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THE DECIDABILITY
OF THE EQUIVALENCE PROBLEM

FOR POLYNOMIALLY
BOUNDED DOL SEQUENCES (*)

by Juhani KARHUMÀKI (*)

Communicated by J. BERSTEL

Abstract. — // is proved that the équivalence problem for polynomially bounded DOL
séquences is decidable.

1. INTRODUCTION

The problem of whether two DOL Systems generate the same séquence,
i.e. the DOL équivalence problem, was introduced (for propagating
systems) in [7]. Since then many attempts have been made to solve the
problem, and its decidability has been established in certain special cases.
For instance Culik [1] and Valiant [9] have shown that the problem is
decidable for so-called smooth families of DOL systems, and using this
result Culik deduced the decidability for so-called simple DOL séquences
and Valiant for binary DOL séquences. Moreover, it is known to Ehrenfeucht
and Rozenberg that the problem is decidable for polynomially bounded DOL
séquences, see [8].

In this paper we intend to give a proof for the result of Ehrenfeucht
and Rozenberg. Our proof is rather technical and the resulting algorithm
is not at all practical. On the other hand, our considérations show that the
family of polynomially bounded DOL systems forms a smooth family
of DOL systems. Thus, the result of Culik and Valiant gives another
algorithm to check the equality of two polynomially bounded DOL séquences.
Unfortunately to prove the smoothness we need almost everything presented
in this paper. So the result of Culik and Valiant does not shorten our
considérations.

(*) Received April 1976. Revised June 1976.
f1) Department of Mathematics, University of Turku, Finland.
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18 J. KARHUMAKI

Our proof is based on the following ideas. We are throughout working
with equivalent polynomially bounded DOL séquences. So we obtain certain
necessary conditions for the equality of two séquences, the most essential
being that a certain finite number of DOL séquences with a lower growth
order must be equivalent. Moreover these conditions turn out to be
sufficient, too. So we may conclude inductively the existence of the algorithm.

2. PRELIMINARIES

Let G — < E, co, 5 > be a (reduced) DOL system, see [4], G is said to
be polynomially bounded iff there exists a polynomial p such that

|5"(©)|< p(n) for n > 0,

where the vertical bars dénote the iength of a word. Assume now that G
is polynomially bounded. Then each letter a in E satisfies

|5"(a)| <<?(«), « > 0 , (1)

for some polynomial q. If (1) is valid for a polynomial of degree N but
is not valid for any polynomial of degree N — 1, then a is said to be of
growth order N. Obviously we may also talk about the growth order of
a word or a DOL system. By a linear DOL system we mean a DOL system
having the growth order 1.

Dénote
Et- = { a e E | a is of growth order i }.

Then it is easy to show that G has the following structural properties,
see [2]. First, for each i > 1 and for each letter a e Ef the system < E., a, 8|Sf >
is X-free and it générâtes a finite language. (Here the value of the homo-
morphism S|Sf. : I*—>£? on b is obtained from b(b) by erasing from it all
letters in E — E .̂) So each letter in Ei produces in each step at least one
letter of Ef. Secondly, each letter in E£ dérives in a number of steps at
least one letter of Ej for all j < i. These facts are utilized later several times
without further mention.

Let P be any word in E* and V c E. Then we define

swF (P) = the maximal subword of P belonging t o { X } u F u F E * F

and

*v(p) = E *.(n
aeV

where # a (P) dénotes the number of a's in P. Moreover, by min (P). we
mean a set of letters occurring in P.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



POLYNOMIALLY BOUNDED DOL SEQUENCES 19

3. THE RESULT

In this section we prove

THEOREM l : The équivalence problem for polynomially bounded DOL
séquences is decidable.

To prove the Theorem we state an induction hypothesis : The équivalence
problem for polynomially bounded DOL séquences with a growth order
less than N, where TV > 2, is decidable.

Assume now that G = < S, co, 5 > and G' = < E, co, o' > are two equivalent
polynomially bounded DOL Systems with growth order N, where N > 2.
Let Zis for i = 0, . . . , N, be as in the previous section and further dénote

£< = { « G I ( I #El(8*(*)) = 1 for all k, and a e min (bk(a))

for some k > 1 },

I e = Ü L', 2" = (J E?,
i = 0 i = 0

Vo = { a e S | (#a(5*(œ)))t>0 is bounded },

Vx = { a G S - Ko I U # f l ( 5 » ) ) k > 0 is bounded },

and similarly ï ; , . . . , F ; for Gr. Let us call letters in Ec, E", Vo and ^ CJC/ÏC,

noncyclic.finite and /mear /err^r5 with respect to G. Obviously the équivalence
of G and G' implies

(0 y0 = v'o and vx = F ; .

Now we characterize Vo in terms of so-called maximal letters. A letter a
in lti is called maximal (or V0-maximal) with respect to G iff it is noncyclic
and not derived from any letter in Zc or it is cyclic and not derived from

JV

any letter in U EJ- Let Wo be the set of V0-maximal letters. Then obviously Wo

contains all letters from ZN and, in addition, it may contain some other
letters, too. Moreover, we have

Wocz V09

or more precisely

VQ = Wov{ael*n\ there exists a dérivation path from a letter b in Wo to a,

while there exists no such path containing a letter in Sc — Wo } .
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20 J. KARHUMAKI

Let P be any word in I**(W0 n SC)I*. We say that P is bounded (or
VQ-bounded) with respect to G iff the séquence

is ultimately periodic (i. e. the corresponding length séquence is bounded).
Otherwise P is said to be unbounded (or V0-unbounded).

It should be clear, by the characterization of Vo, that there exists an n0 such
that, for all n > n0, we can write

ô"(co) = a o P 1 a 1 . . . o . - iP .o , , (2)

where a ^ . . . as^ Z* J^Z*, P[s are ï^-bounded and the words PiaiPi + 1

are ^-unbounded. Note that hère s is independent of n because every
J^-bounded (resp. ï^-unbounded) word dérives according to G a Vo~
bounded (resp. J^-unbounded) word. Furthermore, the représentation (2)
is unique if n0 is great enough (so that a1? . . ., as_x can be chosen "long")
and all P'ts are chosen to be cyclic in the sense that swVo(b

k(Pi)) = Pt for
some k > 1. Using this unique représentation we may describe the direct
dérivation, for n > n0, as follows

ÔM(CÛ) = a 0

il''i/i (3)

Observe now that G and G' are equivalent not only in E but also in Vo.
So the assumption that a1? . . . , as_x are "long" implies

showing that the représentations (2) and (3) are valid both for G and for G'.
Now, clearly, the équivalence of G and G' implies (and is implied together

with (i) by)

(ii) 5"(©) = 8/M(co) for n < n0,
( i i i ) A ( P i a i P i + 1 ) = A ' ( P i u i P i + 1 ) f o r i = 1 , . . . , j - l ,
(iv) A ' K P J = AvfroPJ and As(Psas) = A's(PsaJ,

where ô"°(co) = OL0P1OL1 . . . Us-iPs^s a n ( i ^ P (resP- ^s) i s defined as A with
the différence that " maximal subword " in the définition of swv is replaced
by "maximal prefix" (resp. "maximal suffix").

From this on we consider the condition (iii) for a fixed (i). The reader
will have no difficultés in converting our considérations to cover also
the séquences in (iv). Further to simp.lify notations we dénote Pt = P,
p . + 1 = Q and cx£ = a. Observe that the séquences A(Pag) and A'(PocQ) are

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



POLYNOMIALLY BOUNDED DOL SEQUENCES 21

"almost DOL séquences", and it is easy to convert them to DOL séquences
without affecting the equality of the original séquences. (This is done by
assuming that P's and Q's are in disjoint alphabets and by introducing, if
necessary, some new copies of certain letters). So assume that À ( P a g )
and A'(Pocg) are DOL séquences generated by G and G\ respectively.
If these séquences are of a growth order less than N then their equality can
be solved by the induction hypothesis. So let us assume that they are of
growth order N.

We continue by characterizing Vl, the set of linear letters. For this purpose
we need a notion of a ^-maximal letter. A letter a is called V^-maximal
with respect to G iff it is maximal in the previous sense with respect to the
system < £ — Vo, v, 5 ( X — Vo >, where v is any word in (E — Vo)

+. So all
^-maximal letters are in E — Vo and furthermore each of them is derived
from a letter in Vo. The characterization of V1 is now very similar to that of
finite letters : Vx contains :

a) W^ = the set of ^-maximal letters, and
b) each noncyclic letter a having the property : there exists a dérivation

path from a letter in Wx to a, while there exists no such path containing a letter
in I e - Wv

As before we may also talk about Frbounded and Fx-unbounded words
with respect to G or G'. Moreover, by a P^-cyclic word we mean a word P
satisfying swVx (8

k(P)) = P for some k > 1. Using these notations we write

Ano(P*Q) = />noPo*iPi . . . Pp-i*PPpO„o> (4)

where pjs are "long" words of (E - (Vo u ^ ) ) + , ify are both J^-cyclic
and ï^-bounded, and the words Rfi^i+i are ï^-unbounded. If Ano(P<xQ)
has no such représentation choose a greater n0 having one. This is possible
because G is of a growth order of at least 2.

Observe now that the words swVi (5(jRf)) are both P^-cyclic and ^-bounded,
while the words lsHv1(5(jRipiiÊi+1)) are Krunbounded. So A n o + 1 (Paô) can
be written also in the form (4) possibly with a greater /?, because it is quite
possible that Pno (or Qno) produces some new F^bounded words. Of course
one must ensure here that all the words of the form Rt Ç>tRi+ x in Ano + 1 {POLQ)

are ï^-unbounded and that all P-words are "long". But these demands do
not cause any problems.

The above considérations show that we can write, for all n > n0,

A„(PyiQ) = ^ P o K . P , . . . Vp-xRp$tQn. (5)

where p,- and /?,-words are as in (4). Similarly. for all /; > n0. we obtaifl

A'„(PxQ) = pjoRiK ... p ; _ 1 ^ p ; e ; , (6)
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22 J. KARHUMÂKJ

where the words pj and R[ are defined as above but now with respect to G'.
In addition, the words Pn and P'n (resp. Qn and Q'n) are supposed to be
i n Z * ^ (resp. J^X*).

Since P rand P'rwords are "long" and Rr and jR'rwords are "short" (by
their cyclicity) it follows that if \Pm\ > \P'm\, then Pm = P'm% ... Rio for
some i0. But the représentation Pm$f

ioR'io+l ... Q'm is of the form (6)
showing that a situation where P„ = P'n for all n > n0 is easily achieved.
Similarly we may assume that Qn = Q'n for all n > n0, and moreover the
séquences (Pn)n>no and {Qn)n>no may be supposed to be periodic. A similar
argument based on the different lengths of (3r and pj-words compared with
Rr and Rf

rwords shows further that R^ = R\. So, finally, it follows that/? = q
and that Rt = R[ for / = 1, . . . , / ? . Let us dénote

L = the set of Rr (or i?;.-)words. (7)

Thus we have proved that the représentation (5) is valid both for G and
for G'. Moreover, the above shows that the direct dérivation according to G
looks as

Here we have omitted some arrows compared with formula (3). Furthermore,
in this illustration k and m (dependent on n) are assumed to be nonnegative.
However, after we have chosen longer préfixes we can no longer be sure
of the fact that 8(P„) is a prefix of Pn+1. So we must allow the case where k
or m is négative (for some n\ meaning that some Rrwords may produce
a part from Pn + 1 (or Qn+1) and thus in a sensé "disappear". But this
does not cause any further problems.

Obviously the direct dérivation according to G' has a représentation
similar to (8), the différence being that the number of new 7?rwords introduced
by Pn (or Qn) may be different. In what follows we show that this is not
possible.

Our first observation is that in each step the number of new Rrwords
created by Pn and Qn together according to G is the same as that according
to G'. But we can say even more: The number of new i?rwords introduced
by P'ns (or Q'ns) in a common period of (Pn)n>n0

 a n d (ö„)„>*0 is the same
according to both Systems. This follows because otherwise the longest prwords
in An(PaiQ) and A'n(PaQ) would be in different places, and so the séquences
would not be equivalent.

From now on we suppose that both P'ns and Qns produce Frbounded
words according to G and G'. (The argument above shows that both the
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Systems behave in the same way; so the only other possibility is that
only P'ns (or Q'ns) produce Frbounded words. But this is essentially the
same case as (iv)).

Now the problem is : Can Pn for some n introducé more Fx-bounded words
according to G than according to G'? Assume that this is the case, and
let words Pni+jî, for j> 0, possess the property. Now take from the
dérivation trees A (Pa Q) and A' (Pa Q) those levels indexed on numbers n1 + jt
and nx + 1 4- jt with y > 0. The séquences thus obtained must of course be
equivalent. Moreover, they may be regarded as DOL séquences because it is
easy to convert them to DOL séquences without affecting the equality
of the original séquences. (The construction can be carried out with (slightly
generalized) décompositions of DOL Systems, see [5]). So we may assume
that the DOL Systems G and G ' generate the dérivation trees described above.
These trees restricted to J^-bounded words look as

A

B

A

(9)

Figure 1.

where the nodes represent éléments of L, where i means the direct dérivation
according to G and ^ ' o r N ^ the direct dérivation according to G'. Observe
that levels A are those where Pf

ns produce more éléments of L according
to G than according to G', while on levels B the situation is the opposite. (In
our illustration the above word "more" must be read as meaning "exactly
onemore").

We continue by writing

) = PHyHSAQm9 (10)

with Sn e ((£ - J^)*L)*(£ - J^)*, where S'ns are chosen in such a way that
all R'ts on the lelt (resp. right) hand side of Sn are created by P'ns (resp. Q'ns)
according to G, and K is chosen as small as possible. Note here that K is
independent of n. Dénote further

O\ = the ïth occurence of s„ belonging to L(L - VX)*L,
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24 J. KARHUMÂKI

and

V\ = the fth occurence of yn from the right belonging to L(E - ^)*L,

Next we are going to show that there exist iu i2, n1 and n2 satisfying

Vil = OL2.

For this purpose let us consider a fixed VJ
m. Define

x _ J - o n t n e levels A of (9),
5' on the levels B of (9).

Then obviously for a sufficiently large k :

for some i2 and n2. Remember now that the séquence (Pn)n>no is periodic. So
it follows that

{V{\*m = (Vi+S)n^m, (12)

for a suitably chosen s. Of course we may choose s arbitrarily large which
implies that

for some i1 and n1. So the équation (11) follows.
Now take a k0 in such a way that

Vil)) e (Vh) ,, 1
(13)

Of course this is possible the argument being the same as in establishing (12).
Next we consider the following four séquences

I = (Vl
n
l\&ni = co„ . . . , ""

V n )n>mi II ' • • ' ' I , - - .

III = (O12) = co f ^ '
IV = (Oj

n
2)n>m2 = coIV, . . .

Using the above notations we can visualize the situation as follows.

R.A.I.R.O. Infonnatique théorique/Theoretical Computer Science



POLYNOMIALLY BOUNDED DOL SEQUENCES 25

n
m

Figure 2.

It follows from (11) and (14) that I = III and II = IV. Moreover, by the
above figure and (13), we have

swVi (5kl (coj)) = ÜOH for some ki > k0

and

swVi(b
k2((oul)) = coIV for some k2 < k0.

Note that here k2 may be négative, meaning that ooin = swVi(8~k2((ùlY)).
Now we obtain

swvA8hl(<°i)) = «ii = «iv = sWvA^iPni)) = swvAàk2(®i))

with k1 > k2. But this means that the séquence I is ^-bounded according
to G, which is a contradiction.

What we have proved on the last few pages is that the formula (8)
with the same k's and m's describes the direct dérivation both according to G
and G'. In particular, it follows that, for all n, k and m in (8) are nonnegative, if
only P'ns (resp. Q'ns) are chosen, as is natural, in such a way that either
5(PB) (resp. S (ôn) or 5 '(PJ (resp. S'(g„)) is an initial subword of Pn + i

(resp. a final subword of Qn + 1). Moreover we conclude that the equality
of the séquences À (Pag) and A'(POLQ) implies (and is implied by)

(v)
„)) = swVouVi

for n > n0,

for n > n0,

where Pn^0R1 (resp. Rp$pQn) dénotes the minimal prefix (resp. suffix) of
AjPuQ) belonging to PJ.*L (resp. LL*Qn), and

(vi) (s\vVl (6" ( } ) ) )„> 0 =

tor any word Y e L(L - Y\ )*L which î  a subword ol one of the following :
Ano(i>ocô), 5 ( P . M i ) for « > «o or 5(Rp%Qn) for « > n0.
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26 J. KARHUMAKI

Up to now we have proved that the equality of our original séquences
is equivalent to the conditions (i) and (ii) together with a finite number of
conditions of type (v) and (vi). The validities of (i) and (ii) are easy to décide.
Similarly, by the periodicity argument, to check (v) requires only a small
amount of work. Moreover, one can effectively find all the F-words appearing
in the conditions (vi). So to test the équivalence of G and G' it suffices to
ascertain whether (vi) holds true for a given word Y. But the séquences
in (vi) are of growth order N-\. Thus, we have proved the foliowing : The
équivalence problem for polynomially bounded DOL séquences with a
growth order N(> 2) reduces to the équivalence problem for polynomially
bounded DOL séquences with a growth order N-l.

Now Theorem 1 follows from :

LEMMA 1 : The équivalence problem for linear DOL séquences is decidable.
Proof : In this special case the languages in (iii) and (iv) are bounded

context-free languages (see the proof of Lemma 2). Thus, the decidability
of the language équivalence problem for linear DOL Systems follows,
see [3]. So the Lemma is true by a resuit of Nielsen, see [6].

On the other hand, it is not difficult to give a direct proof for Lemma 1.
REMARK : Everything presented above is constructive (as it must be to

guarantee the existence of the algorithm). The reason for not paying
attention to this fact is that we can thus avoid some inessential and long
explanations. However, we believe that the reader will find no difficulties
in convincing himself of the constructivity.

4. THE SMOOTHNESS

Hère we prove that the family of polynomially bounded DOL Systems
forms a smooth family in the sensé of Culik. Let us recall what this means.
Assume that 3F is a family of DOL Systems and let G = < Z, co, 5 > and
G' = < E, co, 8' > be any two séquence equivalent Systems in 3F % Then 3F is
said to be smooth iff the pair (G, G') has a bounded balance, i. e. there exists
a constant K (dependent on G and G') such that for any prefix P o f a word
in{S"(œ)| / i > 0 } :

Next we establish

LEMMA 2 : The family of linear DOL Systems is smooth.
Proof: Clearly, it suffices to prove the Lemma for linear DOL Systems

generating séquences of the form (iii) in Section 3. So assume that
G = < Z, co, ô > and G' = < E, co, ô' > aïe séquence equivalent Systems of
such a kind.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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An easy considération shows the existence of numbers t and p such that

and > (15)

for i > 0 and 0 < j < p. Moreover, we may choose the words Xj and
Xj in such a way that

8(Xj) = xj+1 for 0 < j < p - 1,'

for
5'(*;_!) = x'o,

(16)

and the same hold also for the y f and jj-words.

First assume that |x;| = |xj| for all j < p. Then also \yj\ = [yj-| for all
j < p, since otherwise the séquences would not be equivalent. So it follows
immediately from (15) and (16) that the pair (G, G') has a bounded
balance.

Secondly assume that there exists a k such that \xk\ > \x'k\. Furthermore
suppose that all the words xp x'p y} and y'} are nonempty. Let q be the
least common multiple of the numbers \xk\ and \y'k\, and dénote by xk the
initial subword of x\ having the length q. Now we choose an i0 in such a
way that

\Ak(xky\> \Al(xm(ytf\,

where r = [^"^'o | ^ | ] - So the fact that dt+k+ioP{(o) = drt+k + iop{(ù) together
with the choice of q implies that for some s the following holds

5f+fe+^(co) = Ak(xk)
sCk (17)

with \Ck\ < q 4- \Ck\. From this we conclude that

|8>(*t)| = \S"(xk)\ for j = 0,...,p,

since otherwise the words öm(co) and ô'm(co), with m = t +j + k + ÎQP,
would be of different length (at least when /0 and thus also s is chosen great
enough). So the fact that the pair (G, G') has a bounded balance follows.

If in our second case at least one of the words xp xj, y^ or y'j is empty
(for sorrie /), then we directly get a représentation similar to (17) for some
word in {ô"(œ) | n > 0 }. Thus, as seen before, this implies that the pair
(G, G') has a bounded balance in this case, too. Hence our proof for
Lemma 2 is complete.

THEOREM 2 : The family of polynomially bounded DOL Systems is smooth.
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28 j . KARHUMXKI

Proof: The Theorem follows immediately from Lemma 2 and from the
considérations of Section 3. Namely, Lemma 2 together with formulas (3)
and (8) guarantee that any pair of séquence equivalent DOL Systems with
a growth order 2 has a bounded balance. Repeating the argument we may
conclude that the same holds true for DOL Systems with an arbitrary growth
order.
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