
RAIRO. INFORMATIQUE THÉORIQUE

S. A. GREIBACH
A note on NSPACE (log2 n) and substitution
RAIRO. Informatique théorique, tome 11, no 2 (1977), p. 127-132
<http://www.numdam.org/item?id=ITA_1977__11_2_127_0>

© AFCET, 1977, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1977__11_2_127_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(vol. 11, n° 2, 1977, p. 127 à 132).

A NOTE ON NSPACE(log2 n) AND SUBSTITUTION (1)

par S. A. GREIBACH (2)

Communicated bv R. V. BOOK

Abstract. — NSPACE(log2 n) is closed under substitution into linear context-free languages
and under nonerasing substitution into almost simple multihead finite state acceptor languages.
Consequently it contains the substitution closure of the on-line one counter and of the linear
context-free languages. NSPACE(log2 n) is closed under nonerasing substitution into 2-head
one-wav finite state acceptor languages if and onlv if it is closed under nonerasing substitution ij and
only *ƒ NSPACE(log2 n) = P = NP.

It is not known whether the class of languages acceptée by log space bounded
Turing machines is closed under nonerasing substitution — or even under
nonerasing homomorphism. However, we observe that we can prove closure
in two very limited cases.

In this note we assume that our Turing machines have a two-way read
only input tape with endmarkers and one working tape. A machine M accepts
in time T(n) (space S(n)) if for each string w accepted by M there is an
accepting computation of M on input w taking at most r(Max (1, |iv|))
steps (using at most S(\w\) squares of the working tape) (3). We write the
language accepted by M as L(M). Ail machines are assumed nondetermi-
nistic unless otherwise specified.

DÉFINITION 1 : Let

NSPACE(log2 n) = {L(M)\M is a Turing machine accepting in space

log2 // \ .

P = {L(M)\3k ^ 1. M is a deterministic Turing machine accepting in

time nk j . and

NP = { L(M) | 3 A: ^ 1, M is a Turing machine accepting in time nk \.

(1) Received 8-9-76 and in final form 24-9-76. This paper was supported in part by the
National Science Foundation under Grant DCR 74-15091.

(2) Department of System Science, University of California, Los Angeles
(3) For a word \\\ \w\ is the length of vr.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. i 1. n' 2. 1977

128 S. A. GREIBACH

A multihead finite state acceptor is a device with a finite state control,
no working tape, and an input tape with endmarkers and some number of
two-way read only heads. We shall use freely the fact that NSPACE(log2 n)
is equal to the class of languages accepted by multihead finite state acceptors
(cf. [2], [7]).

Now we give our formai définitions of substitution and of linear context-
free grammars and languages.

DÉFINITION 2 : Let E b e a finite alphabet. A substitution x on Z* associâtes
to each a in E a language x(a) and is extended to Z* by x(e) = { e }, for
the empty string e, and x (ax) = x (a)z(x) for a in Z and x in Z*, and to a lan-
guage L by x (L) = { y | for some w in L, y is in x (w) }. We call x nonerasing
if x (a) does not contain <? for every a in Z. For a class of languages L, we call x
an L-substitution if x(a) is in L for each a in Z. For classes of languages Lt

and L2, we say that L2 is closed under substitution (nonerasing substitution)
into Lx, if x (L) is in L2 whenever L is in Lx and x is an L2-substitution (a none-
rasing L2-substitution).

Our first theorem concerns substitution into linear context-free languages.

DÉFINITION 3 : A context-free grammar is a quadruple G = (F, Z, P, S)
where F is a finite vocabulary, Z is contained in F, S is in V — Z and P is a
finite set of productions or rules of the form Z —• y for Z in V — Z and y
in F*. If for each rule Z —• y in P, y contains at most one member of F — Z,
then G is linear context-free. For Z —• y in P, w and t; in F*, we write wZt; => uyv

and let =S> be the transitive reflexive extension of =>. The language gênerated
by Gis

L(G) = { w i n Z * \S^> w }.

We call L(G) a context-free language; if G is linear context-free, then L(G)
is a linear context-free language.

THEOREM 1 : NSPACE(log2 n) is closed under substitution into linear context-
free languages.

Proof : Let L ç Z* be a linear context-free language and x a substitution
on Z such that x(a) is in NSPACE(log2 n) for each a in Z. We can clearly
assume that L = L(G) for a grammar G = (F, Z, P, 5) ail of whose rules are
of the forms Z -+ aY. Z -> Ya. Z -> <?, for a in Z and Z and F in F — Z. Also
each z(a) = L(Ma) for a nondeterministic /ca — head finite state acceptor Ma.

We sketch the construction of a multihead finite state acceptor M for x (L).
This machine will have 5 + Max({ ka | a in Z }) heads. We distinguish the
first 5 heads as E, L l 5 L2, JRX and R2.

First notice that using head E whose position will be unimportant, M can
perform simple tasks such as : détermine whether heads / and j coincide,

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

A NOTE ON NSPACE (log 2 «) AND SUBSTITUTION 129

détermine whether / lies to the left of y, move head / to coincide with y, move
head / somewhere right of /. The idea is that head t can be put on the left
endmarker and heads / and y moved left and E right in synchronism. In this
way the relative locations of / and y can be determined while E holds their
places.

If e is in L, M guesses initially whether or not it is looking for a word in
x (w) = { e } ; if Mis, M can détermine ad hoc whether the input tape contains e.

Otherwise, M assumes that it is looking for a word in x (w) for some w ^ e.
Initially, M has heads Lx and L2 on the left endmarker and moves Rx and R2

to the right endmarker. It has a production register in its finite state control into
which it initially puts an arbitrary production of P with left had side S. Then
the first cycle starts.

Now suppose that we are at the start of a cycle. First M examines the pro-
duction in its register. There are three cases; the cases Z -+ aY and Z -> Y a
are obviously symmetrie, so let us discuss Z -• aY. If e is in x(a\ M can
nondeterministically replace Z -• aY by any production with left hand side Y
and go to the next cycle. If M does not or cannot elect this alternative, then
M moves Lx to coincide with L2 and then moves L2 a number of spaces right,
checking that L2 remains left of R1. Then M moves ka heads to coincide
with L1 and starts simulating Ma. In this simulation, head Li represents
the left endmarker of the input tape of Ma, while the square on which L2 sits
is imagined to contain both the rightmost input symbol of Ma and the right
endmarker. Each time one of the ka heads simulating the heads of MA is moved,
head E is used to check whether the head moved now coincides with either Lx

or L2; this also prevents motion left of Lx or right of L2. When and if Ma

reaches an accepting configuration, M places in its production register any
production with left hand side Y and proceeds to the next cycle. The case of a
production Z -• Ya is similar except that hère R2 will mark the right end-
marker of Ma and R1 both the left endmarker and the leftmost input symbol.

A production Z -• e is handled differently. Now M détermines whether L2

and Rx occupy immediately adjacent positions, Rx to the right of L2. If they
do, then M has verified that the whole input lies in x(w) for some w in L(G\
so M accepts. •

The key to the proof of Theorem 1 lies in the fact that a linear context-free
language can be accepted by a 2-head nondeterministic finite state acceptor
such that no head reads — i.e., observes the contents, not just the relative
location — the same square twice and the two heads never read the same
square. A similar construction will work for any class of multihead machines
such that no input square is read twice and this condition is imposed in some
regular way. One class of such machines is the class of simple multihead
finite state machines introduced by Ibarra [6], [8]. A simple multihead machine
has one-way (left-to-right) input heads such that only one head (the sensing

vol. 11, n°2, 1977

130 S. A. GREIBACH

head) can distinguish the input symbole; the other head^ (the Lountîng heads)
can only distinguish whether or not they are on an endmarker. We relax the
condition slightly to get the family of almosî simple machines.

DÉFINITION 4 : An almost simple multihead finite state acceptor has one
sensing head which moves left-to-right on the input tape and can distinguish
the input symbols from each other and from the endmarkers, and any number
of counîing heads, which can move in both directions on the input tape and can
distinguish input symbols from endmarkers but not from each other.

The class of almost simple multihead finite state acceptor languages is
readily seen to be equal to the class of languages accepted in log2 n space by
Turing machines with a one-way input tape ; however the finite state acceptor
formulation is more convenient for our purposes.

THEOREM 2 : NSPACE(log2 n) is closed under nonerasing substitution into
the class of almost simple multihead finite state acceptor languages.

Proof : This time we consider a language of the form x {Lx\ where L1 ^ S*
is the language accepted by an almost simple A:-head finite state acceptor Afl

and T is a nonerasing substitution on Z* such that for each a in E, x (a) — L (Ma)
for some ka head finite state acceptor Ma.

The construction of a multihead finite state acceptor M for x (Z^) is similar
to the construction in Theorem 1. This time M has 5 + k + Max ({ ka \a in S })
heads. The first 5 heads are called E, Cx, C2, L and R.

Again, if e is in i(Lt\ M accepts e in an ad hoc fashion and otherwise
assumes it is verifying that the input is in x(w) for some nonempty w in Lx.
The sensing head of M1 moves left-to-right across w. To find Mx's input
symbols, M moves heads L and R across the input, marking out substrings
guessedto belong to some x(a). Machine M simulâtes Ma as in the proof of
Theorem 1, regarding L as the left endmarker of Ma and R as the right. If the
simulation is successful (ending in an accepting configuration of Ma\ then the
head simulating the sensing head of Mx can behave as if it has just read a.
The heads simulating the k — 1 counting heads of Mx need only have |w|
squares marked off for them; since x is nonerasing, \w\ is no longer than the
input of M. So M first moves head Cl right to some arbitrary square ; if this
square is, say, / squares right of the left endmarker it represents a guess that
\w | = i — 1. Then the heads simulating the counting heads of Mt will move
between the left endmarker and Cx, regarded as the right endmarker for Mx ;
after one of these heads is moved M uses head E to check that the head has not
moved right of C\. To verify the guess for | w\, M moves head C2 right after
each simulation of a machine Ma and at the end compares its position with
the location of C\. •

An on-line one counter acceptor has one-way input head and a counter
forworking tape. The class of on-line one counter languages is closed under

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

A NOTE ON NSPACE (log 2 n) AND SUBSTITUTION 13i

erasing finite (and in fact regular) substitution and each such language can be
accepted by an almost simple finite state acceptor with one sensing and one
counting head [3], [4]. An erasing substitution can be effected by an erasing
finite substitution followed by a nonerasing substitution. So NSPACE(log2 n)
is closed under substitution into on-line one counter languages.

COROLLARY 1 : NSPACE(log2 n) is closed under substitution into the substi-
tution closure ofthe linear context-free and the on-line one counter languages.

COROLLARY 2 : NSPACE(log2 n) contains the closure under substitution of
the linear context-free languages and the on-line one counter languages.

It is not known how Corollary 2 can be strengthened and in particular
whether NSPACE(log2 n) contains ail context-free languages. Sudborough
showed that NSPACE(log2 n) contains ail context-free languages if and only
if it contains ail languages accepted by nondeterministic polynomially time
bounded, log2 n space bounded auxiliary pushdown store acceptors [9].

We can see that it is not very likely that Theorem 2 can be significantly
strengthened. If we try to consider multihead finite state machines with either
two one-way sensing heads or one two-way sensing head and one two-way
counting head. we run into the usual P vs NP problem.

THEOREM 3 : The following statements are equivalent.

(1) NSPACE(log2 n) = P = NP.
(2) NSPACE(log2 n) is closed under nonerasing substitution.
(3) NSPACE(log2 n) is closed under nonerasing substitution into the class of

languages accepted by deterministic 2-head finite state acceptors with two
one-way sensing heads.

(4) NSPACE(log2 n) is closed under nonerasing substitution into the class of
languages accepted by deterministic 2-head finite state acceptors with one
two-way sensing head and one two-way counting head.

Proof : Since NP is closed under nonerasing substitution (as can be seen
using the methods of [1]), (1) implies (2). Obviously (2) implies (3) and (4). On
the other hand, suppose that either (3) or (4) holds. For any polynomially
time bounded Turing machine M, consider the language LM consisting of all
strings of the form wcw\c . .. wtc where wl9 . . . , wt are the successive instan-
taneous descriptions of an accepting computation of M on w, written in an
alphabet distinct from the input alphabet of w and c is a new symbol. It is not
hard to see that LM can be accepted by machines of the types described in (3)
and (4). Now a nonerasing homomorphism is a particular type of nonerasing
finite substitution. Thus if either (3) or (4) hold, NSPACE(log2 n) must contain
LC

M, which is obtained from LM by turning everything after the first c into c's.
If Lt ^ L*, c is a symbol not in X, and ƒ is a nondecreasing function, then L2

vol. 11, n° 2, 1977

132 S. A. GREIBACH

is an f-représentative of Lt if L2 ^ Lxc* and for each w in L1? there is an
integer m ^ f(\w\) such that wcm is in L2. If ƒ is a polynomial, we call an
/-représentative & polynomial représentative. If NSPACE(log2 n) contains any
polynomial représentative of L1? it contains Lx [5]. Clearly LC

M is a polynomial
représentative of L(M). Hence if LC

M is in NSAPCE(log2 n\ then L(M) is also
in NSPACE(log2 n). Thus either (3) or (4) implies that NP is contained in
NSPACE(log2 n) and so (1) holds. D

We can also remark that Theorems 1 and 2 although based on the same proof
strategy are independent, since the classes of linear context-free languages
and of almost simple multihead finite state acceptor languages are incom-
parable [5].

REFERENCES

1. R. V. BOOK, S. A. GREIBACH and B. WEGBREIT, Time- and Tape-Bounded Turing
Acceptors and AFLs, J. Computer System Sciences, 4, 1970, p. 606-621.

2. S. A. COOK, Char acier izations of Pushdown Machines in Terms of Time-Bounded
Computers, J. Association Computing Machinery, 18, 1971, p. 4-18.

3. S. A. GREIBACH, Erasable Context-Free Languages, Information and Control, 29,
1975, p. 301-326.

4. S. A. GREIBACH, A Note on the Récognition ofOne Counter Languages, Revue Française
d'Automatique, Informatique et Recherche Opérationnelle, R-2, 9, 1975, p. 5-12.

5. S. A. GREIBACH, Remarks on the complexity oj nondeterministic counter languages,
Theoretical Computer Science, 1, 1976, 269-289.

6. O. H. IBARRA, A Note on Semilinear Sets and Bounded-reversal Multihead Pushdown
Automata, Information Processing Letters, 3, 1974, 25-28.

7. O. H. IBARRA, On two-way multihead automata, J. Computer System Sciences, 7, 1973,
p. 28-36.

8. O. H. IBARRA and C. E. KIM, A Useful Device for Showing the Solvability of Some
Décision Problems, Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing, Hershey, Pennsylvania, May, 1976, p. 135-140.

9. I. H. SUDBOROUGH, On Deterministic Context-Free Languages, Multihead Automata,
and the Power of an Auxiliary Pushdown Store, Proceedings of the Eighth Annual ACM
Symposium on Theory of Computing, Hershey, Pennsylvania. May. 1976. p. 141-148.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

