GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

BERNARD ROUX

Sur le groupe de Brauer d'un corps local à corps résiduel imparfait

Groupe de travail d'analyse ultramétrique, tome 13 (1985-1986), p. 85-98 http://www.numdam.org/item?id=GAU_1985-1986__13__85_0

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1985-1986, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SUR LE GROUPE DE BRAUER D'UN CORPS LOCAL A CORPS RESIDUEL IMPARFAIT

BERNARD ROUX

RESUME. Soient k un corps non parfait quelconque, et K un corps local de corps résiduel k. On définit des injections du groupe additif de k dans le groupe Br(K)/Bt_{nr}(K), et cela quelle que soit la caractéristique de K.

O. INTRODUCTION.

0.1. Soient k un corps commutatif, et K un corps local (c'est-à-dire complet pour une valuation discrète v), de corps résiduel k. On cherche à décrire le groupe de Brauer du corps K, noté Br(K), à partir de k.

Un résultat dû à WITT (cf.[13], ou [11], chap. XII, p. 194) donne une description du groupe Br(K) lorsque le corps résiduel k est parfait.

Si l'on ne fait aucune hypothèse sur le corps k, un résultat analogue (cf. [6] et [10], ou [12], p. 195, ex.3) à celui évoqué ci-dessus donne une description d'un sous-groupe de Br(K), noté $Br_{nr}(K)$: on désigne ainsi le sous-groupe formé des éléments composés par l'extension maximale non ramifiée K_{nr} de K (cf. [12], p. 64 et 195). [Lorsque k est parfait, le sous-groupe Br_{nr} est égal à Br(K)].

Le cas du corps résiduel non parfait est abordé par NAKAYAMA [6], SATAKE [10], TEICHMULLER [12], et plus récemment par K. KATO [3], SALTMAN [9], et YUAN [14]. On a cependant peu de résultats sur le groupe Br(K)/Br_{nr} lorsque K est de caractéristique zéro, et lorsque, de plus, k est un corps non parfait quelconque.

0.2. Dans toute la suite, on suppose le corps k de caractéristique p > 0, et on note G(K) le groupe $Br(K)/Br_{nr}(K)$. Il est connu que ce groupe G(K) est de p-torsion.

Lorsque le corps K est lui aussi de caractéristique p [c'est-à-dire lorsque K = K((T))], alors G(K) est divisible : dans ce cas, le groupe G(K) est donc somme directe de copies du groupe \mathbb{Z}_{∞} . Comme \mathbb{Z}_{∞} est l'enveloppe injective de son socle (lequel socle est $\mathbb{Z}/p\mathbb{Z}$), \mathbb{Z}_{∞} il est particulièrement intéressant d'étudier le socle de G(K), et cela même lorsque K est de caractéristique zéro. Nous noterons :

$$S(K) = \{x, x \in G(K), px = 0\}$$

ce socle.

Le but du travail entrepris ici est de chercher à décrire en fonction de k le groupe S(K), qui est une <u>somme directe de copies</u> de $\mathbb{Z}/p\mathbb{Z}$. (La question la plus élémentaire est de savoir "<u>combien</u>" de copies). Voici maintenant quelques précisions de plus.

0.3. Notons K la clôture algébrique de k, et g le groupe de Galois de k/k. Et soit $X(g) = \text{Hom}_{C}(g, 0/Z)$ le groupe des caractères de g.

Le résultat fondamental (cf. [11], p. 195, ex. 3) concernant le groupe $Br_{np}(K)$, est l'existence d'une suite exacte scindée :

0.3'.
$$0 \longrightarrow Br(k) \xrightarrow{\phi} Br_{pr}(K) \xrightarrow{\psi} X(g) \longrightarrow 0$$

0.4. Dans le cas d'égale caractéristique, c'est à dire lorsque K = k((T)), on a aussi une suite exacte scindée (cf. [14], p. 434) :

0.4'.
$$0 \longrightarrow Br(k[T]) \longrightarrow Br(K) \xrightarrow{\psi'} X(g) \longrightarrow 0$$
,

où l'homomorphisme ψ ' prolonge ψ . De plus, on sait ([4], théorème (5.5)) que :

$$Br(k[T] = Br(k) + Br'(k),$$

où l'on note $Br'(k) = Ker(Br(k[T]) \longrightarrow Br(k))$, et l'on a un isomorphisme entre les groupes Br'(k) et G(K). Or, en [4], il est prouvé que le groupe Br'(k) est une somme directe *infinie* de copies de \mathbb{Z}_{∞} (lorsque le corps k est imparfait) : donc G(K) aussi. On pretrouvera ici ce résultat, pour G(K), par une voie directe et simple

(cf. (1.1.6)).

D'autre part, dans le cas où K est de caractéristique zéro, on définira une injection du groupe additif de k dans le groupe S(K), montrant ainsi que le groupe G(K) est toujours "trés gros", dès que k est non parfait.

Pour définir les éléments de Br(K) dont on aura besoin dans l'étude de S(k), on utilisera essentiellement les classiques "symboles" du type (χ,b) ou du type [a,b) ([11], chap. XIV); et on utilise aussi quelques notions sur les anneaux non commutatifs de valuation discrète complets.

1. ENONCE DES RESULTATS (et preuve du premier d'entre eux).

- 1.0. Dans toute la suite on désigne par j l'homomorphisme canonique de Br(K) sur $G(K) = Br(K)/Br_{nr}(K)$.
- 1.1. Supposons que le corps K est de caractéristique p, comme k.
- 1.1.1. Pour tous éléments a et b de K, où b \neq 0, notons $[a,b) \in Br(K)$, le "symbole" défini comme en [11], Chapitre XIV, §5.
- 1.1.2. LEMME. Soit t une uniformisante de K, et fixons nous un corps de représentants du corps résiduel : on le notera également k; on identifie ainsi K avec k((t)). Alors, pour chaque élément c de k l'élément $j([t^{-1},c))$ de G(K) est nul si et seulement si $c \in k^p$.

Rappelons une preuve de ce lemme. D'abord, si $c \in k^p$, alors $c = a^p$, et $[t^{-1}, c) = p[t^{-1}, a) = 0$, d'après [11], chap. XIV, prop. 11.

Réciproquement, si c \notin k^p , alors $[t^{-1},c)$ \notin $Br_{nr}(K)$, d'après [11], Chap. XIV, §5, exercice 2. Donc $j([t^{-1},c)) \neq 0$, par définition de (1.0).

1.1.3. COROLLAIRE. Soient K = k(T), et c un élément de k. L'élément $j([cT^{-1},T))$ de G(K) est nul si et seulement si c appartient à k^p . Preuve: Si c = 0, alors [cT,c) = 0. Supposons dorénavant $c \neq 0$. Il suffit d'appliquer la proposition 11 de [11], Chap. XIV, §5: d'abord, $[cT^{-1},cT^{-1}) = 0$; d'où $[cT^{-1},T) = [cT^{-1},T) + [cT^{-1},cT^{-1}) = 0$

 $[cT^{-1}, TcT^{-1}) = [cT^{-1}, c) = [t^{-1}, c)$, en notant t l'uniformisante Tc^{-1} . L'assertion (1.3) découle alors trivialement du lemme (1.2).

1.1.4. Soit \mathcal{B} une p-base de k sur k^p . Grâce au lemme (1.1.3), on va pouvoir définir un homomorphisme injectif de groupes

$$\Theta: k^{(B)} \longrightarrow G(K)$$

où $k^{(\mathcal{B})}$ désigne le groupe additif des applications (à support fini) de \mathcal{B} dans le groupe additif de k.

1.1.5. PROPOSITION. Pour chaque élément $(a, \beta)_{\beta \in \mathcal{B}}$ de $k^{(\mathcal{B})}$, notons $\Theta((a_{\beta})_{\beta \in \mathcal{B}}) = \mathfrak{J}([cT^{-1}, T)) \in G(K)$, où $c = \sum_{\beta \in \mathcal{B}} (a_{\beta})^p \beta$.

<u>l'application</u> 0 <u>ainsi</u> <u>définie</u> <u>est</u> <u>un</u> <u>homomomrphisme</u> <u>injectif</u> <u>de</u> <u>groupes.</u>

Preuve : L'additivité de 0 résulte de la proposition 11 (i) de [11], Chap. XIV, §5. D'autre part, puisque $\mathcal B$ est une p-base sur k, l'élément $c = \sum_{\beta \in \mathcal B} (a_\beta)^{p_\beta}$ de k est dans k^p si et seulement si tous les éléments a_β de k sont nuls : ce qui prouve l'injectivité de 0 , d'après (1.1.3).

- 1.1.6. Remarque. Comme px = 0 pour tout élément x de k, l'homomorphisme Θ est à valeurs dans S(K). La proposition (1.1.5) montre donc que S(K) est une somme directe infinie de copies de $\mathbb{Z}/p\mathbb{Z}$, puisque k est infini. Or G(K) est divisible : donc G(K) est une de copies de \mathbb{Z}_p^{∞} .
- 1.2. Conservons les hypothèses et notations ci-dessus, et notons N_p l'ensemble des entiers non multiples de p. D'autre part, soit :

$$\Theta': k \xrightarrow{(\mathcal{B}_{x}N_{p})} \longrightarrow G(K)$$

l'application définie par :

$$\Theta'((\mathbf{a}_{\beta,\,n})) = \mathbf{j}[\lambda,T), \text{ où } \lambda = \sum_{(\beta,\,n) \in \mathcal{B}_{\mathbf{x}} \mathbf{N}_{\mathbf{p}}} (\mathbf{a}_{\beta,\,n})^{\mathbf{p}} \beta T^{-\mathbf{n}}.$$

Comme précédemment, il est clair que 6' est un homomorphisme de groupes. L'un des objectifs de cet article est de montrer la proposition suivante (cf. §5):

- 1.2.1. PROPOSITION. L'homomorphisme 8 ci-dessus défini est injectif.
- 1.3. Notre deuxième objectif est de définir un homomorphisme injectif Θ_1 de k dans G(K), lorsque K est de caractéristique zéro (§7).
- 2. RAPPELS, GENERALITES. L'INVARIANT PRIMAIRE D'UN CORPS GAUCHE SUR K.

Sauf mention expresse du contraire, on ne fait aucune hypothèse sur la caractéristique de K, dans les §2, 3, 4.

- 2.1. On appelle corps gauche sur un corps commutatif L tout corps de rang fini sur L et de centre égal à L. (Avec cette définition, L est appelé "corps gauche" sur L, alors que L est commutatif : cet abus de langage est sans inconvénient). Si D est un corps gauche sur L, ou, plus généralement, si D est une K-algèbre centrale simple, on note [D] l'élément défini par D dans le groupe de Brauer Br(L).
- 2.2. Si D est un corps gauche sur K, la valuation v donnée sur K se prolonge en une valuation w définie sur D. L'anneau de la valuation w est noté $B_{\overline{D}}$, C'est un anneau de valuation discrète au sens de [1] et de [8]. Le corps résiduel de $B_{\overline{D}}$ est une k-algèbre notée \overline{D} ou \overline{B} , et appelée corps résiduel de D.
- 2.3. <u>DEFINITION</u> Soit D un corps gauche sur K. L'invariant (au sens de [8], §1) de l'anneau $B_{\overline{D}}$ défini comme ci-dessus, est ici appelé <u>invariant primaire</u> du corps D, et noté $Inv_1(D)$. Ainsi, $Inv_1(D) = Inv(B_{\overline{D}}) = [\overline{D}, \sigma]$, où σ est un certain automorphisme du corps \overline{D} .
- 2.4. Exemples.

1°/ Soit Φ le morphisme indiqué en (0.3'). Pour tout corps gauche Δ sur k, il existe un corps gauche D sur K qui "représente" l'élément Φ ([Δ]) de Br(K) : c'est-à-dire que [D] = Φ ([Δ]). Alors Inv₁(D) = [Δ , id_A].

2°/Soient L une extension cyclique de k, et σ un générateur du groupe Gal(L/k). On sait que le couple (L,σ) définit un élément χ de X(g). Soient ψ " une section du morphisme ψ indiqué en (0.3), et soit D un corps gauche sur K tel que $[D] = \psi$ " (χ) . Alors $Inv_1(D) = [L,\sigma]$. Le lemme ci-dessous est utile par la suite, et sa preuve est élémentaire.

2.5. LEMME. Soient z un élément du groupe $Br_{nr}(K)$, et D un corps gauche (sur K) représentant de z : i.e. [D] = z. Alors z = O si et seulement si le corps résiduel \bar{D} de D est commutatif et $Inv_1(D) = [\bar{D}, id]$.

3. QUELQUES ALGEBRES CYCLIQUES, ET EXTENSIONS D'ARTIN-SCHREIER.

- 3.0. Rappelons qu'une K-algèbre centrale simple est dite cyclique si elle contient un sous-corps commutatif maximal qui est une extension cyclique de K (cf. [0], chap. V. §8). On va construire de telles algèbres, à partir de certaines extensions d'Artin-Schreier de K.
- **3.1.** Notations et hypothèses : Si K est de caractéristique zéro, on note e = v(p) l'indice de ramification absolu de K ([11], chap.1, §5). Si K est de caractéristique p, on note $e = + \infty$.

Dans toute la suite, μ désigne un entier positif <u>non multiple</u> <u>de</u> p, <u>et tel que</u>, de plus : $1 \le \mu < ep/(p-1)$.

3.2. Notons K la clôture algébrique de K. Et, pour chaque élément λ de K tel que $v(\lambda) = -\mu$, considérons l'extension algébrique $\lambda^T = K(x)$ K, telle que $x^p-x = \lambda$. Un argument élémentaire, concernant la valuation de λ , montre que x n'est pas dans K: c'est- λ -dire que λ^T est une extension propre de K, et $\lambda^T = K[X]/(X^p-X-\lambda)$. Si K est de caractéristique p, alors λ^T/K est une extension d'Artin-Schreier au sens usuel (cf. [5], Chap. VIII, §6, th. 11), donc cyclique. Si K est

de caractéristique zéro, alors $_{\lambda}$ T/K est encore une extension cyclique totalement ramifiée : cf. [2], p. 664.

Dans le cas où K est de caractéristique p, soit σ_{λ} l'élément du groupe de Galois $\operatorname{Gal}(_{\lambda}T/K)$ tel que $\sigma_{\lambda}(x) = x+1$, et, en ne supposant rien sur la caractéristique de K, soient y_i , $0 \le i < p$, les éléments de $_{\lambda}T$ définis en [2], p. 664; et soit $\sigma_{\lambda} \in \operatorname{Gal}(_{\lambda}T/K)$ l'automorphisme tel que :

3.2.1.
$$\sigma_{\lambda}(x) = x+y,$$

(rappelons que $y_i = 1+r$, où r est un élément dont la valuation est strictement positive et r = 0 si K est de caractéristique p).

Sauf mention expresse du contraire, les affirmations qui suivent seront valables quelle que soit la caractéristique de K.

3.3. Avec les notations ci-dessus, le coupe $(_{\lambda}^{T}, \sigma_{\lambda}^{})$ définit un "caractère" $_{\lambda}^{\chi}\chi$ du groupe de Galois G = Gal(K/K), c'est-à-dire :

$$\lambda^{\chi} \in \operatorname{Hom}_{\mathbf{C}}(\mathbf{G}, \mathbb{Q}/\mathbb{Z})$$

Et pour chaque élément b de K, le "symbole" (χ, χ, b) désigne un élément du groupe de Brauer $H^2(G, K) = Br(K)$; et plus précisément un élément du sous-groupe $Br(\chi T/K)$.

- 3.4. Notons $_{\lambda}^{T[[X]]}\sigma_{\lambda}^{}$ l'anneau des séries formelles $\sigma_{\lambda}^{}$ -tordues, au sens de [8]. Comme l'automorphisme $\sigma_{\lambda}^{}$ est de période p, il est connu que l'anneau quotient noté $M(\lambda,b) = \frac{1}{\lambda}^{T[[X]]}\sigma_{\lambda}^{}/(X^{P}_{}-b)$ est une K-algèbre centrale simple, et que l'élément du groupe de Brauer qu'elle définit est justement $[M(\lambda,\beta)] = (\frac{1}{\lambda}\chi,b)$.
- 3.5. Par construction même de la K-algèbre $M(\lambda,b)$, on a $[M(\lambda,b):K] = p^2$. Donc $p[M(\lambda,b)] = p(\chi,b) = 0$.
- 3.6. Et par la nature même des symboles du type (χ,b) , toute K-algèbre centrale simple M telle que $[M]=(\chi,b)$ est cyclique. En particulier, $M(\lambda,b)$ est cyclique; en l'occurence, elle admet comme sous-corps commutatif maximal l'extension cyclique $_{\lambda}^{T}$ (c'est clair, puisque $_{\lambda}^{T}$: K] = p, et $[M(\lambda,b):K]=p^{2}$).

- 3.7. Remarque. Les conditions suivantes sont équivalentes :
- (i) <u>la K-algèbre</u> M(λ,b) <u>est un corps;</u>
- (ii) $(\chi,b) \neq 0$;
- (iii) <u>l'élément</u> b <u>n'est pas une norme dans l'extension</u> T/K.

[Le résultat ci-dessus est vrai parce que la dimension de $M(\lambda,b)$ sur K est le carré d'un nombre premier, ce qui implique que l'algèbre $M(\lambda,b)$ est ou bien un corps ou bien isomorphe à l'algèbre de matrices $M_D(K)$].

- 4. UNE CONSTRUCTION DE CORPS GAUCHES DEFINISSANT DES ELEMENTS DE $Br(K)/Br_{pp}(K)$.
- **4.0.** Notations. Soit u une uniformisante de K, i.e. un élément tel que v(u)=1. Notons U_K l'ensemble des éléments de K de valuation nulle, et μ un entier satisfaisant aux mêmes conditions qu'en (3.1). D'autre part, pour chaque élément α de U_K , notons $D^{\alpha,\,\mu,\,u}$, ou simplement $D^{\alpha,\,\mu}$, la K-algèbre centrale simple $M(\alpha u^{-\mu}, u)$ définie comme indiqué en (3.4) [cela a un sens, puisque l'élément $\lambda=\alpha u^{-\mu}$ a pour valuation $-\mu$]. Enfin notons Y^u_{μ} , ou simplement $Y_{\mu}:U_K\longrightarrow Br(K)$, l'application définie par $Y^u_{\mu}(\alpha)=[D^{\alpha,\,\mu,\,u}]\in B(K)$, pour tout $\alpha\in U_K$.
- **4.1.** Les applications Y_{μ} definies ci-dessus sont à valeurs dans le socle du groupe Br(K), puisque $pY_{\mu}(\alpha) = p[M(\alpha u^{-1}, u)] = 0$ (cf. (3.5)). Enfin, voici un moyen d'obtenir "beaucoup" de corps gauches sur K, qui définiront des éléments de Br(K)\Br_{nr}(K):
- **4.2.** LEMME. Soit α un élément de U_K , et $\bar{\alpha}$ son image canonique dans k^* . Si $\bar{\alpha}$ n'est pas dans $k^p = \{a^p, a \in k\}$, alors l'élément u(cf. (4.0)) n'est pas une norme dans l'extension cyclique $\chi^{T/K}$; où $\chi^{T/K}$; où $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$, i.e. $\chi^{T/K}$ est un corps gauche sur $\chi^{T/K}$ est

(La preuve de la première assertion est élémentaire. La deuxième assertion découle alors immédiatement de (3.7), puisque $D^{\alpha, \mu, u} = M(\alpha u^{-u}, u)$).

Notons $B^{\alpha,\,\mu}$ l'anneau de la valutation du corps $D^{\alpha,\,\mu}$ ci-dessus, et m

l'idéal maximal de cet anneau. La démonstration des assertions (4.3) ci-dessous (qui sont la clé des résultats ultérieurs) est purement technique, mais on la développera néanmoins, au §6.

4.3. PROPOSITION. Soit α un élément de U_K tel que $\bar{\alpha} \notin k^p$. Alors le corps résiduel $\bar{D}^{\alpha,\mu} = B^{\alpha,\mu}/m$ du corps $D^{\alpha,\mu} = st$ isomorphe au corps commutatif $k((\bar{\alpha})^{1/p})$. L'anneau quotient $B^{\alpha,\mu}/m^{\mu+1}$ est commutatif, tandis que $B^{\alpha,\mu}/m^{\mu+2}$ est non commutatif (on dit que le corps $D^{\alpha,\mu}$ est l'indice numérique μ : cf. [7], (7.5)). Et l'invariant primaire du corps $D^{\alpha,\mu}$ est $Inv_1(D^{\alpha,\mu}) = [C,id_C]$, où l'on note $C = k(\bar{\alpha})^{1/p}$).

D'après le lemme (2.5), et compte-tenu du fait que $[D^{\alpha,\mu}]$ est non nul (cf. (4.2)), on en déduit le corollaire suivant :

4.4. COROLLAIRE. Soient α et μ comme en (4.3). Alors l'élément $[D^{\alpha, \mu}]$ du groupe Br(K) n'appartient pas au sous-groupe Br_{nr}(K).

5. PREUVE DE LA PROPOSITION (1.2.1).

Dans ce §5, on revient au cas d'égale caractéristique, i.e. K = k((t)). Rappelons que $\mathcal B$ désigne une p-base de k sur k^p .

Soit $(a_{\beta,n})_{(\beta,n)\in\mathcal{B}\times\mathbb{N}_p}$ un élément non nul de k. Nous avons à montrer que $\Theta'(a_{\beta,n})$ est non nul (cf. (1.2.1), Or on a posé (cf. (1.2)):

$$\Theta'(a_{\beta,n}) = j([\lambda,T))$$
, où $\lambda = \sum_{\beta,n} (a_{\beta,n})^p \beta T^{-n}$.

Nous devons montrer que $j([\lambda,T)) \neq 0$, c'est-à-dire que l'élément $[\lambda,T) = ({}_{\lambda}\chi,T) = [M(\lambda,T))$ n'est pas dans le sous-groupe $\operatorname{Br}_{nr}(K)$.

Soit μ <u>le plus grand des indices</u> n des éléments $a_{\beta,n}$ non nuls (éléments de la famille $(a_{\beta,n})_{(\beta,n)\in\mathcal{B}_X\mathbb{N}_p}$). La valuation de λ dans K est donc $v(\lambda) = -\mu$. Notons $\alpha = \lambda T^{\mu}$. D'où ; $\alpha \in U_K$, puisque $v(\alpha) = v(\lambda) + \mu = 0$.

On peut séparer les éléments non nuls de la famille $(a_{m{\beta},\,n})$ en deux parties : ceux d'indice μ , et les autres, qui sont nécessairement d'indice inférieur à μ . Ainsi, il vient :

$$\alpha = \sum_{\beta \in \mathcal{B}} (a_{\beta,\mu})^{p_{\beta}} + \sum_{\beta \in \mathcal{B}} (a_{\beta,n})^{p_{\beta}T^{\mu-n}} = \sum_{\beta \in \mathcal{B}} (a_{\beta,\mu})^{p_{\beta}} + \rho , \text{ où } v(\rho)) > 0.$$

L'image canonique $\bar{\alpha}$ de α dans k est donc $\bar{\alpha} = \sum_{\beta \in \mathcal{B}} (a_{\beta,\mu})^{p_{\beta}}$. Mais par définition de μ , il existe dans la famille $(a_{\beta,n})$ au moins un élément $a_{\beta,\mu}$ non nul. Et, puisque \mathcal{B} est une p-base de k sur k^p , cela implique que $\bar{\alpha}$ n'appartient pas à k^p .

Or $M(\lambda,T)=M(\alpha T^{-\mu},T)=D^{\alpha,\mu,T}=D^{\alpha,\mu}$, avec les notations du §4., et, puisque $\bar{\alpha}$ n'est pas dans k^p , l'élément $[\lambda,T)=[M(\lambda,T)]=[D^{\alpha,\mu}]$ n'est pas dans le groupe $Br_{nr}(K)$, d'après (4.4). Donc $\Theta'((a_{\beta,n}))=j([\lambda,T))\neq 0$, ce qui achève la preuve.

6. QUELQUES REMARQUES SUR LES CORPS GAUCHES DU TYPE $D^{\alpha,\,\mu}$.

Le but principal des observations ci-dessous est de prouver la proposition (4.3).

6.0. Soient $\alpha \in U_K$, u et μ comme en (4.0). De plus, on suppose que $\bar{\alpha}$ n'est pas dans k^p . Alors $D^{\alpha,\,\mu}$, défini en (4.0), est un corps gauche sur K, d'après (4.3). Notons aussi $\lambda = \alpha u^{-\mu}$, et $\lambda T = K(x)$, où $x^p - x = \lambda$, comme en (3.2).

La $\sigma_{\lambda} \text{-}\underline{\text{norme}}$ de x (ou $\underline{\text{norme}}$ de x dans l'extension cyclique $_{\lambda}^{}T/K)$ est donc :

6.1.
$$x. \sigma_{\lambda}(x). \sigma_{\lambda}^{2}(x)...\sigma_{\lambda}^{p-1}(x) = \lambda = \alpha u^{-\mu}.$$

Par construction même, le corps $D^{\alpha,\mu}$ (cf. (4.0) et (3.4)) est :

6.2.
$$D^{\alpha, \mu} = {}_{\lambda}T[[Y]]_{\sigma_{\lambda}}/(Y^{p}-u).$$

Notons w la valuation normalisée sur $D^{\alpha, \mu}$, et qui "prolonge" v. Notons y l'image canonique de Y dans $D^{\alpha, \mu}$ Puisque y est une uniformisante de $D^{\alpha, \mu}$, et puisque w est normalisée, on a w(y) = 1. Mais $y^p = u$. Donc w(u) = w(y^p) = pw(y) = p. Or v(u) = 1. D'où:

6.3.
$$w = pv$$
 (i.e. $w(c) = pv(c)$ pour tout $c \in K$)

Enfin, notons $\Theta = xy^{\mu} \in D^{\alpha, \mu}$

La relation $x^p-x=\lambda$, et le fait que $w(\lambda)=w(\alpha u^{-\mu})=-\mu w(u)=-\mu p$, montrent : $w(x^p-x)<0$, donc w(x)<0, et $w(\lambda)=w(x^p-x)=w(w^p)=pw(x)$. D'où $w(x)=-\mu$. Ainsi :

6.4.
$$w(\Theta) = w(x) + \mu w(y) = -\mu + \mu = 0.$$

D'autre part, d'après (6.2), nous avons :

Par suite:

$$\begin{split} \Theta^{p} &= (xy^{\mu})(xy^{\mu})\dots(xy^{\mu}) = x(y^{\mu}x)(y^{\mu}x)\dots(y^{\mu}x)y^{\mu} \\ &= [x.\sigma_{\lambda}^{\mu}(x).\sigma_{\lambda}^{2\mu}(x)\dots\sigma_{\lambda}^{(p-1)\mu}(x)]y^{p\mu} \\ &= [x.\sigma(x).\frac{2}{3}(x)\dots\frac{p-1}{3}(x)]y^{\mu} \quad (\mu \text{ est premierà p}) \\ &= [\alpha u^{-\mu}] u^{\mu} = \alpha \quad \text{, d'après (6.1) et le fait que } y^{p} = u. \end{split}$$

6.6. Cette relation $\Theta^p = \alpha$ montre que le sous-corps $K(\Theta)$ de $D^{\alpha, \mu}$ peut-être identifié avec le sous corps $K(\alpha^{1/p})$ de K. Elle montre aussi que l'indice de ramification de $K(\Theta)$ sur K est $e_{K(\Theta)/K} = 1$. [Mais $K(\Theta)$ n'est pas une extension "non ramifiée" de K, au sens de [11], chap. I, §4, p. 26, car elle est radicielle]. Et $D^{\alpha, \mu}$ est une extension totalement ramifiée de $K(\Theta)$. Donc le corps résiduel $\overline{D}^{\alpha, \mu}$ de $D^{\alpha, \mu}$ est celui de $K(\Theta)$, noté $\overline{K(\Theta)}$:

6.6.1.
$$\overline{D}^{\alpha, \mu} = \overline{K(\Theta)}.$$

6.6.2. Enfin, remarquons que $D^{\alpha, \mu} = K(\theta, y)$.

6.7. Notons A l'anneau de ma valuation v, dans K. Donc $\overline{A} = \overline{K} = k$. Puisque $\Theta^p = \alpha$, on a $(\Theta)^p = \overline{\alpha}$. Donc $\Theta = (\overline{\alpha})^{1/p}$, et $\overline{D}^{\alpha, \mu} = \overline{K(\Theta)} = \overline{K(\overline{\Theta})} = k(\overline{\Theta}) = k((\overline{\alpha})^{1/p})$.

Cela prouve la commutativité du corps résiduel $\bar{D}^{\alpha,\mu}$ de $D^{\alpha,\mu}$, et la

première partie de la proposition (4.3).

6.8. L'anneau de la valuation du corps $K(\Theta)$ est $A(\Theta)$, et celui de $D^{\alpha,\mu}$ est $B^{\alpha,\mu} = A(\Theta,y)$; et on sait que y est une uniformisante de $B^{\alpha,\mu}$. Par définition de y et de Θ , nous avons (cf. (6.5) et (3.2.1))

$$y\Theta = y(xy^{\mu}) = (yx)y^{\mu} = \sigma_{\lambda}(x)y^{\mu+1} = xy^{\mu+1} + (1+r)y^{\mu+1}$$
$$= \Theta y + (1+r)y^{\mu+1}.$$

6.9. Donc $(y\theta - \theta y) \in m^{\mu+1} \setminus m^{\mu+2}$

Notons $B^{\alpha, \mu} = B$. L'anneau $B/m^{\mu+2}$ n'est pas commutatif. Mais, de la relation (6.9) et du fait que $B^{\alpha, \mu} = A(\theta, y)$, il découle aisément que :

$$(yb-by) \in m^{\mu+1}$$
, pour tout $b \in B$.

Donc l'anneau $B/m^{\mu+1}$ est commutatif. Alors, comme en [7], (7.5), on peut dire que B et $D^{\alpha,\mu}$ sont d'indice numérique μ .

Notons $k(\overline{\Theta}) = C$ le corps résiduel de B. Comme B/m^2 est commutatif [car $\mu \ge 1$, et $B/m^{\mu+1}$ est commutatif], <u>l'invariant</u> <u>de</u> B (cf. [8], §2) est [C,id_C]. Et cela achève la preuve de la proposition 4.3.

7. LE DERNIER RESULTAT.

Revenons au cas général : de nouveau, on ne fait plus d'hypothèse sur la caractéristique de K.

On indiquera ici la **définition de l'application** Θ_1 de $k^{(3)}$ dans G(K), annoncée en (1.3), mais sans démontrer que c'est un homomorphisme injectif de groupes.

Notons τ : $k^{(3)} \longrightarrow k$ l'application définie par

$$\tau((a_{\beta})_{\beta \in \mathcal{B}}) = \sum_{\beta \in \mathcal{B}} (a_{\beta})^{p} \beta$$
.

Soit ρ un "relèvement" de k dans $U_K \cup \{0\}$, i.e. une application telle que $\overline{\rho(a)}$ = a, pour tout aek. Considérons une application $Y_1^u: U_K \longrightarrow Br(K)$ définie en (4.0), et prolongeons la en une application encore notée Y_1^u , de $U_K \cup \{0\}$ dans Br(K), en posant $Y_1^u(0) = 0$. Enfin, posons $\Theta_1 = \mathbf{j}.Y_1^u \ \rho.\tau$ (j est défini en (1.0)) :

On peut alors voir que cette application Θ_1 est en fait indépendante du choix du relèvement ρ de k, et du choix de l'uniformisante u intervenant dans la définition de Y_1^U . On montre ensuite que Θ_1 est additive. Et l'injectivité de Θ_1 découle alors facilement du résultat (4.4).

Dans le cas où K est de caractéristique p, Θ_1 coı̈ncide avec l'homomorphisme Θ défini en (1.1.5).

Bernard ROUX, Institut de Mathématiques, Place E. Bataillon, 34060 - MONTPELLIER

BIBLIOGRAPHIE.

- [0] A.A. ALBERT, Structure of algebras, Amer. Math. Soc. Publ., 1939.
- [1] N. BOURBAKI, Algèbre commutative, Chap. 6, (§3.6), Hermann, 1964.
- [2] M. DEMAZURE, P. GABRIEL, Groupes algébriques ; Appendice (M. HAZEWINKEL) : corps de classes local, Masson (Paris) 1970.
- [3] K. KATO, A generalization of local class field theory by using K-groups, J. Fac. Sci. Univ. Tokyo, Sec. IA, 26, 303-376, 1979.
- [4] M. KNUS, M. OJANGUREN, S. SALTMAN, On Brauer groups in characteristic p, Lecture Notes 549, p. 25-49, 1976.
- [5] S. LANG, Algebra, Addison-Wesley, 1965.
- [6] T. NAKAYAMA, Divisionnalgebren Über diskret bewerteten perfekten Körpern, J. de Crelle, 178, p. 11-13, 1937.

- [7] B. ROUX, groupe de Brauer et dérivations, 110 eme Congrès des Soc. Savantes, fasc. III, p. 195-217, 1985.
- [8] B. ROUX, Anneaux non commutatifs de valuation discrète ou finie, scindées. I, Comptes Rendus Acad. Sci., 302, p. 259-262, 1986.
- [9] D.J. SALTMAN, Division algebras over discrete valued fields, Communications in Algebra, 8 (18), p. 1789-1774, 1980.
- [10] I. SATAKE, On the Structure of Brauer Group of a Discretely valued Complete Field, Sci. papers of the College of General Education, 1, p. 1-10, 1951.
- [11] J.P. SERRE, Corps locaux, Hermann (Paris), 1962.
- [12] O. TEICHMULLER, p-Algebren, Deutsche Math. 1, p. 362-388, 1936.
- [13] E. WITT, Schiefkörper über diskret bewerteten Körpern, J. de Crelle 176, p. 153-156, 1937.
- [14] S. YUAN, Brauer groups of local fields, Ann. of Math, 82, p. 434-444, 1965.