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LIMITING RECURSION
AND THE ARITHMETIC HIERARCHY

by G. CRISCUOLO, E\ MINICOZZI, G. TRAUTTEUR (*)

Communicated by G, AUSIELLO

Abstract. — The Kleene hierarchy, with the exception ofthefirst level is completely characterized
by the itération ofthe limit opération as definedby Gold [1]. Any arithmetic function can be obtained
by applying afinite number of Urnes the limit operator to a primitive recursive function.

There seems to be a growing measure of interest in the notion of the limit
of a recursive function [1] particularly in connection with the concepts of
approximation, identification and learning of functions [2, 3, 4] and gram-
mars [5] and of dialogical deductive Systems [6].

Recently the notion of itération of the limit procedure has been investi-
gated by Schubert [7] in connection with the size-complexity of programs.

We give here a complete characterization of the Kleene hierarchy in
terms of the iterated limit opération which fully answers an open problem
indicated by Schubert and is interesting in its own right.

We will use only the foliowing well known définition of limit of a number
theoretic function,

Def. If g is a total function of k + 1 variables, then lim g (x 15...,%«)= a if
n

there is an integer n0 such that for ail n > n0 g{xv ..,, xki n) = a.
« lim » is therefore a functional operator which associâtes to each total

function g of k + 1 variables a partial function of k variables ƒ (xl3 ..., xk)
such that :

f lim g(xl9..., xk, n) if such a limit exists
f(xl9...» xk) = 1 »

L undefined otherwise

(*) Istituto di Fisica Teoriea, Mostra d'Qltremare, Napoli, Italy.
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6 G. CRISCUOLO, E. MINICOZZI, G. TRAUTTEUR

We will write ƒ (x1;..., xk) = lim g(xx,.,., xk, n) from now on. Whenever the
R

limit opération gives rise to a total fonction, the process may be iterated so
that we have :

Def. lim(fc) g(xu ..., xm3 nk9..., nt)

= lim lim (... lim g(xl9 ...,
«k "k - 1

under the condition that each lim opération is applied to a total function.

Def. If a (partial) function is expressible as the k-th limit of a total recursive
function we say that it is a (partial) fc-limiting recursive function.

Def. A set is /olimiting recursively enumerable if it is the domain of a
partial fc-limiting recursive function.

A set is A>limiting recursive if its characteristic function is Mimiting
recursive.

The above définitions extend similar définitions of Gold [1] and praeti-
cally coincide with those of Schubert [7]. Gold [1] and Putnam [8] proved
that the A2 sets are exactly the 1-limiting recursive sets. We have in gênerai :

Theorem 1. For ail k the àk+1 sets coincide with the £~limiting recursive
sets.

This is an immédiate conséquence of the following lemma. Let Gf be the
graph of the function ƒ, then we have as a conséquence of Schoenfield's Limit
Lemma [9] and Post's theorem :

Lemma. Let f (x) be a total function ; then :

iff f(x) = limw g(x, nki..., Wl)

for some recursive function g(xy nk, ..,, nx\
Proof. By Schoenfield's limit lemma we have :
0 deg ƒ ^T0im + 1) iff there exists a function g(x, n) such that

deg g ^ T 0{m) & ƒ (x) = lim g(x9 n).
n

For any total function h, deg h = deg Gh and by Post's theorem any set
recursive in a relation Efe is in Ak+1, hence i) becomes :

ii) Gf is in Am + 2 iff there exists a function g(x9 n) such that Gg is in Am+1

and lim g(x, n) = ƒ (x).
n

Then the lemma easily follows by induction on k simply observing that
the basis, k = 1, coïncides with ii) when m = 0, that is with Gold's [1] and
Putnam's [8] result, and that for the induction step again by ii) Gf is in Ak+1

iff ƒ (x) = lim g(x, n) for some function g such that Gg e Ak ; by induction,
n

g is (k — 1 )-limiting recursive i.e.
Revue Française d'Automatique, Informatique et Recherche Opérationnelle



LIMITING RECURSION AND THE ARITHMETIC HIERARCHY 7

g(x, n) — linif*"1^*, n, nk_l9 ..., n^ where h is recursive, hence
f(x) = lim lim(fc-1)/z(x, n, nk_i, ..., nx)

Now one has more generally :

Theorem 2. The class of fc-limiting recursively enumerable sets coincides
with the Sfc+1 sets.

Proof. Let S be the domain of a partial fc-limiting recursive function f(x)
then f(x) = lim g(x, n) and S = { x | 3n0 Vn > rc0 : #(x, n) = g(x, n0) } where

n

g(x, n) is total and (A: - l)-limiting recursive, hence by the lemma G is in Ak

and therefore the relation R(x, n, n0) iff g(x, n) = g(x, n0) is in Ak and S is

Let 5 b e a S f c + 1 set. Then
x e S iff 3^Vz/?(x,^,z)

where ^(X, y, z) is in Hk_ u hence a Ak relation. Let, following Gold [1], ƒ (x, n)
and #(x, n) be so defined :

K,n + 1) =

g(x, 0) = 0

— <
I ƒ(x, n) otherwise

otherwise

Now it is easy to convince oneself that lim ƒ (x, n) is defined if and only
n

if ly Vz R(x, y, z) that is iff x e S and because ƒ is recursive in R(x, y9 z) and
total by the lemma its graph is in Ak hence ƒ is (fc — l)-limiting recursive
and S is fc-limiting r.e.

Therefore Schubert's conjecture, namely that not all E2fc sets, when k > 1
are fc-limiting r.e., is correct and in fact such sets are in gênerai (2k — l)-limi-
ting r.e.

Moreover, it is interesting to note that the Kleene Hierarchy, with the
exception of the first level is completely characterized by the itération of the
limit opération. Ho we ver, the n sets are characterized only as being the com-
pléments of A sets as it is clear from the diagram where we named Ak the class
of sets £>limiting r.e.

An interesting open problem is that of finding a characterization of the n
sets in terms of the itération of some constructively significant operator.

n° décembre 1975, R-3.
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TT3

TT,

Let us call arithmetic functions the functions partial recursive in some
arithmetic predicates. We then introducé the following :

Def. The class of partial-limiting-recursive functions is the class of func-
tions obtained by the application of a finite number of compositions, primitive
recursions and limit opérations applied to total functions starting with the
zero, successor and the generalized identities functions.

(Note that « partial limiting-recursive » as used by Gold [1] translates as
«partial 1-limiting recursive» in our and Schubert's [7] terminology.)

Theorem 3. A function ƒ is partial fc-limiting recursive iff it is partial
recursive in some Ak+1 predicates.

Proof. => As we have already seen in the first part of the proof of Theorem 2
if ƒ is partial fc-limiting recursive then ƒ (x) = lim g(x9 n) with Gg in Ak hence

n

ƒ (x) = y iff 3«0 V« : g(x, n) — y, then Gf is a Zk + 1 set, hence ƒ is partial
recursive in a predicate Afc+1.

<= If ƒ is partial recursive in some Ak+1 predicates its graph Gf will be
a l f c + 1 set and, by Theorem 2, a À>limiting r.e. set.

Thus ƒ (x) = yiff (x, y) e Gf iff
lim s(x, y, n) is defined with s a (k — l)-limiting recursive function.

We

u(x,

then
u(x,

n +

define
0) = 0

1 ) = <

*u(x,

u(x,

n +

n)

n ) - 1

1

if s(x, M(X, n),

if s(x, w(x, n),

and u(x, n) ^
otherwise

n) =

: 0

5(X,

s(x,

w(x, n),

u(x, n%

n -

n -\

- i )

- i )

By the lemma u is a (k — 1 )-limiting recursive function as well since it is
recursive in s ; hence Gu e Afc. It suffices to show that f(x) ~ lim w(x, n).
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LIMITING RECURSION AND THE ARITHMETIC HIERARCHY 9

Now if lim u(x, n) is cjefined and is equal to a then also lim s(x, a, n) is
n n

defined so that f (x) = a. If on the other hand.for a given x lim w(x, n) is
n

undefined then it is easily seen that w(x, n) = n for infinitely many n and w
decreases in unit steps from one such n to the next one.

Therefore for each integer m the function u takes on the value m infinitely
often and because m is not a limit value for u(x, n\ there exists an infinité
séquence of integers m1,m2... such that, for any i : w(x, m^ = m and
w(x, m- + 1) / w(x, mf).

This entails, by définition of u that for each / :

s(x, u(x, m£), m.) # s(x, u(x, wij, m£ 4- 1)

i.e. that for all m and for infinitely many n s(x, m, n) # 5(x, m,n+ 1 ). There-
fore for each m, lim s(x, m, n) is not defined so that ƒ (x) # m for all m and

ƒ (x) is not defined in x.

Theorem 4. The arithmetic functions coïncide with the partial limiting
recursive functions.

This is an immédiate corollary of Theorem 3 and of the observation, due
to Gold [1], that the limit of a recursive function can be replaced always by
a limit of a primitive recursive function.

By comparing the minimalization and limit operators, one notices that,
by applying just one opération of minimalization to functions total recursive
in some predicates Ak, one obtains all the functions with graph in Xfc, while in the
case of the limit opération one gets all the functions in 2fc+1. This happens
because, while the minimalization opération, if it succeeds, does so in a signal-
led way (halting of the procedure), the eventual success of a limit opération is
not similarly signalled. The effectiveness of the two opérations is markedly
different and the limit opération overshoots the bounds of Church' Thesis,
although from the recent literature [2, 3, 4, 5, 6] one gets the feeling that its
results are still effective enough to be of interest in varions physicalistic inter-
prétations of formalism : e.g. approximation, learning, identification, dialogic
formai Systems. What is really exploited in the latter processes is the result
relative to A, = E2 that is : one limit opération carries us from the primitive
recursive domain to Z2 without trace of Zt and H1.

It may be interesting to note that we can exhibit a normal form for Ax

functions analogous to Kleene's normal form for partial recursive functions.
In a straightforward manner, using the Turing machines as computational
basis, we define the primitive recursive function :

pi. \ _ J < <*„ > if the Turing machine with index f, started on
' 1 <P-(x) ^ a s o t r i e r w* s e n o t stopped on the n-th step

n° décembre 1975, R-3.



10 G. CRISCUOLO, E. MINICOZZI, G. TRAUTTEUR

An explicit définition of E can be obtained by use of Davis' functions and
predicates [10]. It is clear that for all i

lim E(i, x, n) =* ^(x)
n

is a partial 1-limiting recursive function. (We use the symbol \|/f to dénote an
(acceptable) enumeration of the partial 1-limiting recursive functions). It
remains to show that every partial 1-limiting recursive function can be thus
expressed. If f(x) is partial 1-limiting recursive then :

ƒ (x) = lim cp^x, n)
n

where <pf is total recursive. We now take a Turing machine Z such that

Wz(x, n) = <p£(xs n)

and build a new Turing machine Z ' such that :

i. converts the l's of the input x into a symbol Sj not in the alphabet of Z
and stores the resuit for subséquent use ;

ii. simulâtes Z with Sj uniformly substituted for 1 ; in particular it starts
Computing (p.(x,0);

iii. stores the resuit retranslated in l's in an appropriate format ;

iv. increases by one the second (limit) variable ;

v. computes <p£(x, n) preserving untouched the previous resuit stored in l's;

vi. compares the new resuit, which will corne out in SjS, with the stored one
without erasing or writing any l's ;

vii. a. If different updates the stored resuit in Vs in the same format of iii: ;

b. If equal does nothing;

viii. cycles indefinitely over iv. to vii.

Filling up the constructional details — the only care to be taken is that the #
of l's.is never altered during the successive computations of <p£(x, n) — one
easily convinces oneself that Z', with index /' is such that :

1. Vn 3t : E(ï9 x, t) = <pf(x, n)

and

2. lim (pf(x, n) = a=> 3t0 W [t0 < t => E(U x, t) = à].
n

We have thus proved the following :

Theorem 5. There exists a primitive recursive function E(i9 x, n) such that a
function f(x) is partial 1-limiting recursive if and only if for some i

ƒ (x) ~ lim E(i, x, n).
n

This justifies the notation \|/f for partial 1-limiting recursive functions.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



LIMITING RECURSION AND THE ARITHMETIC HIERARCHY 11

Thus the function E substitutes with respect to the limit operator the rôle
that U and T [10] played with respect to the minimalization operator.

Some interesting points arise which are perhaps worth mentioning as
problems for further research.

For instance the use of time or step-count in the définition of E suggests a
machine-independent formulation based on the axiomatic définition of
computational complexity. We do not know if this is possible, but in working
along these lines we came to feel that in limit procedures, which never stop,
the step-count, or time, ceased to be perceived as complexity and that a dif-
ferent notion creeped in instead which is the intricacy of the path followed
by the procedure in a space whose points would be all possible instantaneous
descriptions. The reason may be that, possible as it is to express or simulate
limit procedures with Turing machines or equivalent computational bases,
the fundamental concept waiting to be formally introduced is that of a process
as distinct from a procedure in that a procedure is a means to an end — the
computation - while the process just happens, as physical processes do,
even if some of them can obviously be used to perform computations. The
main technical différence would réside of course in the different handling of
the halting problem.

However, even if not yet formally introduced — although the identifica-
tion procedures of [2] are very close — one has a unitary grasp of a process
in the sensé that each refers to a single pièce of machinery whose assessment of
effectivity is a matter of préférence. Schubert [7] has tried to extend the concept
to further levels but to do so he seems to propose as the counterpart of the
intuitive notion of effective procedure the complex of computations carried
on by an « expanding community of procedures » to the level S3 or an « expan-
ding community of expanding communities » to the level E4 and so on. Now
in a 1-limiting recursive procedure, i.e. a process, if some action dépends on
the limit value one can always take the last value as best guess and be certain
to be wrong only finitely many times. In the 2-limiting or Z3 case, although
one knows that only finitely many processes will be wrong other than finitely
many times there is no effective way of getting at any time an ultimately cor-
rect guess of the correct value. This can be proved formally as a sort of inverse
of Schoenfield's Modulus lemma [9], but one can convince oneself that if it
were not so there would be a recursive pairing function which would reduce
the 2-limiting procedures to the 1-limiting ones, which is impossible in view of
our characterization in terms of Kleene hierarchy. The conséquence is that it is
markedly different on epistemological grounds to consider an individual
procedure instead of a (potentially infinité) community of procedures in the
limit processes because the dovetailing technique cannot be used. This is
clearly not so in the plain recursive case and may furnish suggestions for a
clear eut définition of what constitutes an individual System. As a concluding
remark we might notice that this whole topic raises the interesting suggestion

n° décembre 1975, R-3.



12 G. CRISCUOLO, E. MINICOZZI, G. TRAUTTEUR

that important, apparentely rock-solid conceptions like Hilbert's finitist
program and the related notion of constructivity might be more socially
dependent than one's first guess, a more permissive society giving rise to more
permissive standards of évidence.
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