
Groupe de travail
d’analyse ultramétrique

WIM H. SCHIKHOF
Locally convex spaces over nonspherically complete valued fields
Groupe de travail d’analyse ultramétrique, tome 12, no 2 (1984-1985), exp. no 24, p. 1-33
<http://www.numdam.org/item?id=GAU_1984-1985__12_2_A5_0>

© Groupe de travail d’analyse ultramétrique
(Secrétariat mathématique, Paris), 1984-1985, tous droits réservés.

L’accès aux archives de la collection « Groupe de travail d’analyse ultramétrique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=GAU_1984-1985__12_2_A5_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


24-01

LOCALLY CONVEX SPACES OVER NONSPHERICALLY COMPLETE VALUED FIELDS

by Wim H. SCHIKHOF (*)

Groupe d’étude d’Analyse ultramétrique
(Y. G. CHRISTOL, P. ROBBA)
12e année, 1984/85, n° 24, 33 p. 3 juin 1985

A structure theory (part I) and a theory (part II) for locally
convex spaces over ultrametric nonspherically complote valued fields is developed.
As an application nuclearity, reflexivity and the Hahn-Banach proporty ar e obtained
for certain classes of spaces of C~ and analytic functions and their duals.

Introduction.

Consider the following property (.v~ defined for locally convex spaces E over a

non-archimedean, nontrivially valued complete field K .

~ 
(Let D be a subspace of E , let p be a continuoixs seni:norn on E Jo let f eD’

~ 1wi th 1 ri ~ p on D . Then f has an extension r E E’ such that t~) ~ p on E.

The non-archinedean Hahn-Banach theore ([l4~ Th. 3.5) states that (~) holds if
K is spherically (= naxiually) couplete. p. 91 ~ 92 it is not hard to

derive the following ’converse’. 
’

PROPOSITION. - Let K be not spherically complete. If E is Hausdorff and (*)
i s true din E  1 .

purpose of this paper is to show that, for certain classes of spaces over

nonspherically complete base fields, a satisfactory duality theory exista. Hère

the key rôle is played by the ’ polar seminorms’ 
t (Definition 3. 1 ) . sb.all mainly

be dealing with the following two classes of spaces.

(i) Strongly polar spaces. r E is strongly polar if each continuous seminorm is

a oolar seminorm. Jtrong polarness of E will turn out to be équivalent to the

following Hahn-Banach property (x") (Theorem 4.2).

Let D be a subspace of E , let p be a continuous seminorm on E , let

(*k) c &#x3E; 0 , let f e DI with ( f( ~ p on D. Then f has an extension ? ~ Et

such that f ~ ~ ( 1 + e) p on E .

(ii) Polar spaces. - E is polar if there is a basis P of continuous seminorms

.consisting of polar seminorms. In general, polar spaces do not have the Hahn-Banach

property (**) but the conclusion of (**) does hold if D is onedimensional and if

p E p . In particular, the elements of the dual of a Hausdorff polar space separate
the points of E .

C) Wim H. SCHIKHOF, Mathematisch Instituut, Katholieke Universiteit, Tournooiveld
NIJMEGEN (Pays-Bas).
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In 8 2 we shall introduce several examples of spaces of (continuous C - ,
analytic) functions. Throughout, we shall apply the results of our theory to them.

(See Example 4.5 wii ), Corollary 4.4 (iii), Proposition 6.9 and the Corollaries
7.9, 8.8, 9.10, 10.11, 11.6.)

Note. - The main theory in this paper holds for spherically complete K as well,

although in that case post results are known. Possible exceptions are Proposition

4.11, the Theorems 5.12, 8.3, 8.5, 9.6 and the Corollaries 10.9 (i), 11.4.

1. Preliminaxies.

For terms that are unexplained here we refer to [l’], [l3L [l4~

(a) Base field. - Throughout K is a non-archimedean nontrivially valued com-

plete field with valuation | | . We set (1 A. E K} , || := the clo-

sure of in R , 1 := [1 ’AI ; A E K , ~ 7~ 

The field of the p-adic numbers is denoted Q , the completion of its algebraic
closure is C , with valuation ~ ~ .-p’ ’ P

(b) Convexity. - Let E be a vector space over A nonempty subset A of E

is absolutely convex if x, yEA, ~ , ~~EB(0 y 1 ) implies An

absolutely convex set is an additive subgroup of E . For a nonempty set X C E

its absolutely convex hull co X is the smallest absolutely convex set that con-

tains X. lie have

If X is a finite set {x1 , ... , xn} we sometimes wite co(x1 , ... , x )
instead of co X . A subset A of E is edged if A is absolutely convex and for

each x E E the K, Ax E A) is closed in If the valua-

tion on K is discrete every absolutely convex set is edged. If K has a dense va-

luation an absolutely convex set A is edged if and only if from x E E, Xx E A

for all ~ E B(0 , 1~ ~ it follows that x E A . Intersections of edged sets are

edged. For an absolutely convex set A we define Ae to be the smallest edged sub-

set of E that contains A . If the valuation of K is dense we have

Ac = E ; B(0 , 1w~ A) E K : ) ~ ~ H
(and A = A if the valuation is discrete). An absolutely convex set is

absorbing if E = U (XA : X = Kj .

(c) Seminorms. - For technical reasons we slightly modify the usual definition as
follows. A seminorm on a K-vector space E is a nap p : E -&#x3E; R (we apologize
for using the same symbol as in ~ satisfying
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(iii) p(x + y) ~max(p(x) , 9 p(y)) .

for all x , y K . Observe that if K carries a dense valuation (i) is
equivalent to p(x)  0 whereas for a discretely valued field K condition (i) is
equivalent to It is easily seen that if p : i E 2014~ [0 , satisfies

(ii) and (iii) and K has a discrete valuation the formula

defines a seminorn q which is equivalent to p . The set of all seiainorms on E

is closed for suprema (i. e, if P is a collection of seminorms on E and if

q(x) := p= for each x ~ E then q is a seminorm on E ).
For each absolutely convex absorbing set A  E the formula 

’

defines aseminorm p on E, the seainorm associated to Then

The proof of the following proposition is eleuentary.

PROPOSITION 1.1. - The na A )2014~ p is a bijection of the collection of all

edged absorbing subsets of E onto. the collection of all seminorms on E . Its

inverse is given by p t2014~ [x e E : p(x) ~ 

(d) Locally Convex topologies. - A topology 03C4 on E (not nec es sari ly Hausdorff)
is a locally convex topology (and E = (E , T) is a locally convex space) if T

is a vector space topology for which there exists a basis of neighbourhoods of 0

consisting of absolutely convex (or, equivalently, edged) sets. A locally convex
topology is induced by a collection of seminorms in the usual way. The closure of a

subset A of a locally convex space is denoted I . The following terms are direc-

tly taken over from the ’classical’ t theory (see for example [16], also [14]) and
are given without further explanation. Barrel’ barreled space, complete, quasiconm-

plete, bounded set, bounded linear map, bornological space, normed (normable) 
I 
i

space, Banach spac e, Fréchet space, 9 projective limit topology ( in particular, pro-
duct and subspace), inductive limit topology (in particular, direct uotient,
strict inductive limit of a sequence of locally convex spaces, Let E ,
? be locally convex spaces over K , let L(E , F) be the K-linear space consis-

ting of all continuous linear naps E --&#x3E; F . Let G be a nonempty collection of

bounded subsets of E . The topology on F) of uniform convergence on members

of G is the locally convex topology induced by the seminorms

where q runs through the collection of continuous seminorms of F and where A

runs through G . . lie write E’ o ~ L(E , K) . (The algebraic dual of E is denoted

E . ~ As in the classical theory we have the weak topologies o(E~ ~ E) on E’ and
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and cr(E, B ’ ) on E , and the strong topology b(E’ , , E) on ?E ’ (they may be

no.t Hausdorff). Someti os we write i" to indicate (i9’ , a(E’ , E)) , Similarly,

Eb : = (E t, b (E I , E )) . .

(0) Compactoids ([6J, 1.1). - ii subset A of a locally convex space E over K

is (a compactoid jf for each neighbourhood U of 0 there exist ... , xn E E

such ... , xn) " absolutely convex hulls and closures

of compactoids are compactoids. If A is an absolutely convex compactoid then so

is If A is a compactoid in E and T "" L(E ,F) then TA is a compactoid

in F . Each precompact set is a compactoid, each conpac.toid 
is bounded. ii map

T E L(E , F) is compact if there exists a neighbourhood U of 0 in E such

that TU is a compactoid in F .

(r) Nuclear spaces ([6J, 3.2).

(i) Let E be a locally convex space over Ie . For each continuons seminorm p

let E be the space 11 /]£er p normed 1,15,th the quotient norm P induced by p ,

let Ep be its completion whose norm is again denoted p . The canonical maps

11 
p 

: E 1--&#x3E; E" 1&#x3E; (where p runs through the 
col.lection r of all conti.nuous semi-

norms on E) induce a map E --;&#x3E; E . In a similar way one C-n obtain a map
E -&#x3E; fl , lll . It is easy to see that, if E is a Hausdorff space, these maps

fll p
are linear homeomorphisms into.

(ii) Let E , r be as , in (i). 
For p, q E r, p # q the natural map Eq -;--&#x3E; E P

(or sometines E" q --&#x3E; E") P is denoted ’.i! 
pq 

. E is a nuclear space if E is 
-"

Hausdorff and if to every p ~ 0393 there exists q E r, q p p such that the map

W is cocpact. (By l6], Lemma 2 .5 compacthess of 03C6pq : E --&#x3E; E is equivalent
pq ’"... Pq q p 

,

to compactness of 03C6 : i E --&#x3E; E . )
PQ q P

TllO following proposition is easy to prove.

PROPOSITION 1.2. - Subs aces and uotients by closed subspaces of nuclear s aces

are nuclear. In a nuclear space each bounded 
subset is a compactoid.

PROPOSITION 1 . 3 . - por a locally convex space E over K the following ar e

equivalent.

(a) lll is nuclear.

(j) E is linearly homeomorphic to a subspace of some power 
Q°’ cO’

Each element of L ( E , I S compact.

proof. See [4], 8 4, Proposition 2. - (The assumptions that 
IL be spherically

complete and that the valuation be dense, 
made throughout [41, are easily seen tO

be redundant in this case.) -
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2. 

First we recall the definition of a C- (C~ - ) function ([12],  8 or [l3]).
Let X be a nonempty subset of without isolated n E N set

For a function f : X --&#x3E; K define f g ~~X2014-&#x3E;K~(n~ [0 , 1 , 2 , -D
inductively f ~ " f and, for 

f is a Cn-function if 03A6n f can be extended to a continuous function 03A6n f on

1 
(observe that t this exteision is unique since n+ 

1 
X is dense in Xn+11 ).LB. 0 serve ,J a his ex tersion 1.8 unique 81’,’lCO vn+1 B. 18 ense In .ù..

We equip the space Cn(X --&#x3E; K) of all Cn-functions X ~ K with the locally
convex topology of uniform convergence of W. f on compact subsets of for

i E [0 , .1 , ... , n} . Coo(X K) : = n --.&#x3E; Il) , wi th the topology of uni-

form convergence o f 03A6i f on compact subsets o f for all i E to,1,2,... ,
The following examples will serve as illustration material throughout.

2. 1. The spaces Cn(X --&#x3E; K) for compact X . - For n E [0 , 1 , 2 , ...} and

compact X the topology on --&#x3E; K) can be described by the single norm

Ii j) given by

1-t is shown in [12], 8.5 and 8.22 that --a K) is a Banach space of coun-

t abl e hence linearly homeomorphic to c0 .

2.2. The space --&#x3E; K) compact X . - I t is easily seen that the topo-

on C~(X --&#x3E; K) is defined. by the (seni-) II (n E {0 , 1 , 2 ? ...} ),
n

It i s shown in [ 12], 12.1, that C~(X --&#x3E; K) is a Fréchet space in [ 6], 3.5,
that -~-.- ~) is nuclear.

2.3. space C~(U --&#x3E; K) where U is an open subset of Qp . - Let U be a

nonempty open subset suppose K ~ . For n E {0 , 1 , 2 , ... } set

n := {x ~ U : i B(x , P ) ~ U , | x| 
p  pn} where

Then each U is compact and open in (i , ~ ..., y U U -U . It is

not hard to see that the topology on C (U --&#x3E; K) is defined by the seminorms

p. ( j , n 1 , , 2 , t ...)) where
jn

From this 12.1, it follows that --&#x3E; X) is a space.
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Nuclearity of --&#x3E; K) is proved in [6], 5.4.

2.4. The space where U is an open subset of g . - Let K , U ,
U be as in 2.3. As a vector space, let --&#x3E; 11) be the space of all

-2014&#x3E; K) with compact support. To be able to put a decent inductive limit
topology on -2014&#x3E; K) we need the lemma.

LR’liiA2.4. - Let be nonempty open compact subsets of Qp. For each
f : V 2014-&#x3E;K let ? : W2014&#x3E;K be defined by f(x) := rex) if. x E V , rex) := 0

if x B V . Then the map f ~ f is a linear homeomorphism of 

into 2014~ 

Proof. - The local character of the C~-property ([ 12], 8.12) guarantees that
f e 2014&#x3E; K) implies f E --&#x3E; J( ) . The linearity of f t--..~ f is clear.

Let d’ :=inftjy- yE z ~ V} . Then d’ &#x3E; 0 . Set d 

Let 2014&#x3E; K) . We shall prove by induction on n ~ [0 , 1 , 2 , ...) that

(This, together with the obvious inequality will finish the proof.)
The case n = 0 is trivial. For the step from n - 1 to n first observe that

~f~n = ~03A6n f~~ V ~f~n-1 and, by the induction hyPothesis,

It suffices therefore to prove that for (x1 , xi) , ...’ ,x 1) E ~03C0+1 W we have

Now (") is true if all x1 , ... , xn+1 are in V and also if all x1 , ... , xn+1are in W B V (in latter case the left (*) is 0 the 
maining case we by symmetry of 03A6n f, assume that W B V .

Then |x1 - xj $.d so d and

which completes the proof of Lemma 2.4.

we define the topology on C c (U --&#x3E; K) as follows. each n E [ let

E := tf E C 00 (U --&#x3E; K) : supp There is an obvious algebraic isomor phism
n c 

~ 
n

between E 
n 

and C (U 
n 

--&#x3E; K) which induces a locally convex topology T n on E n
for which it is a nuclear Fréchet space by 2.2. have E2 ~ ... and

~ Ie) . By Lemma 2.4 have 1" n+ 1 1 E n = each n. Define on
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C (U --&#x3E; K) the inductive liuit topology which respect to the inclusion naps

En ,:...-&#x3E; 2014&#x3E; Ie) . B;0 Day conclude ([14J, Def. 3d, Th. 3..13) that 2014;&#x3E; K)
is an LF-space (hence complete, barreled y nonmetrizable). We shall sec in Corolla-

ry 4.14 (iii) that --&#x3E; K) is nuclear.

2. 5. The space Cn0(Qp 2014&#x3E; K) and 2014-&#x3E; K) iI - (These are slight generaliza-
tions of the spaces i112.1 and 2.2.) Let K ~ Qp, n E 1,2; ...}. Let

(Here I I is the usual norm on ~+l ). With the norm II In defined by

Cn0(Qp -.-:&#x3E; K) is easily seen to be a Banach apace of tTrpe. B1e dEfine

C~0(Qp _-&#x3E; K) := n Cn0(Qp --&#x3E; K) with topology induced by the (semi) norms
, .1: 0~

II n (n E [0 , 1 , 2 , ...}) . It takes only modifications or the methods

referred to in 2.2 to prove that --.&#x3E; K) is a nuclear Fréchet space.

2.6. The space S(Qp ---&#x3E; K) of C~-functions rapidly decreasing s,t 

let K ~ Q . We define S(Q --&#x3E; K} to be the space oi all functions
T 

i 
f 

c;o--P 
1 1

f : Q ---&#x3E; k for which Pf ~ C~0(QD ---&#x3E; K) far each polynomial functzon P . Zts
’11 0 ’1J

topology is defined by the seminorms p (n , k 
E (0 , 1 , 2 , ...}) wherein

(here x denotes the identity polynomial). A standard reasoning shows that
--&#x3E; K) is a Fréchet space. For a fixed k the nap f t2014&#x3E; is a linear

homeomorphism of the space --&#x3E; K) , with the topology defined by the semi-

norms ?2k ’ ° ° into --&#x3E; K). From this fact, together with

the nuclearity of C~0(Qp 2014&#x3E; K) , y one easily derives the nuclearity of 2014&#x3E; K).

Finally wo consider two spaces of analytic functions.

2.7. The space 11 (K) of entire functions. - Let K have a dense valuation. Let

A (K) be the space of all entire functions f : K 2014~ K with the topology of uni-

form convergence on bounded subsets of K. By [5J, 3.6, is a nuclear Fréchet

space.

2.8. The space of analytic functions on the open unit disc. - Let K

have a dense valuation. Let be the space of all analytic functions

f : B(O , 1-) 2014-&#x3E; K with the topology of uniform convergence on proper subdiscs

of B(0 , 1-) . By [5J, 3.6, A1(K) is a nuclear Fréchet space.
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Definition 3*-L* - A seminorm p on a K-vector space il is a polar seminorm

if t f e L’~ , 
The collection of all polar seminorms on E is closed under suprema and. under

multiplication by eleLents of If p is a polar seminorm on a K-vector

F and if T : E --&#x3E; F is a K-linear map then is a polar seminorm

on E .

It is an easy consequence of the Hahn-Banach theorem ((*), Introduction) that
if K is spherically complete each se.,innrm on E is polar. For nonspherically
complete K we have = ( 0 ) ([l1J, 4.15) so the canonical norm on ..

1 ~/c0 is not polar.

PROPOSITION 3 .2. - Let p be a s3ei--oinoru on a K-vector space E y let

A := fxeE: be its unit semiball. The following are equivalent.

(~) p is polar. 
’

K ~  pea) then there exists an fe 3~~ with

f(a) ==X and 

(y) For each onedimensional subspace D , for each e &#x3E; 0 , y for each f e D
with D there is an extension ?e E~~ o f f such that ) f ) g( I+c ) p

( 6 ) For each a BA there is an with (f(A)|  1 and )f(a)t &#x3E; 1 .

Observe that for spherically complete K the properties (03B1-(03B4) are true for

each seminorm p (and we uay even allow ( X) g p(a) in (03B2) and ~ 0 in (03B3)).
The proof of Proposition 3.2 (by the above it suffices to consider only dense valua-

tions) is straightforward and is omitted.

Definition 3.3. - Let E be a locally convex space over K , let E . Set

A~ := {f~E’ : If(x)1 ~1 for all xeAj , 11.°°:= .xEE : for all

f E 11.° J . A is a polar set if A = A .

The following consequences are immediate.

PROPOSITION 3.4. - Let E be a locally convex space over K.

(i) Each polar set in E is closed and edged.

(ii) A continuous seminorm p on E is polar if and only if {x ~ E : 

is a polar set.

(iii) A subset A of E is a polar set if and only if there is a collection P

of polar continuous seminorms such that A = ~p~P{x ~ E : P(x) (. 1} . 
’

(iv) A subset A of E is a polar set if and only if there is a collection
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F-E such that A=H ~p~ « E &#x3E; 
If 11 is spherically complete each closed edited set is polar (["141, 4.6, Th.

4.8, ’closed &#x26; edged = ’ t 1-closed’). If K is not spherically complete the

’closed’ unit ball of is closed and edged but not polar. Jee, however,

Theorem 4.7. In the following definition we select the two classes of spaces we

shall be dealing with througliout .

Definition 3.5. - Let E be a locally convex space over K. E is a strongly

polar space if every continuous s:.?1l.1inorD on E is polar. E is a polar space if

its topology is defined by a family of polar seminorms.

If K is spherically complete each locally convex space over K is strongly polar.

If K is not spherically complete (hence, 1) is not strongly polar. It

is easy to see that the image of a strongly polar space under a continuous linear

map (in particular, a quotient of a strongly polar space) is again strongly polar.
also have:

PROPOSITION 4.1. - Each subspace of a strongly polar space is strongly polar.

Proof. - Let D be a linear subspace of a strongly polar space E , lot p be a

continuous seminorm on D. Since D carries the relative topology there is a

continuous seminorm q on E such that p  q on D. The formula

defines a seminorm r on E . We have r $ q (so that r is continuous) and

r = p on D . r is polar. Hence, so is its restriction p.

THEOREM 4.2. - For a locally convex space lfl over K the following are equi va-

lent.

(~) ~ is strongly polar.

(3) property). For each linear subspace D , for each continuous

seminorm p, for each e &#x3E; 0 , for each f e D’ with D there is

an extension of f such that f) I (l + e) p on E .

proof. - The implication (t3) - (or) follows from Proposition 3 . 2 ( ’,j’) ==~&#x3E; (G ) , so

we prove (03B1) ===&#x3E; ( #) , ile may assume that f ~ 0 . Set S :== Ker f , let T : E - E;S
be the quotient map, choose x e D B 3 . Let g be the K-linear map defined on

K TT(X) that sends rr(x) into f(x) . For each y ~ E with lr(y) = 11(X) we have

y ~ D and f(x) = fey) so that, bv )f) ~ p on D ,

It follows that on where p is quotient of p on
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E/S . As E/S is a strongly polar space we can use Proposition 3.2 (~) ~=&#x3E; (~) to

an extension g E (E/S)’ I of g that I g! .::: C1 + E:) P on E/S . Set

f : = g 0 Tr . Then f E. E y f extends f and for each Z E E have

Definition 4.3. - A normed space over .K is of countable type if there exists a

countable subset whose linear span is dense p. 66). A locally convex space
E over K is of countable type if for each continuous seminorm p the normed

space 2 P 1 (f) (i)) is countable type.

18 is of countable type if and only if "or each continuous se: inorm p there

exists a linear subspace, whose dimension is at most countable, that is p-dense in

E (i. e. dense m.th respect to the topology induced by the single seminorm p ).
It is not hard to see that in the above we may replace without harm ’continuous

seminorm D ’ I by ’continuous seminorm p belonging to some basis P of continuous

4.4. - locally convex space of countable type is strongly polar.

Proof. - Let p be a continuous seminorm on the space E. It suffices to check

that E is strongly polar. E is of countable type hence so is the Banach space

E’ . By 3.16 (vi ), this space is strongly polar. Then E is strongly polar

(Proposition 4.1).

Open probleu. - Let K be not spherically conplcte (e.s. K = C ) . Is every

strongly polar space of countable type ?

~’5’ Examples. - The following spaces are of countable type and therefore have the

Hahn-Banach property 4.2 (p). also Corollary 4.14 (i).)

(i) Finite dimensional spaces, spaces with countable dimension.

(ii) Locally convex spaces with a Schauder basis.

(iii) The weak dual E’ of any locally convex space E over K.

(iv) Any locally convex space E with the weak topology U(E , 

(v) For any ultrametric space X, the space C(X 2014&#x3E; K) of all continuous func-

tions X --&#x3E; K with the topology of uniform convergence on compact subsets.

(vi) For any uetrizable locally convex space E, its dual :c I with the topology

of uniform convergence on compact subsets.

(For and (iv) , observe that Ker p has finite codiuension for each weakly
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continuous seminorm p ; for (v)y (vi ) use the isomorphism C(Y 2014&#x3E;K) -" c ([11],
3.T) for an infinite coupact ultrametrizable space Y ; (v) is a stepping stone for
(vii).)

In view of the open a,bove are urged to study strongly polar spaces

and spaces of countable type separately.

Further properties of strongly polar spaces 4

It is quite easy to see that, if D is a dense subspace of a locally con-vex

space E , then D is strongly polar if and only if E is strongly polar. In par-

ticular the completion of a Hausdorff strongly polar space is strongly polar. Horo

generally we have the following.

PROPOSITION 4.6. - Let E be a locally convex space ?d.th strongly polar sub-

spaces E c: E L- ... such that U E is dense E . Then E is strongly polar.

In particular, the strict inductive limit of a sequence of strongly polar spaces is

strongly polar.

Proof. - It suffices to prove the first statement. By the above remark we uay

assume E == U B . Let p be a continuous seminorm on E , let x ~ E , e &#x3E; 0
and le.t f ~ (Kx)’ such that |f|  p on Kx . We extend f to an f e E with

J~t ~ (l + ~) p on E as follows. We E for n . * Let 

be positive numbers such that ?[2014 the strong polarity of

E there is an extension f e E’ of f with on En . By

Theorem 4 $2 f n extend to an fn+1 ~ E’n+1 such that

Inductively we arrive at an extension f e lil of f such that

Open problem. - Is the product of two strongly polar spaces again stronlgy

polar ?

THEOREM 4.7 (Compare Proposition 3.4 (i)). - A locally convex space L over K

is strongly ,)0lar if and only if each closed edged subset is polar.

f. - If each closed edged set is polar then, for each continuous seminorm p

the set E : p(x) ~ ij is polar. Hence p is polar Proposition 3.4 (ii).

Conversely, let E be strongly polar, let A be a closed edged subset of E . We

shall prove that for each x ~ E B A there exists a continuous seminorm p such

that p(A) $ l, p(x) &#x3E; 1 . (Then, by Proposition 3 . 4 are done.) Day

assume that 11 is not spherically complete, hence that the valuation is dense.

There is e B(o , 1-) such that x ~ .A . Set Xo := Since A is closed
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there is a continuous q on. E such that

does not meet A . Then V :== x - B + A is open, absolutely convex. V contains

A x0 ~ V . Let p be the seminorm associated to OfT Then p is continuous,

and p(x0)  1. It follows that p(x’) == p(!J.:"l ’xo) &#x3E; 1 . B

COROLLARY 4.8. - An edged subset of a locally convex space E is weakly closed if

an only if it is a polar set.

proof. - From Proposition 3.4 (i) &#x26; (iv) it follows polar sets are weakly

closed and edged. If, conversely, 11. is weakly closed ¿}!;.d then Theorem 4.7,

applied to cr(E, E’) (which is strongly polar by 4.5 (iv», implies A is a

polar set in (E , u-(:E: , E’)) . But the dual of this space equals E’ so that, by

definition, A is also a polar set with respect to the initial topology of E .

COROLLARY 4.9. - Every closed edged subset of a strongly polar space 

closed. In particular, closed linear subspaces of a strongly polar space 
are weakly

closed.

For a subset A of n locally convex space, let A be its closure, let A be

its weak closure, have the following general relation.

PROPOSITION 4.10. - Let A be an absolutely convex subset of a locally convex

space. Then (-Acr)e = ,00 .

proofs - (A03C3)e is weakly closed, edged, hence polar by Corollary 4.6. As AOO

smallest polar set containing A we have On the other hand,

AOO is weakly closed, edged, (A03C3)e is the suallest edged, weakly closed set con-

taining A so that (A ) c.

Now let A be an absolutely convex subset of a strongly polar space. Then (Ã)e
is closed, edged, hence polar by Corollary 4.9. With Proposition 4.10 

we arrive at

In pa.rticular, if A is also closed for the initial topology we obtain

so that (for densely valued fields K) we have

for each 03BB ~ K , |03BB| &#x3E; 1 . This leads to the following.

Open problem. - Characterize the weakly closed absolutely 
convex sets of a

strongly polar space over a nonspherically complete K . (If K is spherically

complete it is that an absolutely convex subset of 
, 

a locally convex
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space is closed if and only if it is weakly closed.) Theorem 5.13 (iv) offers a par-
tial answer.

Related to this problem is the following proposition exte:nding [1], Proposition
5, that will be used later on (Corollary 1J.9).

PROPOSITION 4.11. - Let E be a stron gly polar Hausdorff space. Then each weakly

convergent in E is convergent.

Proof. - Let say that a locally convex space has (OP) (Orlicz-Pettis) if each

weakly convergent sequence is convergent. A standard reasoning shows that if each

member of a family of locally convex spaces has (OP) then so has their product.

subspaces of spaces having (OP) have (0P) , Now let E be strongly polar,

Hausdorff. For each continuous seminorm p the space E , hence E is strongly

polar. By [9], 5. 2, E^p has (OP ). Then also E , being isomorphic to a subspace of

P P 
,has (OP).

Remark. - The conclusion of Proposition 4.11 holds for every Hausdorff locally

convex space over a spherically complete K . If K is not spherically complete

then is not strongly polar (but is polar) ; the sequence (1,0,0,0,...) , y
(0 , 1 , 0 , 0 , ... ) , (0, 0, 1, 0,... ) converges weakly (to 0 ) but not

strongly.

Further properties of spaces of countable type.

We denote the class of spaces of countable type over K by (S0) . Tile have the

following stability properties.

PROPOSITION 4.12. - Let E be a locallT convex spac e over K.

( i ) I f and D i s a linear subspace of E then D E and E/D E 

(ii) If D is a dense linear subspace of E then D E (S ) and only if

E E (S~) .
(S ) is closed for products and for countable (locally convex) direct sums.

(iv) Let E c.: ... be subspaces in (SO) of E such that ~En is dense

in E . Then E E (S ) .
Proof.

(i ) Let p be a c ontinuous seminorm on D. There is a continuous seminorm q

on E whose restriction to D is p . In the commutative diagram (see 9 1.) (f))
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(where i is the inclusion map) the map j is a linear isometry. E is a Banach

space of countable type, Hence ([ll~ 3.16) so is D" . It is an easy exercise to
show that the normed space D (a dense subspace of D ) is also of countable type .

It follows that D e (s ) . Similarly, if p is a continuous seminorm on E/D then

p o n (where n : E 2014&#x3E; E/D is the quotient map) is a continuous seminorm on E .

The map E 
p°03C0 

-2014&#x3E; (E/D) 
p 

is surjective, continuous ; the normed space Ep° c is of

countable type. Hence, so is (E/D) . It follows that (S ) .
(ii) If D is dense the map j in the above diagram is a subjective isometry.

So if D e then for each continuous seminorm q on E restriction p

on D ) the space D" is of countable type. Hence, so are E" and E . Thus,
E ~(S0) .

..

(iii) We first prove that (S0) , E2 ~(S0) implies E2 (S0) . It

suffices to prove that (E, x E ) ~ (s ) for p (p ) a continuous seminorm

on E. (E ) and where (p x p ) (x , y) ((x,y) 
But (E. x Ej is isometrically isomorphic to (E.) x (E ) which latter

space can be embedded into c0 x c ~ 
c . It follows that (S,.) is closed for fi-

nite products. For the general case let I be an indexing set and, for each i 6 I,

let 3. be a space in (S..) . Let p be a continuous seminorm on !L E.. Since
the unit semiball of p is open in the product space it contains a subset of the

form n U. where U. is open E. for each i and where U. / E only for

i ~ y ... , i ) for some n e N, . Thus p factors through ’!. E :in ~ j

where the map g in the diagram is the canonical projection. The seminorm p is

continuous so by what we just have proved there is a countable set A in 

such that (the K-linear span of A ) is p-dense E.. Then, if B

is a countable set in H Ei such that g(B) = A , the set is p-dense in

fl E.. Thus, (S0) is closed for products. Now let E :=~i~N E. be the locally
I l’ . 1- 1

convex direct sum of the space E - E2, ... E (SO) . For n -E !!.., set

F :=(r? . E. , considered as a subspace of E . Then Fn ~03C0ni=1 E so that, by the

preceding proof, F ~ (SO) . The result E ~ follows from (iv).

(iv) By (ii) we may assume UE 
n 

= E . Let p be a continuous seminorm on E.

For each n E N , choose a countable set such that {[A J is p-dense in’ 

- 

’ 

n n n

E . Then A := UA is countable and is p-dense in E.
n n

As a corollary we obtain the following characterisation.

THEOREM 4.13. - A locally convex Hausdorff space is of countable type if and only

if it is linearly homeomorphic to a subspace of c for some set I .
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Proof. - By Proposition 4.12 each subspace of c~ is in (so) . Conversely, if
E E (30)’ E then each E ( 1 (f)) is linearly homeomorphic to a

subspace of c . One easily constructs an embedding E -2014&#x3E; where f is the col-

lection of continuous seminorms of E.

It turns out that the class (SO) coincides with the class (S,) of [4], ’J 3 ,
Definition 1. This, combined with Proposition 1.3 yields the following.

COROLLARY 4.14.

(i) Each nuclear space is of countable type.

(it) The strict inductive limit of a sequence of nuclear spaces is nuclear.

(iii) --&#x3E; K) 2.4) is nuclear.

proof. - (i) is immediate, (iii) follows from (ii). To prove (ii), let E be the

strict inductive limit of the nuclear spaces E ~ ... By ~reposition 4.12

(iv) E is of countable type. To prove that E also satisfies the second condition

of Proposition 1.3 (~ let T e L(E , y 

For each n there is an absolutely convex neighbourhood 1J of 0 in E such

that TUn is a compactoid subset of the unit ball of c 0 . Choose ,B, Íl.2’... E K
with lim À =0 and set Then U is absolutely convex and open

n"~ n n n

in the inductive limit topology. For each ~ &#x3E; 0 we have for almost all n that

TUn ’Ç. ix ~ :  follows readily that TU = I À ifJ a compectcid.

In  8 we shall discuss spaces whose duals are of countable type.

5. 

5 ..! , Examples. - The following spaces are polar (Definition 3.5).

(i) Strongly polar spaces (see 4.5).

(ii) ~ . More generally:

(iii) Function spaces (E, 1") of the following type. Let X be a set, let E

be a linear space of functions X --&#x3E; K , let B be a collection of subsets of X

such that each f ~ E is bounded on each element of B, let T be the topology

of uniform convergence on members of B. (For example, the Banach space BC(X-2014&#x3E;K)

([11J, 3.D) is polar, the strong dual of a locally convex space is polar)

(iv) For each locally convex space E and each polar space F ~ the space L(E~F)
with the topology of uniform convergence on members of nnu class of bounded subsets

of m.

(Direct verification.)

, 
The proofs of the next two propositions are also straightforward.
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PROPOSITION 5.2. - For a locally convex space E the flollowing are equivalent.

(a) E g_s a polar space.

(03B2) For each continuous seminorm q on E there is a, polar continuous seminorm

p on E such that p £ q . 
_

(y) The polar neighbour.hoods of 0 form a neighbourhood basis of 0 for the

topology of E .

5.3. - Projective limits (in particular, subspaces and products) of
spaces are polar.

Quotients of polar spaces need not be polar for a nonspherically com-

plete base field). But we do have the following.

PROPOSITION 5.4. - The (locally convex) direct sun of any collection oi’ polar

spaces is polar.

Proof. - Let E be the direct sum of the polar spaces E. (i E r) where I is
- 

J J. 

~

an indexing set and let 4l. i : E. --&#x3E; E (i e I) be the canonical injections. Let

q be a continuous seminorm on E . For each i E I the seminorm q is con-

tinuous, 30 there is a continuous polar seminorm p. on E. with pi  q 0 §l..
. 

i i i 1

Each x E E has a unique representation x = I. (x.) where x. E E. for each

i and where it : x. # OJ is finite. Set p(x) := max. p. (x. ) . Then p is a
’1 i 1 1

seminorm on l!J . It is continuous since p 0 

£. 1 
= 

p. ]. for each i E I . For each

X E E we have q(x) = q(I W. (xi))  max q 0 03A6. (xi)  uax p. (x) .= p(x) so that
- i i i i 1.

p § q . Ile finish the proof by showing that p is polar unsing Proposition 3.2

(p) =&#x3E; (cz) . Let x = 1 4l, i (x) E E , let A E K, IÀI  p(x) . lTe have p(x)=p.(x.)
for SOí:le j E I . There is an f. E Ej such that .) = x., |fj|  pj on

E .. Define f ~ E by the formula f(03A3 03A6. (y. )) = f .(y.) . Then |f|  u, r(x):=À
J 1 1. J J 

¿

and W’C are done.

PROPOSITION 5.5. - Let E ’De a dense linear subspace of a locally convex space
F . Then E is polar if, and only if F is polar. In .&#x3E;articular, the completion
of § Hausdorff polar space is ,o,)ar .

Proof. - Left to the reader.

PROPOSITION 5.6. - Let D be a finite dimensional subspace of a Hausdorff polar

space E .

(i) Each f E Dr can be extended to an fEE I .

(ii) D is a polar set.

Proof. - cr(E, Et) is Hausdorff, so D is weakly closed, hence polar by Corol-

lary 4.8 . To prove (i), let fED’ . By (ii), Ker f is a polar set, For

a E D N Ker f there is a g ~ E’ .with g = 0 on Ker f and g(a) = rea) . Then
g is an extension of f .
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A cm ark. - It is not possible to extend Proposition 5.6 by admitting D to be of

countable type : let K be not spherically complete, set E :== l~, D &#x3E;= Co .
Then ([l1J, 4.15 (e) =&#x3E; (v) , (o) ==-&#x3E; (1» =E , 

. 

the map x --&#x3E; 03A3xn
D) cannot be extended to an element of 

It is our purpose to prove the f’-mdanental Theorem 5.12 for polar spaces. First

some general observations and lemmas. Let U be a polar zero neighbourhood in a

locally convex I.I , let a e E . It is somewhat doubful whether 11 + co(a) is

again polar, or weakly closed, or edged. (Of course, U + co(a) is absolutely con-

vex and strongly open and closed.) But we can prove the following.

LR..i’i.I£a 5.7. - Let U be a polar neighbourhood of 0 in a locally convex space E,

let a ~ L . Then (U + == (U + co(a))e . ,

Proof. - If K is spherically complete then E is polar and the equa-

lity follows from Theorem 4.7. So assume that the valuation is dense. It suffices

to prove (U + c (1J + i. e. that for each 03BB E K , &#x3E; 1 the

weak closure of U + co(a) is contained in £(U + coCa)) (Proposition 4.10). So

let x E U + co(a)03C3 ; there is a net (x.) (i C I) in U + co(a) converging

weakly to x . The seminorm p associated to U is polar so there is an fEE t

with p and If(a)1 ~ ( A~~) p(a) . For each i ~ I we have a decomposition

x. i = u. + §, 1 a (u, 1 e U, S. 1 e B(0 ~ 1)) . So, for each i , j e I

There is an i0 such that f(x. ) - f(xj)|  1 for all i , j  i0 . Since also

I f I  1 on U we find

have p((§. - ~. )a) ~ )~) f ~. -- &#x26;. ) )f(a)j ~ )~ . It follows that
i ~ i ~o

. for i ~i~ . FromIL lo 

we obtain x. - ~. Since vU is weakly closed we have
i 10

COROLLARY 5.8. - Let U be a polar neighbourhood of 0 in a locally convex space

E ,let Xl’ ... , - x E E . Then t , u + ... , x ) )00 = (U . + co ( Xl ’ ... , x ) )8 .
Proof. - By induction. The case n = 1 is Lemma 5.7. Suppose the statement is

true for n =m- 1 . Let ... , Set V :=U+ ... , xm-1) .
By the induction hypothesis VOO c So we get, using Lemma 5.7 again,
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LEMMA 5.9. - Let U be a polar neighbourhood of 0 in a locally convex space E,
let a E E . Choose ~ E K; 1 ÀI .&#x3E; 1 if the valuation is dense ~ a = 1 if the

valuation is discrete.  Zf (x. ) is a net in U + converging weakly to 0
- 1

then x. E 03BB for large i .
....r....

Proof. - Let p be the seminorm associated to U , there is an with

p, | p(a) . As in the proof of Lemma 5.7 we have the decompo-
sitions x. - + a . Since r(x.) 1. -&#x3E; 0 and 1 f( u. ) 1 1 ~ 1 have ~ I r( 0161. l. 
for large i . Thus, a)  |03BB| , |f(03BEi a)|  |I À} 3 i. e. ;. 1 a E nU for large i.

It follows that x, 1 E AU for large i .

COROLLARY 5.10. - Let U, a , A be as in the previous lemma. Let (x. ) be a

net in (U + converging weakly t o 0 . Then AU f or large i .
~ .. , T ..-. - - .. - ? .. - ;----- ’ 1.

Proof. - It suffices to consider the case where the valuation is dense. Choose

&#x3E; E K , 1  | |  | i Then 03BB-1  x. 1- E U + for all i so that, by Lemma

5.9, xi E i. e. AU for large i .

as in Lemma. 5.9,   ... ,a E E . If
(xi) is a net in (U + co(al ’ ... , a ))e converging weakly to 0 then x. E AU

for large i .

Proof. - If the valuation is dense , choose 03BB1, ... , K such that |03BBi|&#x3E;1
for all j and 03C0 |03BBi|  | 1 AI . If the valuation is discrete set j‘ . J := 1 for all

j E ~ 1 , ... , n~ . have

By 5.7 the set (u + co(al’ ° ° ° ’ of 0

so by Corollary 5.10 we have 03BB11 n xi E (U + co(a1 , ... , an-l)e for large i .

Inductively we arrive at 03BB-12 ,..., 03BB-1n xi for large i implying that
x, e KU for large i .

J.

THEOREM 5.12. - Let E b£, a polar space. Then, p£ compactoids, the weak topology
and the initial topology coincide.

Proof. - Let A be a compactoid. lie way assume that iE I? absolutely convex so

that it suffices to prove that, for a net (x. ) in A , x. -&#x3E; 0 weakly implies
i J.. .

xi -.&#x3E; 0 strongly. Let V be a neighbourhood of 0 in g , let :B E K , I AI ;;. I.

E is a polar space so there is a polar neighbourhood U of 0 such that

There exist ~l ’ °°° ’ an E E such co(al ’ ° ° ° ’ an) . By Corollary
5.11 we have x, e XU C V for large i . It follows that x, -&#x3E; 0 strongly.

1 1
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The previous nachinery yields the following.

5.13. - Let E be a polar space, let A c- E be a conpactoid.

(i) ~ is a compactoid.

(ii) A is closed if and only if A is weakly closed.

A is closed and absolutely convex then A ==A .

(iv) If~ A is closed and edged then A = A .

(v) If A is absolutely convex then A is conplete if and only if A is weakly

complete.

proof.

(i) Let U be a polar neighbourhood of 0 , let A. ~ K , 0  ) ~  1 . There

are ... ~ x e E such that A c- A.U + ... , x ) . Using Corollary
5.8 we obtain , 

.

(ii) From (i) it follows that A-03C3 is a compactoid. Now apply Theorem 5.12.

(iii) and (iv) follow from (ii) and Proposition 4.10. The proof of (v) is stan-

dard.

6. Polarly barreled and bornological spaces.

Definition 6.1. - A locally convex space over K is polarly barreled if every

polar barrel is a neighbourhood of 0 .

This notion will suit our purposes in duality theory rather than just ’barreled’ .

Obviously each barreled space is polarly barreled so that Banach spaces, Fréchet

spaces, LF-spaces (see [14’D are polarly barreled. Hence, the spaces 2, (2.1)-
(2.8) are (polarly) barreled. In general, we have : .

PROP03ITION 6.2. - A strongly polar space is barreled if and only if it is polar-

ly barreled.

Proof. -- Suppose E is strongly polar, polarly barreled. Let A Q0 a barrel in

E . Then Ae is edged, closed, so by Corollaries 4.9 and 4.8, Ae is a polar set.

Then Ae is a neighbourhood of 0 . For each A F &#x3E; 1 we have Ae C AA .
It follows that A is a neighbourhood of 0 so that E is barreled.

Open problem. - Do there exist (polar) spaces that are polarly barreled but not
barreled ?
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The proofs of the following two propositions are easy and therefore omitted.

PROPOSITION 6.3. - For a locally convex space E over K the following are

equivalent.

(~) E is polarly barreled.

(03B2) If and i fe Fj exists then p is continuous.

( t) The set of all polar continuous seminorms on E is closed for suprema.

PROPOSITION 6.4. - Inductive limits (in particular, direct suns and quotients) of
polarly barreled spaces are polarly barreled.

PROPOSITION 6.5. -Let E be a polarly barreled space, let II  11 ’ . The follow-

ing are equivalent.

(~) H is bounded for E).

(:3) H is a coupactoid for O’(E’ , E).

(y) H is bounded for b(E’ , E).

( 6 ) H is equicontinuous.

(e) There is a continuous polar seminom p on E such that jfj I  p for all

Proof. - (a) ===&#x3E; (p) is a consequence of the fact that Ker p has finite codimen-

sion in E’ I for each E)-continuous seminom p on E I . For ==&#x3E; (g)
observe that p(x) := sup[1 r(x)’ : f e Hj for each x . By Proposition

6.3 p is continuous. From the definition of p it follows that p is polar. The

proofs of the remaining implications are either obvious or are similar to the cor-

responding classical’ proofs (see [ 16 1 Ch. 33).

Let E be a polarly barreled Then Et and E, are (polar)

quasicomplete Hausdorff spaces.

Proof. - Similar to the proof of [161, 34.), Corollary 2.

Je briefly consider a polar version of the notion of a bomoloifical space.

Definition 6.7. - A nonempty subset A of a vector space E over K is K-polar

if lor each x BA there exists an such that I r(A)B ~ 1 , jf(x))&#x3E;l.
A locally convex space E over K is polarly bornological if every K-polar set

that absorbs every bounded set is a neighbourhood of 0 .

Moving along the line of the ’classical 
t theory the following proposition is not

hard to prove.

PROPOSITION 6.8. - Let E be a polarly bornological space. Then Eb is complete.
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PROPOSITION 6.9. - The spaces of 9 2y (2.l)-(2.8) are borne logical, their strong

duals are complete.

Proof. [l4~ and Proposition 6.8.

7. Topologies compatible with a duality.

Let E be a locally convex s-pace over K . For each x e E iie define the L.ap

jE(x) : E’ 2014&#x3E; K by the formula jE(x)(f) == f ( x ) (f e E) .

LEi-MA 7*1. - Let E be a locally convex space over K .

(i) jp, is a linear map of E onto (E’) .
(ii) E is Hausdorff and polar then jE is a bijoction of E onto (E’03C3)’ .

proof. - For (i) see [l4L Th. 4.10. To prove (ii), let x x ~ 0 . There

exists a polar continuous seminorm p with p(x) ~ 0 . We have

so there exists an with f(x) ~ 0 . It follows that jE is injective.

, 

Fron now on in  7, E is a polar Hausdorff locally convex space over K with

topology 03C40 , also called the initial topology. E’ t := (E , y T )’ .

Definition 7. 2. - A polar topology v on E is 03C40-compatible if (li , , = E ’ o

If there exists a strongest 03C40-compatible topology on 11 it is the Mackey topology.

It is proved (Th. 4-.18.a) that for a locally convex space over a spheri-
cally complete K the Mackey topology exists and equals the topology induced by the

seminorms x --&#x3E; sup{|f(x)| : f E AJ where A runs through the collection of all

subsets of E’ that are bounded and c-compact for the topology y E) .

’ 

Open problen. - For a polar Hausdorff locally convex space over a nonspherically

complete field, does there exist a Mackey topology ?

(For a partial answer see Corollary 7.8. )

Fortunately it will turn out in the subsequent sections that a full answer is not

needed to set up a decent duality theory.

Definition 7. 3. - A of E" is a covering G of r such that

(i) each member of G is edged, o(Et 9 E)-bounded, y 

(ii) for each A , BEG there is such that A 

(iii) for each A E G and A E K there is a B E G with 03BBA C B .

For a special covering G the G-topology on E is the topology induced

by the seminorms x t2014&#x3E; : f ~ A} wllere A runs through G .
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By identifying E to the dual of E’03C3 (as vector spaces) by means of the nap

jE (Lemma 7.1 (ii)) we may view a as the topology on (E’03C3) I of 

form convergence on members of G . Hence, (Example 5.1 (iv)) a G-topology is polar.

It is also Hausdorff since G- is a covering of E’ t .

PROPOSITION 7.4. - For a (polar, y Hausdorff) locally convex topology 03BD on E the

following are equivalent.

(03B1) 03BD is 03C40-compatibel.
(03B2) v is a G-topology for some special covering G of E t .

Proof. - (03B1) ==&#x3E; (03B2) . For each 03BD-continuous polar seminorm p set

Then, by (u) , A C E’ . It takes a standard reasoning to show that (Q) is true

for G := p is a 03BD-continuous polar seminorm on E ). (b) ==&#x3E; (03B1). We have

seen that v is polar ~ Hausdorff. It is easy to see that the weak topology

o- = E) is 03C40-compatible and that v is stronger than J . Hence we have

an inclusion nap E’ t c:2014&#x3E; (E , B)) I which is obviously a homeomorphism into with

respect to the weak topologies induced by E . Let g c (E , 03BD)’ ; we shall prove

that g E E’ . There are A1 , ... , An e G and 03BB E K such that

where p.(x) =sup-,)f(x)j : f E (xe E) for each ie [1 , ... , n} . There

is a B=G with B ~ 03BB(A1 U ... p(x) =supf)f(x)j : f E Bl (x E E).

Then p B is complete in E~ and therefore closed in (E , v)~.. As B

is also edged and (E , 03BD)’03C3 is strongly polar (Exanple 4.5 (iii)) we have by Theo-

rem 4.7 that B is a polar set in (E , B~)~ . It therefore suffices to prove that

g (where B is considered as a subset of (E, i. e. that

( 3(g) ) f I for all 03B8 ~ By Lemma 7.1 (i) each element of the dual of (E’ , 

has the form 6 for some x E E , where ô (h) = h(x) (h e (E , 03BD)’03C3) . Thus, let

0 elP , e = 6 ; . Then x (h) I = )h(x)j I  1 for all he B so that p(x) 1 .

Hence, ~(g)j ( = ( g(x) ( $ p(x) § I and we are done.

As 1it corollary we obtain the following non-archimedean version 
of Mackey’s theorem.

THEOREM 7.5. - All 1"O-coL,pati ble topologies on l’l have the sane bounded sets.

Proof. - Jince the weak topology û(E, E’) is 03C40-compatible it suffices to

prove that any a(E , E’)-bounded set B ~ E is 03BD-bounded for any 03C40-compatible
topology v . By Proposition 7.4 v is a G-topology for some special covering G

of E’ . "fe prove that for each C E G the seminorm

rB

is bounded on B . Now C is absolutely convex, bounded and complete in E’03C3 atd B
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is a barrel in By Lemma 7.6 below there is K such"’ that C C ABu and

it follows that on B.

LEMMA 7.6. - Let B be a barrel in a Hausdorff locally convex space, let C be

bounded, absolutely convex, complete. Then there is a such that 

Proof. - Similar to the proof in the complex case (see for example [16J, Lemmas

36.2, 36.1, 34.2) and therefore omitted.

COROLLARY 7.7. - A subset of il is bounded if and only if it is weakly bounded.

On the existence of the Mackey topology we have the following result.

COROLLARY 7.8. - Suppose E has the following property. Each polar barrel that

absorbs every bounded set is a neighbourhood of 0 . Then _ the Mackey topology for

E exists and is equal to the initial topology T .

Proof. - Let B) be any 03C40-compatible topology on E ; we prove that 03BD  03C40.

Let U be a v-open neighbourhood of 0 . To prove that U is also 03C40-open we
may assume that U is a polar set for . Then U is also polar for T and U

is a polar barrel in E. U absorbs every 03BD-bounded set, hence every 03C40-bounded
by Mackey’s Theorem 7.5. By assumption U is a T -neighbourhood of Q

COROLLARY 7.9. - The conclusion of Corollary 7.8 holds for polarly barreled

spaces and also for polarly bornological spaces. In particular~ each one of the

spaces of  2,,(2.1)-(2.8) has a Mackey topology which equals the initial topology

8. 

If K is not spherically complete the spaces Co and l are strong duals of

one another 4.17). Co is of countable type~ ~ is not. In this section

we derive conditions on E in order that Eb be of countable type. To this end we

establish some properties of compactoids in general locally convex spaces first.

LEMMA 8.1. - Let A be an absolutely convex compactoid in a locally convex space
E over K . Let &#x3E;1 if the valuation is dense, A = 1 if the valua-

tion is discrete. Then for each neighbourhood U of 0 there exist 

such that A ~- U + ... , 

(A proof appears in [8 J but is also included here for the reader s con-

venience.) There is a continuous seminorm p such that tx c. p(x)  ij  U . We
use the notations of  1, (f) . r:p (A) is an absolutely convex compactoid in Ep.
By [6]. Proposition 1.6, is also a conpactoid in F := By 

48 (viii) the space F is of countable type so that by [11], 4.37 ( 1), e’very t- 

orthogonal sequence in TT (A) tends to 0 . By [ ii], 4.36 A and C~ there exist
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e1 ’ e2 ’ ... ~ ^ 03C0p (A) with limn~~ en =0 in E; and such that

03C0p(A) ~ co(e1 , e2 ’ ...) . We have p e ill 1 -tor large ill so there is an n 

such that ... , 

Choose Xl ’ ... , X E AA with TT (x.) =8. for ie fl., ... , n}. Then, using
the fact that Ker TT 

T’B 

= Ker p we arrive easily at ¿

PROPOSITION 8.2. - Let A be a metrizable absolutely convex compactoid in a

locally convex space E over K. be as in Lemma 8.1. Then there is a com-

pact set X C Ax such that A L co X . For X we may choose a set of the form

(0 , e 1 ’ e2 ’ , .. } where lim e = 0 .
Proof. - (Our proof is a slight modification of the one of [7], 2.3. ) There is a

sequence V ~V2 ~ ... of absolutely convex neighbourhoods of 0 in E such that

for each neighbourhood TJ of 0 there exists an n ~ N, such that U n A l-2 V n A .

Choose 03C11 , 03C12, ... ~ K such that I &#x3E;1 for all n , fi I 
has a dense valuation and such that p = 1 for all n if K has a discrete va-

n

luation. By the previous lemma there is a finite set F 
1 

L- p A such that

A ~- V. + co F.. Since (A + co F1) n V is an absolutely convex compactoid there

is a finite set F 2014 + co F1) n V1] such that

Inductively we obtain a sequence Fl ’ F , ... of finite sets such that for

each n E ?1

We claim that X := (Oj u U 
n 

F 
n 

has the required properties : .

(i) From and (**) we obtain inductively that C p ... p A
(n~N) so that X C AA .

(ii) Let U be a neighbourhood of 0 ; we prove that X B U is finite. (Then it

follows that X = [0 , e1 ’ è2’ ...J for some sequence e1’ 82 ’ ... with limit

0 and X is compact.) Choose a neighbourhood U’ of 0 such that 03BBU’ 2014u .

There is an n ~ N.. such that V n A c ut n A . For m 3:- n we have, by (**) ,
F V 

ill 
Using (i) we get so that

m-rl n 
n A c y t n We find F 

m+1 
c: .Bu’ i ~ U for all m  n , i. e.

X BU’-F u... a finite set.

(iii) Finally we prove A  ~"X . Let Since A l-lo V 1 + co F 1 there is

an co F such that x - xl ~ (A + co (*) there is an 
such that x - (A + co F1 + co F2) . Inductively we find 
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such that x-?_., xi ~ V for each n . Hence 03BB-1(x - 03A3ni=1 x.) n A for

each n so that x = n x.. It follows that x ~ ëõ-j{ . 
1= i n 

-

THEOREM 8.3. - Let E be a Hausdorff polar space. The following conditiohs are

equivalent.

(~) Et is of countable type.

(~) Each bounded subset of E is E ’ )-metri zable .

Proofs - (a) ==&#x3E; (~) . Let B be a bounded absolutely convex set in E . The semi-

norm p on E’ defined by the formula p(f) = suptl rex) 1 : x ~ BJ is continuous

for E) . there are f , f2 ’ y ... in E’ such that [f1’ y f2 ’ ..~
is p-dense in Without loss may assume that for each í . It

takes a standard reasoning to show that d i B x B --&#x3E; R defined by the formula

d(x , y) = maxi I fi (x) - f.(y)} I 2 is an ul trametric on B whoso induced topology

equals the o(E, y E ~-topology on B. To prove (,3) ==&#x3E; (~) consider a bounded sub-
set A of E . The same argument as used in the proof 6f Proposition (6.5) (~)===-~(~)
yields that A is a compactoid for a(E, L’ ) . By (~3) the set A is metrizable

for E~) . By Proposition 8.2 there is a (bounded) sequence e2 ’ ...

converging weakly to 0 such that A C ~~’~~~"~’777) . It follows that the
topology b(E’ , E) equals the topology of uniform convergence on (bounded) weakly
compact sets. Also we know that each such weakly compact set is metrizable. A slight

and obvious generalization of the proof needed for Example 4.5 (vi) shows that Eb
is of countable type.

To obtain an interesting characterization in the spirit of Theorem 8.3 for a res-

tricted class of spaces we first prove the following variant of Proposition 4.11.

LEMMA 8.4. - Let E be a polar Hausdorff space. Suppose that each bounded subset

of E is a compactoid. Then each weakly convergent sequence in E is convergent.

Proof. - Let ... weakly. Then [0, x2 ’ ...j

is weakly bounded hence bounded by Corollary 7.7, hence compactoid by assumption. By

Theorem 5.12 the weak and strong topologies coincide on [0, x , ... I . Hence

lim 
_,~ 

x 
n 

= 0 strongly.

THEOREM 8.5. - For a polar Hausdorff space E the following are equivalent.

(~) is of countable type. Each weakly convergent sequence 5-n .c is conver-

gent .

(j) Each bounded subset of E is a metrizable compactoid.

Proof. - (~) =~=&#x3E; (.3). Let A be a bounded subset of E . From the second part of

the proof of Theorem 8.3 we obtain a sequence e2 ’ ... such that en 2014~ 0

weakly and A co(e1 , e2 , ...)03C3 . Now we have e -&#x3E; 0 strongly so that
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co(el ,62 ’ ...) is a compactoid. BT&#x3E;. Theorem 5.13 (i) the set e2 ’ ...)
is a compactoid, hence so is e~ ~ ...) by Proposition 4.10. It follows

that A is a compactoid. A is metrizable for o(E y E’) by Theorem 8 . 3 . By Theo-

rem 5.12, A is also metrizable for the initial topology. Now suppose (p). By Theo-
rem 5.12 each bounded 3et is metrizable for cr(E y E’) so, by Theorem 8.3, Eb is

of countable type. The second condition of (-:) follows from Lemma 8.4-.
(...Q

Observe that, for a nonspherically complete satisfies the conditions of

Theorem 8.3 but not the ones of Theorem 8.5.

COROLLARY 8.6. - Let E be a polar Hausdorff space satisfying one of the condi-

tions (~)~ (~) of Theorem 8.5.

(i) For each bounded set A C E there exist 81’ 82 ’ ... E E lime =

such that A ~ co(e1 , e2 , ...).
(ii) The E)-topology on E t equals the topology of uniform convergence on

compact sets.

(iii) Each weakly compact set in E is compact, Each ú(E , E’)-compactoid is a

compactoid.

Proof. - For (i) combine Theorem 8.5 and Proposition 8.2. The assertion (ii) fol-
lows from (i). For (iii) observe that weak compactoids are bounded by Corollary 7.7,
hence they are compactoids (j~) of Theorem 8.5. For the first statement, apply

Theorem 5.12.

COROLLARY 8.7. - The strong dual of a nuclear space in which each bounded set is

metrizable is of countable type. In particular the strong duals of nuclear Frechet

spaces or nuclear LF-spaces are of countable type.

Proof. - Proposition 1.2 and Theorem 8.5 (d) =&#x3E; (u) take care of the first sta-

tement. For the ’LF-part’ of the second statement use [ 14], Theorem 3.14, 10 .

COROLLARY 8.8. - The duals of the spaces 2014&#x3E; K) (X compact 2014&#x3E; K ) ,
--&#x3E; K) (U open in Qp) , C~0(Qp 2014&#x3E; K) , --&#x3E; K) , of

s 2 are of countable type.

9. Reflexivity.

For a locally convex space E over K we denote, as usual, the space (E{) , b oy

E" . have the inclusion as linear spaces so that, by Lemma 7.1, jE
maps E linearly into E" .

Definition 9.1. - A locally convex space E over K is reflexive if

is a surjective homeomorphism.
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LEMMA 9.2. - Let E be a Hausdorff polar space. Then jE : E -&#x3E; E1t is injec-
ti ve and its inverse: jE(E) --&#x3E; E , is continuous.

Proof. - Injectivity follows from Lemma 7.1 (ii). Let (x.) be a net in E for

which jE(Xi) 2014-&#x3E; 0 in we prove that xi --&#x3E; 0 in E.. Let p be a polar
continuous seminorm on E. Then B;== {f ~ E’ : is equicontinuous hence

bounded ill Rb . Hence --&#x3E; 0 uniformly on B . But then, since

p = sup[lf! : f E Bj we have also P(xi) 2014&#x3E; 0 . By polarness of E , xi 2014&#x3E; 0 .

LEMMA 9.3. - Let E be a polarly barreled space. Then jE : E --&#x3E; E" is conti-

nuous.

Proof. - Let (xi) be a net in E , converging to 0, let B be a bounded subset

of By Proposition 6.5 there exists a polar continuous seminorm p on E such

that If I  p for all f E B . As P(Xi) --&#x3E; 0 we have --&#x3E; 0 uniformly on

B . It follows that jE(Xi) -2014&#x3E; 0 in E" .

LEMMA 9.4. - If E is reflexive then so is E..’ .

Proof. - The nap 
I 0 : Eb --&#x3E; EIt I 2014&#x3E; Eb is the identity. Now jE is

an isomorphism of locally convex spaces hence GO is its adjoint (jF,) I . It follows

that jEt is an isomorphism, i. e. that Eb is reflexive.

Let E be a polar space such that jE: E --&#x3E; Eft is surjective.

Then Eb is polarly barreled.

Proof. - Let B be a polar barrel in fJi,. From surjectivity of jE it follows

that B = AO for some set ACE. Since B is absorbing WG have that is

bounded in K for each fEEl i. e. A is bounded in the topology E’) .
By Corollary 7.7 A is bounded for the initial topology implying that B = AO is

neighbourhood of 0 in Eb .

THEOREM 9.6. - For a locally convex space E over K the following are equivalent.

(~) JJ is reflexive.

(03B2) E is a Hausdorff, polarly barreled, polar space. E is weakly quasicomplete.

Proof. - (C,.(’) =&#x3E; (j3) . E is isomophic to a dual space, hence J!.: is Hausdorff

and polar (Example 5.1 (iv)). By Lemma 9.4 the space Eb is reflexive and E" is

polarly barreled by Lemma 9.5. Hence, so is E . From Theorem 6.6 and the polar

barreledness of Eb we obtain that E" is E’)-quasiconplete. jp is a ho-

meomorphism of (E , a(E , E t )) onto cr(En , Et)) .

(03B2) =&#x3E; (U:’). From the Lemmas 9.2 and 9.3 it follows that jE is a homeomorphism

of E into E" . To prove that jE is onto it suffices, by Lemma 7.1 (ii), to

prove that (E~) I = (E{) I as sets. In other words’ we must prove that :e)
is , E)-compatible. Now, the topology b(E’ y E) equals the topology of
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uniform convergence on all J ( O , y subsets of E (Corollary 7. 7). This
is also the topology of uniform convergence on members of G:= i.A ~1 E ? A edged,
A closed and bounded for a(E, E’)j .By assunption each Member of G is complete

for E’) . Using the Lap jE of 7.1 (ii) (which is obviously a homeo-

morphism of (E , o.(E , E ’ )) onto we find that &#x3E; A ~ Gj is

a special covering of I and that b(E’ , E) is the By Proposi-

tion 7.4 we then have (E’)’ = (E’)’ .
As aji application we shall prove Theorem 9.8 extending 4.17 (which says that

if 11 5-s not spherically complete, every K-Banach space of countable type is

reflexive).

9.7. - Let E be a strongly polar space with a quasicomplete linear sub-

space D . If R is G(E, E’)-quasicomplete then D is 03C3(D 1 Dt 

proof. - Let (x.) be a net in D that is u(D , D’ )-bouxlded and o(D y Dt)-

Cauchy ; we prove that it is 1 D’ )-convergent. Obviously (x. ) is bounded and

Cauchy for E’) so there is an x E 1? such that xi 2014&#x3E; x for E 1) .
To prove that x e D consider X := where the bar indicates the closure

in D for the initial (relative) topology. D is strongly polar by Proposition

4.1. X is bounded by Corollary 7.7. Then, since X is also closed in D , y X is

complete y hence closed in E. X is also edged and we have by Corollary 4.9 that

X is cr(E, E’)-closed. It follows that x = o(E , Et) - x. 1. e X ~ D. To

prove that x. i 2014-&#x3E; x also for a(D , D’) , let f e D’ . By Theorem 4.2 f 0153snex-.

tension ?~ E’ . have °1°’(x. ) 2014&#x3E; f(x.) 2014&#x3E; f(x) which finishes

the proof.

THEOREM 9.8. - For a locally convex space E of countable type over a nonspheri-

cally conpløte K the following are equivalent.

(-~) E is reflexive.

(,3) E is Hausdorff, quasicomplete, ( po lai’ly) barreled.

Proof.- (03B1) ==&#x3E; (,3) follows from Theorem 9.6 and the observation that a reflexive

space is quasiconplete since it is the strong dual of a polarly barreled space

(Theoreu 6.6). ’fe Drove (d) ==&#x3E; (,,). By Theorem 4.13 there is a set I such that E

can be viewed as a subspace D of c is reflexive it is weakly quasi-

complete by Theorem 9.6 ; it is an easy exercice to show that also Cô is weakly

quasicomplete. From Lemma 9.7 we obtain weak quasicompleteness of D. Now apply

Theorem 9.6 to D.

COROLLARY 9.9. - Each Fréchet space of countable type over a nonspherically com-

plete K is reflexive. Countable strict inductive limits of such spaces are refle-

xive.
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Proofs - The conditi ons of Theorem 9.8 are satisfied. (See [14]. Theoreu 3.13,
3°, Theorem 3.16 and Proposition 4.12 (iv) of this paper.)

COROLLARY 9.10. - Let K be not spherically comlplete. Then all the spaces of

~ 2, (2.l)-(2.8) are reflexive.

If K is spherically complete no infinite dimensional normable space is reflexive

4.16). In that case the --&#x3E; K) (~ 2.1), --&#x3E; K) ( ’1 2.5)
are iot reflexive, will see in the next section that the remaining spaces of

(2.1)-(2.8) are reflexive. .

10. l~~.o~ s~es , ,

Definition 10.1. - A locally convex space over K is a Montel space if it is

Hausdorff, polar, polarly barreled and if each closed bounded subset is a complete

compactoid.

It follows from the definition that quasicomplete barreled nuclear spaces are

Montel spaces so that all the spaces 2 , (2.l)-(2.8)y with the exceptions
Cn(x 2014&#x3E; K), --&#x3E; K) , are Montel spaces.

10.2. - Let E be a polar space for which each bounded subset is a conipac-

toid. Then E is weakly quasicomplete if and only if E is quasicomplete.

Proofs - Suppose E is quasicomplete and let A be a set which is closed and

bounded for o(E, y E’) . Let B be the weak closure of the absolutely convex hull

of A . Then B is weakly bounded hence bounded by Corollary 7. 7, and B is a

conpactoid. B is closed in E hence complete. By Theorem 5.13 (v) B is weakly

complete. Then A, being weakly closed in B, is weakly complete. Conversely,
assume that E is weakly quasicouplete, let A be a strongly closed and bounded

subset of E. Then is compactoid. By Theorem 5.13 (ii) li is weakly closed

(and weakly bounded) so that A is weakly complete by assumption. According to a

standard reasoning A is also strongly complete.

THEOREM 10.3. - A Montel spac e i s reflexive.

Proofs - Lemma 10 . 2 and Theorem 9. 6.

In this context it is interesting to quote the following ’converse’ in case K

is spherically complete.

THEOREM 10.4. - Each reflexive space over a spherically complete field is a

Montel space.

Proof . - (~ ~ ~, Proposition 4 a).

The example c~ shows that if K is not spherically complete there exist reflexive
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spaces which are not Montel spaces.

To prove Theorem 10.7 we need the following two general lemmas.

LEMMA 10.5. -Let 1"1  ’f2 be locally convex topologies on a space

E such that 1"1 = 1"2 on 03C41-compactoida. Then (g, 1"1) and (D, 1"2) have the

same compactoid sets.

Proof. - 118 prove that all absolutely convex 03C41-compactoid A is also ’-2-
compactoid. Choose À E K , &#x3E; 1 . Then T 1 = ’f 2 on AJ.i. Let U be a 03C42-
neighbourhood of 0 in E . Then there exists a 03C41-neighbourhood V of 0 in E

such that V n n 03BBA. Since A is 03C41-compactoid there exist, by Lemma 8.1,

xl ’ ... , xn E N1 such that + ... , xn) . Then, by convexity,

A - ,BA and 1J. c: (V n 1B11.) + (U n- M) + c U + 

10.6. - (Coupare [,2J, Proposition 13). Let E be a locally convex spacer

K . Then on equicontinuous sets of E’ the topology 0(E I , E) coincides

with the topology of uniform convergence on compactoids.

proof. - Let H eEl bo equicontinuous, let (f.) be a net in II converging to

f E II for a(E t , E) . Let A be a compacetoid, let E; &#x3E; 0 . 1:Je prove that

I f - fi e on A for large i . By equicontinuity there is a neighbourhood U

of 0 in E such that  e for all i .

There exist xl ’ ... , xn ~ E such that + ... , xn) . There is an

io such that 1 Cf. - f)(xi)|  ~ for j E [1 , 2 , ... , nJ and i ?,.iO . It

follows that on ... , xn) , hence on A, for 

THEOREM 10.7. - The strong dual of a Montel space is a Montel space.

proof. - Let B be a Montel space. By Theorem 10.3 and Lemma 9.4 its strong

dual Db is reflexive. It therefore suffices to show that a bounded subset of Eb
is a compactoid. Consider the topologies 1" 1 = o(E’ , ,E) and 1" 2 = b(D I , E) on

E’ . On 03C41-compactoids (i. e., on equicontinuous sets of E’ , see Proposition

6.5) T 
1 

coincides with the topology of uniform convergence on compactoids (Lemma

10.6). It follows that ’[1 = 03C42 on 03C41-compactoids.

By Lemma 1().5 each 03C41-compactoid is also a 03C42-compactoid. Thus, each bounded sub-
set of is a compactoid.

THEOREE 10.8. - Each quasicomplete polarly barreled subspace of a Montel space is

a Montel space.

Proof. - The statement follows directly from the definitions after observing the

following fact which is a consequence of Lemma 8.1. If }j. is a compactoid in E ,

A C D - E , D is a subspace of E then .A is a compactoid in D .

11. combinaison of the theory of  8 and  10 yields tho following corollaries.
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COROLLARY 10.9. - Lot E be a Hausdorff, polar, polarly barreled, quasicomplete

space for which each weakly convergent sequence is convergent. If Ij’,’ is of coun-

table type then R is a Montel space. In particular ue have the following.

(i) Let K be spherically complete. If I?. is a Préchet space or an LF-space

and Eb is of countable type then F is reflexive.

(ii) Let E be a Fréchet space or an LF-space, of countable type, whose strong

dual is also of countable type. Then E is a Montel space.

Proof. - Theorem 8.5 yields the general statement. For (i) and (ii) use Proposi-
tion 4.11 and observe that, for spherically complete each locally convex space

over K is strongly polar.

COROLLARY 10.10. - Let x be the class of all reflexive locally convex spaces

E over K such that both E and Flg are of countable type. For a locally convex

space E over K the following are equivalent.

(~) E e x .

(.3) E is a Montel space. Each bounded subset of E is metrizable. Ð is of

countable type.

( j) E and Eb are of countable type. E is Hausdorff, barroled, quasiconplete.

COROLLARY 10.11. - The spaces 2014&#x3E; K) (X conpact), 2014~ K) ,
--&#x3E;K) (U open in Q) , A (K) ~ ~ 2 are members

of the class x of Corollary 10.10.

Remark. - From the definition of a Montel space it follows, with Theorem 5.13

(iv) , that each closed, edged, bounded set in a Montel space is a polar set. With

an eye on Proposition 4.7 one may wonder whether every Montel space is strongly

polar. The following exam.ple shows that this not so. Let K be not spherically

complete, let il be the K-vector space l on which we put the strongest locally

convex topology (i. e. the topology induced by all seminroms on l~) . The canonical
norm on l/c0 is not polar so that g is not strongly polar. On the other hand

it is easily seen that E is a Montel space (bounded sets are finite dimensional
E can be viewed as a locally convex direct sun of one-dinension«-il spaces, Proposi-

tion 5.4, the seminorm associated to some barrel is continuous).

11. Nuclear duals.

In the spirit of  8 we derive conditions on E in order that Et be nuclear y

using Proposition 1.3.

LEMMA 11.1. - Let E be a metrizable or an LF-space over Let ...

be a sequence in E converging to o. Then there exist A.... E K with

lin 1 A n I and liu À 
n 

x 
n 
=0 .
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Proofs - By [14J, Theorem 3.14, Corollaire, it suffices to consider the case where

E is metrizable. There are absolutely convex neighbourhoods U1 ~ U2 ~ ... of 0

forming a neighbourhood basis at 0 . Choose p E 1 . There are

N 
1  rT2 .... in !L such that for w , n E IT.

Choose ~=.~= ... = -~ = 1 , ~~i= ... = -~ = P , ~1= ... = -~ = ~
etc . One checks easily th,at lim 03BB x = 0 .~ 

n n

LEMIA11.2. - Let E be a metrizable or an LF-space over K . Suppose E is

seni reflexive (i. e. j : E 2014-,&#x3E;E" is sur j e c -tiv e ) and also that each weakly c o n-

vergent sequence is strongly convergent. Then every Te L(E’ --&#x3E;c0) is compact.

Proof. - For every n the map f --&#x3E; (TF)n (f e is in E" y hence by semi-

reflexivity there is an x e E such that (Tf) = f(x ) for all f e E’ . Thus,’ 

n n n

T has .the 

As T naps into Co we have x 2014&#x3E; 0 weakly and, by assumption, x --&#x3E; 0

strongly. By the previous lemma there exist 03BB1 , A2 ’ ... ~ K with

lin I = 00 and B := 
~ x " n eNj is bounded. Then I is a neighbourhood

of 0 

° 

in Eb and T(B") - t(Sl ’ g2 ’ ...) eco : for all n} .
The latter set is easily seen to be a compactoid in c...

11.3. - Lot E be a polar semireflexive locally convex space over K .

Suppose that each bounded subset of D is a coupactoid and that E is either

metrizable or an LF-space. Then is nuclear.

proof. - It suffices to combine Lemma 8.4, Lemma 11 .2, Theorem, 8.5 (03B2) ===&#x3E; (03B1),
and Proposition 1.3 (for E, ).

COROLLARY 11.4. - (Extension of [ 5], Proposition 5.7 (ii)). Let K be spherically

complete. Then the strong dual of any reflexive uetrizable or LF-space is nuclear.

Proof. - Theorem 10.4 and Theorem 11.3.

COROLLARY 11.5. - The strong dual of a Montel space which is either metrizable or

LF is nuclear. The strong dual of a nuclear Fréchet space or a nuclear LF-space is

nuclear.

Proof. - The first statement follows from Theorem 11.3. For the second statement

observe that the space is barreled and complete. Hence, by Proposition 1.2, it is a

Montel space.

COROLLARY 11.6. - The duals of the spaces 2014&#x3E; K) (X compact) , C~(U --&#x3E; K)
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