is a slow function such that ƒ (s) ^ 4 log2 s
then almost ail long enough words over S are /-random. Hence choosing n
large enough and choosing an /-random w we could assume that
k ^ 4 log2 | w |.

Thus

2fc.41og2|x(iü)| ^ 2.41og2 |n;|.41og2 |x(îi;)|

Consequently if we set y = x (w)9 the theorem follows.
Next we prove that in an EDTOL language L which is a subset of 0bx if

W is a long enough /-random word in L, for every slow function/ then the
depth of w is rather large.

THEOREM 4: Let L be an EDTOL language such that L g ^ , Then for
every slow function ƒ there exist a positive integer constant s and a positive
real constant r such that if w is an f-random word from L longer thon s then
Depth (w) > \w \r.

vol. 11, n° 4, 1977

284 A. EHRENFEUCHT, G. ROZENBERG

Proof: Let L be an EDTOL language such that L ç ^1 and let ƒ be a slow
function. We can assume that G = < V, £P, co, £ > is an EPDTOL System
such that L (G) = L. (See Theorem 4 in [4].) Clearly we can also assume
that L (G) contains infinitely many /-random words, as otherwise the theorem
is trivially true.

Let w be an /-random word long enough so that each dérivation of w in
G contains a long enough neat subderivation (see Theorem 1). Thus let

D = ((x0, . . . , x k) , (T o , . . . , Tk.t))

be a dérivation of w in G and let

Dx=((xio, . . . , x i q) , (fi09 . . . , Tiq,t))

be a sufficiently long neat subderivation of D.
In fact we assume that
1) If A is a small letter in Dl9 then:

Score (ContrD(7;04))) = Score (ContrD (7} (A))),

for every i, j in { /0, . . . , iq_1 }, and
2) There exists a big recursive letter R in Dl9 such that either, for every y' in

{ i0 , . . . , * « - 1 } , 7} W = à ^ ^ P^} with ' a ^ ^ A,

or, for every j in

{ î0 , . . . , iq_, }, Tj(R) = a</> R p^} with p«> * A.

(We will assume, without the loss of generality, that for every j in

{ i0, . . . , iq_ x }, Tj(R) = a^ R p</> with a ^ ^ A.)

3) For every big recursive letter B in Dl9 and for every /, j in

{*'o> •••> *«-i}> ifB^u1Bu2 and B^v1Bvl9
Ti Tj

then MX and i?x contain the same set of big letters and w2 and v2 contain the
same set of big letters.

We can assume the above conditions because if they would not hold
in Dl9 we could apply Lemma 1 and obtain from Dx a sufficiently long
subderivation of D satisfying these conditions. (Note that Score (ContrD

(T((A))) ^ | ContrD (ft (A)) \ ^ ƒ (| w \) if A is a small letter, and to have the
conditions 2 and 3 satisfied one has to divide the words in Dt into a constant,
dependent on # V only, number of classes.)

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN EDTOL 285

LEMMA 4: For every j in { i0. . . . , iq_1 },

| |Score(ContrD(7}(aJ/))))| |>0.

Proof of Lemma 4: Let us assume, to the contrary, that

Score (Contre (Tj (o#>))) = 0.

Note that Tj (a^)) contanis small recursive letters only and so (by changing
Z> in such a way that after applying Tj we iterate Tj an arbitrary number of
times before applying the next table from D1 and continuing in the manner
tables were used in D) for every n ^ 0 there is a word in L (G) which contains
(ContrD (Tj (oĉ 'O))" as a subword. But (with our assumption that
Score (ContrD (fj (<xU>))) = 0) if y is a subword of (ContrD (7} (a^>)))" then
Score (y) ^ 2 | ContrD (Tj (oc^)) |. This ho wever implies that L (G) would
contain words with arbitrarily long subwords the score of which is bounded
by 2 | ContrD (Tj (â ">)) | which contradicts Lemma 3.

Thus Lemma 4 holds.

L E M M A 5 : For every i, j in { i0, . . . , i q l } ,

sign(Score(ContrD(7;.(a^)))) = signCScoreCControC^Ca^)))).

Proof of Lemma 5 : Let us assume, to the contrary, that

sign (Score (ContrD(T;(a^)))) ^ sign (Score (ContrD (Ty (a$/})))),

for example that

sign (Score (ContrD (T£ (a^)))) > 0

and

sign (Score (ContrD(T7(a
(
K

y))))) < 0.

We will describe now (an infinité) séquence x0, xu . . . of compositions of
tables. Each of these compositions Xj may be used to change D into D (j) in
such a way that after applying Tt we apply x before continuing applying
tables in the manner they are used in D. (To better see what follows, recall
that T (a<j>), Tt (a^)), Tj (a^) and Tj (a^>) consist of small recursive letters
only).

0)

1)

vol. H, n»4,

to =

Xi («i

1977

?R) =

Tjf,.

?R) =

Tt(ptf)

T,(40)

o, for some ô

i » for

o eF*.

some

286 A. EHRENFEUCHT, G. ROZENBERG

2) X^TjfjT,.

x2 (cc<? R) = T, (oc<j>) 7} (c#>) 7} (c#>) o#> R ô2 ,

for some ô2 in V*.

Pi) xPl=(T}Y>Tt.

xPi («y> R) = T, («}?) 7} (o&°) 7} (««>)... Tj (atf) « ^ JJ 8P l ,

for some SPl in F*, where /?! is the smallest positive integer such that

sign(Score(ContrD(pi)(Tf(a«) Tj(a!g)... 7}(o#>)))) < 0.

Pi+2)

tPl + ! (ag»R) = 7J(o«>) 7}(
for some 5pi + i in V*.

for some 8Pl + 2 in V*.

v+P2 = (Tireur 7).

for some 8pi+P2 in F*, where p2 is the smallest positive integer
such that

sign(Score(ContrD(pi+P2)(7Xa£>)... 7}(o#>)... 7^(a^))))) > 0

i " T).

for some 8p i + p 2 + P 3 in V*, where /J3 is the smallest positive
integer such that

signCScoreCContr^ + ̂ ^ C T K a ^) 7}(o#) . . .

Tj(W) Tt(&>)... TÛa^) 7} (a«) . . . 7}(o^)))) < 0,
and so on.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 287

Thus what we are doing is alternating séquences of applications of ft

and Tj in such a way that the signs of scores of contributions of corresponding
substrings (consisting of small recursive letters) of strings derived from oc^ R
alternate.

But in this way L (G) contains strings with arbitrarily long substrings the
scores of which are limited by

4.max{|T;.(o#)| , |r,(o£>)| , ^ (a ^ l , |7}(c#>)|}.

This however contradicts Lemma 3.
Thus Lemma 5 holds.
To avoid notational troubles with double indices, for the rest of this proof

we change a denotation for the subderivation Dx.
Thus:

£ i = (O o , ...,}>,), (P o , . . . , P , - i))
where in fact

= Xi0 > • • • > yq = Xi Tiqmm 4

Thus we have now, for each / in

{0, . . . , « - 1 } , Pi(R) = a$Rfà) with oc^^A.

Note that the word x derived in the dérivation D has the word:

as a subword.
Let:

Let À be a séquence of tables which form the "tail" of D in the sensé that
A = Tt Tt . . . Tk t.

vq lq - 1 K - 1

Let:

Let us estimate Q1— 02. (Note that Bi represents the score of a subword
of a word in L (G), whereas 62 was chosen just for "computational" reasons.)

Let for a word Z over the alphabet of letters which occur in words of Dl9

Big (Z) dénote the word obtained from Z by erasing ail small letters from
Z and Small (Z) dénote the word obtained from Z by erasing all big letters
from Z.

vol. 11, n° 4, 1977

288 A. EHRENFEUCHT, G. ROZENBERG

Thus

6i = * î Score (ContrD (Pj (<x<T1}))
7 = 1

= Y Score (ContrD(P,-(Big(o#"1}))))
7 = 1

+ Ç Score (ContrD (P, (Small (oc<T *>)))),
7 = 1

and

Score (A (Pj (Small (a ^

7 = 1

q-1

+ Y Score (A (Pj (Small (a^"^))))
7 = 2

(because of the Condition 1 satisfied by D^.
Thus:

ei-02 = Score(ContrD(P,_1(Big(a^-2)))))

4- Score (ContrD (Pl (Small (40))))).
Now let

é°) = Z1BiZ2B2...ZlBlZl+i, where Z ! , ^ !

do not contain big letters and Bl9 . . . , Bt are big letters. (Note that l < 9 V.)
Then:

0,-02 = Score(ContrD(P,_1(Big(ar2)))))

+ X Score (Contr^P^Z;))).

Let
c t ^ ~ 2) = u l C l u 2 C 2 . . . u t C t u t + l 9 w h e r e u 1 ? . . . , u t + l

do not contain big letters and Cl9 ...,Ct are big letters. (Note that
f < # F.)

Then: f

O i - 0 2 = I

+ X Score (ContrD (Px (Zf))).

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 289

Thus:
/ t l+l \

^-l £ Score(ContrD(P,_1(Q)))+ I Score(ContrD(P1(Zt))) = 9 2 .

But, for some positive real constant r, the length of Dt is larger than | w \r

and each component in the formula:

7 = 1

is different from 0 and is of the same sign (Lemmas 4 and 5). Thus:

||e2|| > H'-1.
Consequently, the absolute value of one of the following: 8 l5

Score (ContrD (Pq _ x (Q))), for 1 ̂ i ^ t,

Score (Contrö (i \ (Z,-))), for 1 ̂ î ^ / + 1

must be larger than | w Y'112 (# V).
This together with Lemma 2 yields us Theorem 4.
Now we can prove the following resuit.

THEOREM 5: If L is an EDTOL language such that L s @x then L # Jf1#

Proof: Theorem 3 says that £iïx contains arbitrarily long /-random
words (for a slow ƒ (| y \) = 32 log^ | j |) of a rather small depth
(Depth (y) < 2 log | y |). But Theorem 4 says that in every EDTOL language
L which is included in ^x if an /-random word y (for every slow ƒ) is long
enough then Depth (y) is rather large (Depth (y) > | y \r for a positive real
constant r). Thus L cannot contain all the words from ^ and Theorem 5
holds.

We leave to the reader the easy standard proofs of the following two results.

THEOREM 6: If L is an EDTOL language and h is a homomorphism, then
h (L) is an EDTOL language.

THEOREM 7: Every regular language is an EDTOL language. If L is an
EDTOL language and R is a regular language then L n R is an EDTOL
language.

Now we can prove three main results of this paper.

THEOREM 8: For every i > 1, 01 { is not an EDTOL language.

Proof: As a direct corollary from Theorem 5 we have that ^1 is not an
EDTOL language. But then from Theorem 6 it follows that, for every
i ^ 0, J1! is not an EDTOL language.

vol. 11, n° 4, 1977

290 A. EHRENFEUCHT, G. ROZENBERG

Let us now recall the notion of a Dyck language (see, e. g., Salomaa [12],
p. 68). Let, for

^ h Vi = {ai, a'l9 a2, a2, . . . , an9 a n) .

The context free language Dt generated by the context free grammar

}, Vi9 {S^A, S^SS, S^a.Sa',, . . . , S ->fl,Sflî}, S>

is termed the Dyck language over the alpxabet Vt.

THEOREM 9: For every i ^ 8, Dt is not an EDTOL language.

Proof: Let us first recall the following well-know resuit (see, e. g., Salo-
maa [12], Theorem 7.5): for an alphabet E of m letters there exists an alphabet
Vi of i = 2 m+4 letters and a homomorphism h from V* onto S* such
that, for every context free language L over S, there is a regular language R
over Vt with the property L = h (Dt n R).

But J \ is a context free language over an alphabet E consisting of m = 2
letters and by Theorem 8, 8ftx is not an EDTOL language. Thus from the
above and Theorem 7 it follows that D8 is nöt an ETOL language. Hence
by Theorem 6 it follows that, for no / ^ 8, Dt is an EDTOL language which
proves the theorem.

As a corollary from either Theorem 8 or Theorem 9 we have the following
resuit.

THEOREM 10: There exist context free languages that are not EDTOL
languages.

DISCUSSION

We have shown that there exist context free languages which are not EDTOL
languages. This resuit is directly used in [6] to show the existence of indexée
languages (see [1]) that are not ETOL languages and in [7] to show the
existence of top-down deterministic tree transformation languages that are
not indexed.

In fact our results have further implications.
1) They settle a controversy on the existence of context free languages

that are not parellel context free languages (see [14] and [15]). Because the
class of parellel context free languages is clearly contained in the class of
EDTOL languages we have provided an alternative proof to this of [15] that,
almost ail, Dyck languages are not parallel context free languages.

2) Following Salomaa [13], our Theorem 10 implies that (we use hère
Salomaa's notation from [13]):

The pairs (CF, IP), (ED, PPDA), (ED, ETOL) are incomparable, IP is
properly contained in RP, ER is not contained in ETOL and ED is not contain-
ed in RP.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

ON CONTEXT FREE LANGUAGES NOT IN E D T O L 291

As the most important open problem in connection with results présentée
in this paper we consider the problem of giving a characterization of context
free languages which are not EDTOL languages.

REFERENCES

1. A. AHO, Indexed Grammars, an Extension of Context Free Grammars, Journal o f
the A.C.M., Vol. 15, 1968, pp. 647-671.

2. P. A. CHRISTENSEN, Hyper AFVs and ETOL Systems, in [11], 1974.
3. P. DOWNEY, OL Systems, Developmental Systems and Recursion Schemes,

Proceedings of the LE.E.E. Conference on Biologically Motivated Automata,
Theory, McLean, Virginia, 1974, pp. 54-58.

4. A. EHRENFEUCHT and G. ROZENBERG, On the Structure of Dérivations in Deter-
ministic ETOL Systems, to appear in Journal of Computer and Systems Sciences.

5. A. EHRENFEUCHT and G. ROZENBERG, A Pumping Theorem for Deterministic
ETOL Languages, Revue Française d Automatique, Informatique et Recherche
Opérationnelle, R-2,9, 1975, pp. 13-23.

6. A. EHRENFEUCHT, G. ROZENBERG and S. SKYUM, A Relationship between ETOL
and EDTOL Languages, Theoretical Computer Science, Vol. 1, 1976, pp. 325-330.

7. J. ENGELFRIET and S. SKYUM, Copying Theorems, Information Processing Letters,
Vol. 4, 1976, pp. 157-161.

8. G. T. HERMAN and G. ROZENBERG, Developmental Systems and languages, North-
Holland Publishing Company, Amsterdam, 1975.

9. G. ROZENBERG, Extension of tabled OL Systems and languages, International
Journal of Computer arrd Information Sciences, vol. 2, 1973, pp. 311-334.

10. G. ROZENBERG and A. SALOMAA, The mathematical theory of L Systems, in
J. T. Tou, Ed., Advances in Information Systems Science, Vol. 6, 1976,
pp. 161-206.

11. G. ROZENBERG and A. SALOMAA, Eds., L Systems, Lecture Notes in Computer
Science, Springer Verlag, Heidelberg, Vol. 15, 1974.

12. A. SALOMAA, Formai languages, Academie Press, London, 1973.
13. A. SALOMAA, Parallelism in rewriting Systems, Lecture Notes in Computer Science,

Springer Verlag, Heidelberg, Vol. 14, 1974, pp. 523-533.
14. R. SIROMONEY and K. KRITHIVASAN, Parallel context free languages, Information

and Control, Vol. 24, 1974, pp. 155-162.
15. S. SKYUM, Parallel context free languages, Information and Control, Vol. 26,

1974, pp. 280-285.

vol. 11, n° 4, 1977

