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LOCALLY CONVEX SPACES OVER NOWSPHERICALLY COMPLETE VALUED FIELDS
by Win H. SCHIKHOF ()
Abstracts, - A structure theory (part I) and a dvality theory (part II) for locally
convex spaces over ultrauwetric nonspherically complete valued fields is developed.

As an application nucleerity, reflexivity and the Hahn-~Banach property are obtained
for certain classes of spaces of (- and analytic functions and their duals.

Introduction.

Congider the following property (*) defined for locally convex spaces E over a

non-archii.edean, nontrivially valued complete field K .

§Let D be a subspace of E , let p be a continuous senminoru on B » let f e D!

(* )w1th |f| £p on D.Then f has an extension f € B' such that |f| p on E.

The non-archinedean Hahn-Banach theoren ([ 147, Th. 3.5) states that (*) holds if
K is spherically (= maxinally) couplete. #Frou [11] p. 91 & 92 it is not hard to

derive the following 'converse'.

PROPUSITION. - Let K be not sphericelly couplete. If E is Hausdorff and ()

is true din E < o

The purpose of this paper is to show that, for certain classes of spaces over
nonspherically complete base fields, a satisfactory duality theory exists. Here
the key role is nlayed by the 'polar seminorms!® (Definition 3.1). Je shall mainly

be dealing with the following two classes of gpaces.

(i) Strongly polar spaces., - E is strongly polar if each continuous seminorm is

a nolar seminorm. Strong polarness of E will turn out to be equivalent to the

following Hahn-Banach property (#%) (Theorem 4.2).

Let D be a subspace of E , let p be a continuous seminorm on E , let
(*x) ¢ >0, 1et f eD' with |f| <p on D. Then f has an extension f € B!
v such that Ifl §.(1 +€)Dp on E .

(ii) Polar spaces, - E is polar if there is a basis P of continuous seminorms
.consisting of polar seminorms. In general, polar spaces do not have the Hahn-Banach
property (**) but the conclusion of (**)tkéshdﬂ if D is onedi.ensional and if
p € P . In particular, the elements of the dual of a Hausdorff polar space separate

the points of E .

( ) Wim H. SCHIKHOF, Mathematisch Institﬁut, Katholieke Universiteit, Tournooiveld
NIJEGEN (Pays—Bas)
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In 9 2 we shall introduce several examples of spaces of (continuous c- ’ c*- ’
analytic) functions. Throughout, we shall apply the results of our theory to them.
(3ee Example 4.5 (vii), Corollary 4.4 (iii), Proposition 6.9 and the Corollaries
7.9, 8.8, 9.1, 10.11, 11.6.)

Note. - The main theory in this paper holds for spherically complete K as well,
although in that case most results are known. Possible exceptions are Proposition

4.11, the Theorems 5.12, 8.3, 8.5, 9.6 and the Corollaries 10.9 (i), 11.4.

1. Preliminarjes.
For terms that are unexplained here we refer to [1], [13], [ 14].

(a) Base field. - Throughout K is a non-archimedean nontrivially valued com-
plete field with valuation l l . We set FE] $= {lhl i AEK}, FK] := the clo-
sure of |K| in R, |K°] :={|N ; Aek, A# 0} ,

B(O, 1) :={rex; |A g1}, Blo,17):={raek: |A <1}.

The field of the p-adic numbers is denoted Qp , the comnletinn of its algebraic

closure is € , with valuation l l .
P p

L 4
(v) Convexity. — Let E be a vector space over X . A nonemnty subset A of E
is absolutely convex if x , y € A, A, u € B(0 , 1) implies Ax + wy € A . An

absolutely convex set is an additive subgroup of E . For a nonempty set X CE

its absolutely convex hull co X is the smallest ahsolutely convex set that con-

tains X . We have

y ree s X €X, A oy eeey A €B(0,1))

= {A s A
co X = { LByt + X .

1 nn ~

[a
m
=
™

1
If X is a finite set {xl g eee xn} we sometines write co(xl g e xn)
instead of co X . A subset A of E is ggggg if A is absolutely convex and for
each x € E the set {|\ : A€ K, ax €A} is closed in |K| . If the valua-
tion on K is discrete every absolutely convex set is edged. If KX has a dense va-
luation an absolutely convex set A is edged if and only if from x € E, A€ A
for all te B(O , 17) it follows that x € A . Intersections of edged sets are
edged. For an absolutely convex set A we define Ae to be the smallest edged sub-

set of E that contains A . If the valuation of ,K is dense we have

A={xeB; BO,1)xca}=nPpr: aexk: |X >1}
(and A? = A if the valuation is discrete). An absolutely convex set A CE is

absorbing if E=U M : rexj.

(¢) Seminorms. — For technical reasons we slightly wodify the usual definition as
follows. A seuinorm on a K-vector space B is amap p: E —> R (we apologize

for using the same symbol as in QP and i |p ) satisfying

(i) p(x) e [K
(ii) »(Ax) = IAl »(x)
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(1i1) »plx + y) < max(p(x) , p(y)) .

for 211 x, ye E, Ae K . Observe that if X carries a dense valuation (i) is
equivalent to p(x) 20 whereas for a discretely valucd field X condition (i) is
equivalent to »(x) € |K| . It is easily seen that if p : E —> [0 , =) satisfies

(ii) and (iii) and K has a discrete valuation the formula
q(x) = infis e k] + p(x) < s}

defines a seminorn q which is equivalent to p . The set of all seainorms on E
is closed for suprenma (i. e, 1f P is a cnllectinn of seminorms on E and if
q(x) = supip(x) : p€ Py} <= for each x €éE then q is a seminorm on E ).

For each absolutely convex absorbing set A < E the formula

py(x) = inf{|al : aex, x e}

defines a seminorm p, on E , the seminorn assnciated to 4 . Then

ix : pA(X) <ir-acixs p,(x) g1}

The proof of the following proposition is eleientary.

PROPUSITION 1.1, — The map A |}-> Py is a bijection of the collection of all

edged absorbing subsetsvof E onto the collection of all scuinorms on E , Its

inverse is given hy p b~ {x € B : p(x) <1} .

(d) Locally convex topologies. — A topology T on E (not necessarily Hausdorff)

is a locally convex topology (and B = (E, T) is a locally convex space) if T

is a vector space topology for which there exists a basis of neighbourhoods of O
consisting of absolutely convex (or, equivalently, edged) sets, A locally convex
topology is induced by a collection of seminorms in the usual way. The closure of a
subset A of a locally convex space is denoted K . The following terms are direc-
tly taken over from the 'classical'! theory (see for example [167], also [14]) and

are given without further explanation. Barrel] barreled space, couplete, quasicon-

plete, bounded set, bounded linear map, bornological space, normed (normable)

space, Banach space, Fréchet space, projective linit topolosy (in perticular, pro-

duct and subspace), inductive limit topology (in particular, direct sum, quotient,

strict inductive limit of a sequence of locally convex spaces, LW-space). Let E ,

F be locally convex spaces over K , let L(E , F) be the ¥-linear space consis-
ting of all continuous linear naps E —-> 7 . Let G be a nonempty coliection of

bounded subsets of E . The topology on L(E , F) of uniform c-nvergesce on members

of G is the locally convex topology induced by the serminorms

T $—> sup{q(Tx) : xe A3 (T eL(E, F)),

where g runs through the collection of continuous seminorms of F  and where A

runs through G . We write B' := L(E R K) . (The algebraic dual of E is denoted

e

E  .) As in the classical theorv we have the weak tomolories o(E' . E) on B' and
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and o(E , E') on E, and the strong topology b(B' , B) on F' (thev may be

not Hausdorf:?), Someti. es we write B! to indicate (rr , o(B', R®)) . Sipilarly,
& := (B, u(B', E)) .

(e) Coupactoids ([61, 1.1). - 4 subset 4 of a locally convex space E over K
is (a) compactoid if for each neighbourhocod U of O there exist Xy g eee xnesE
such that ACTU + co(xl y see xn) + Subsets; absoclutely convex hulls and closures

of conpactoids are compactoidss If A is an ahsoiutely convex compactoid then so
is 4° . If A is a compactoid in F and Ta@ L(E, F) then TA is a compactoid
in F . Bach precoupact set is a compactoid, each compactoid is bounded. 4 map

T eL(E, F) is compact if there exists a neighbourhood U of O in E such

that TU is a compactoid in F .

(£) Vuclear spaces ([67, 3.2).

(i) Let B be a locally convex space over K , For each continuois sewminorm P
let E_  be the space E/Ker p wnormed with the quotient norm p induced by p ’
let E

TR

be its coupletinon (whose norm is again denoted D ). The canonical maps

=irg g

-

|——> E; (where p runs through the collection I of all continuous semi-
PFlop
E _~>'T§£i Ep . It is easy to see that, if E is a Hausdorff space, these maps
are linear homeomorphisms into.

normns on E ) induce a map E —-> i « In a sinilar way one can obtain a map

(ii) Let B, 1" be as in (i). For p, q €T, p<q the natural map Eq - Eo
(or sometirnes E; —_— E;) is denoted qu « B is a nuclear space if E is
Hausdorff and if to every p € I' there exists q €l', q 2 p such that the map

qu is compact. (By [ 6], Lemma 2.5 coupactness of qu : Eq —-> EP is equivalent
to conpactness of ¢ : E. —> E .)
ool q P

The following proposition is easy to prove.

PROPOSITION 1.2. - Subspaces and quotients by closed suhspaces of nuclear spaces

are nuclear. Tm a nuclear space each bounded subset is a compactoid.

PROPOSITION 1.3. - For a locally convex space B over K the following are

equivalent.

(«) B is nuclear.

(3) E 4is linearly homeomorphic to a subspace of some power of ¢

O L]

Each element of L(E , co) ig compact.

Proof. See (4], v 4, Proposition 2. = (The assunptions that K be spherically
corplete and that the valuation be dense, made throughout [47, are casily seen to

be redundant in this case.)
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2. Bxanples.

First we recail the definition of a "= ((*-) function ([12], § 8 or [13]).
Let X be a noneupty subset of K , without isolated woints. For n € ¥ set
o,

VX = L(xl y bee Xn) e X' : i#j idnplies x5 # xsd

For a function f : X -->K define § f : fﬁlx-¢>xehle{o, 1,2, =)
inductively by 2 fe:=1f and, for n>1
)
= (z, - x )—l{@ f(x X
‘ i 2 n-1 1’

’

% f(Xl vocee s Ko

30 %40 s Xn+1) -4 f(x2 » Ky Xy, xn*?}

f isa C -functlon if Q f can be extended to a contlﬁuous functinn 5 f on

Xn+l (observe that this ext6231on is unique since V X is dense in Xn+1 ).
We equip the space Cn(x —> K) of all Cn-fuhctions X =——> K with the locally
convex topology of uniform convergence of @ f on conpact subsets of X141 for

i€{0,1, een yn} s C(X==>K):=NC (X - L) , with the topology of uni-
1 por a1l 1€ {0,1,2,...3,

The following exauwples will serve as illustration material throughout.

foru convergence of 51 f on conpact subsets of -

2.1. The spaces Cn(X -—> K) for comBact X oe—For n €{0 , 1, 2, ...} and
couwpact X the topology on Cn(X --> K) can be described by the single norm

ﬁ ﬂn given by

i, = nax (£ € (X —=> K))

0sk<n 19 filg

It is shown in [ 127, 8.5 and 8.22 that Cn(X —->K) 1is a Banach space of coun-
table type, hence linearly houcomorphic to o

2.2. The aspace Cm(X --> K) for conpact X . - It is easily scen that the topo-
logy on C (; —> K) is defined by tie (seni-) norms | ﬂ (net,1,2,-.
It is shown in [ 12], 12.1, that C (X ==» K) 1is a Fréchet space and in [6], 3.5,
that G (X =—- K) is nuclear.

2.3. The space CGKU ——> K) where U is an open subset of gp e« —Let U be a
noneipty open subset of Q , suppose K DO e For nel0, 1, 2, ea) set
U S xev: Blx,p)<U, ]X]p~§ p ) where

B&,pm)w{y€%=|v—ﬂpéf%-

S 1 K Py Sl . - (Z eee U = . i
Then each Un is coupact and open in Qp ’ Ul L-Uz = A Un U. Itis

not hard to see that the topology on Cw(U -—> K) is defined by the seuinorms
pjn(j ’ n e i.o ’ l 9 2 ’ ooo}) Where

Py (£) = iflUgfl, (£ € 07U = )

From this and [12], 12.1,it follows that ¢™(U == K) is a Fréchet space.
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[oe] -
Nuclearity of € (U -=»> K) is proved in [6], 5.4.

2.4. The space C:(U —>K) where U is an open subset of e« ~Let XK, U,

Un be as in 2.3. 4s a vector space, let C:(U -—>K) be the space of all
o]
fe C (U -=> K) with coupact support. To be able to put a decent inductive limit

topology on C:(U --> K) we need the followving lemna.

LEGA 2.4, - Let V %-W be nonempty open conpact subsets of Q . Tor each
f: V-=>K let F: W-->K be defined by f(x) :=f(x) if x eV, F(x) :=0
if x €W \7V . Then the uap f j->F is a linear homeomorphisn of € (V —=> K)

into € (W = K) .

Proof. - The local character of the Cxlproperty ([12], 8.12) guarantces that
f e C(V-=>K) iuplies F € ¢°(W ==> K) . The linearity of f j-. T is clear.
Let 4a' := inf{|y - z!p : ye W\V, zeV}.Then 4a' >0 . Set d := nax(l,1/4d)
Let fe C(V —=>K) . We shall prove by induction on n € {0 , 1, 2, «..} that

IFi, < & gy, -

(This, together with the obvious inequality df“n &3 ﬁ?ﬁn will finish the proof.)
The case n =0 is trivial. For the step fron n -1 to n first observe that
il = ey T, Vil

N and, by the induction hypothesis,

[$4]

1

oy n-1 noL
Wi,y S " ufuy_, <4 afil .

It suffices therafore to prove that for (xl 9 Xy gy see 9 X ) € o+ ¥ we have

n+1

(<) le #(x; , x ,x ) <dt g -

2 e n+1

Wow (*) is true if all X, 5 eee 9 X 4 8TC in V and also if =all X9 ™y X

are in W \V (in the latter case the left hand side of (“) is O ). For the re-

maining case we mAy, by symuetry of ¢ ¥, asswae that x, € V x. € W\V.

1 ’ 2

Then lxl - x2] >.4' so lx‘1 - xzi-l £d and

];’n T(Xl 9 X2 9 ees Xn+1‘ =

-1 .. ; ~
I(xl - xg) {Qn_l f‘(x1 I AT xn+1) - ¢ f(x2 P Xy g e xn+l)3l

which completes the proof of Lemma 2.4.

How we define the topology on C:(U -—>K) as follows. For each n € N 1let
E
n

between En and Cm(Un —:> K) which induces a locally convex topology T, OB En

for which it is a nuclear Fréchet space by 2.2. We have Eli; E2~# esve and

it

{re C:(U -~ K) : supp f CiUnj . There is an obvious algebraic isoror phism

UE, = CC(U —>K) . By Leuna 2.4 we have Tn+1iEn = 7 for each n . Define on
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C:(U —_— K) the inductive linit tovpology which respect to the inclusion naps
B C:(U -—> K) . o nay conclude ([147, Def. 3.3, Th. 3.13) that CZ(U ——> K)
is an L¥F-space (hence couplete, barreled, nonmetrizable). We shall sec in Corolla-
ry 4.14 (iii) that C:(U ——> ¥) is nuclear.

2.5. The space e g ——> K) and c(Q -=>E) o — (These are slight generalize-
— 0 p —_— 0 p e ’

tions of the spaces in 2.1 and 2.2.) Let X :)QP , ne{o, 1,2, ‘.ij . Let

n . . . . - R
CO(QP -—>K) = {f € Cn(g,p -—>K) Um 3 ?(z) =0 for 0 &ignj .

(Here l l is the usual norm on g;+l ). With the norm || ”n defined by N

el o= Hax,

- » R n _ .
fin ld;l f”m (I € CO(Qp ——2 I\))

dsa |

Cg(gp —--> K) is easily seen to be a Banach space of countable twvpe. We define
CS(Q —_— K) e= M Cn(gp —_— K) with the topology induced by the (semi) norung
~p 0

ﬁ i (ne {0 , 1,2, ...}) . It takes only .bvious uodifications of the methods

referred to in 2.2 to prove that Cg(glp —> K) is a nuclear Fréchet space.

2.6. The space S(Qp -> K) of ¢ —functions rapidiy decreasing at infinity. -
Again, let X :>Qp . We define S(Q =---¥) +to be the linecar spacc of all functions
f: QP --> K for which Pf e nggp —_— K) for each polynonial function P . Its

topology is de7ined by the seuinorms P . (n,kx€ {0, 1,2, ...}) where
Ck — -
Pu(f) =iz fuy (€= 8(g) X))

(here % denotes the identity polynomial). A standard reasoning shows that

S(gP —-> K) 1is a Fréchet space. For a fixed k the map f k—> xk f 1is a linear
houeonorphisu of the space S(Q,‘p --> K) , with the topology defined by the seni-
NOTLS Pyy 9 Py 9 P , ees into Cg(Q? —> K) . Frou this fact, together with
the nuclearity of CO(Q,P —— K) , one easily derives the nuclearity of S(QP -—>K).

Finally we consider two spaces of analytic functions.

2.7. The space AQ(K) of entire functions. - Let K have a dense valuation. Let

Aﬁ(K) be the space of all entire functions f : K ——»> K with the topology of uni-
foru convergence on bounded subsets of X . By [5], 3.6, Am(K) is a nuclear Fréchet

SPAce.

et
have a dense valuation. Let Al(K) be the space of all analvtic functions

2.8. The space Al(K) of analvtic functions on the open unit disc. - Let X

£ : B(O ’ 1—) --> K with the topology of uniform convergence on proper subdiscs

of 3(0, 1) . By [5], 3.6, Al(K) is a nuclear Fréchet space.
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3. Polaritv.

Definition 3.1. - A gerinor p on a X-vector space & is a polar serinorn

if p=suwn {|f] + feB , |f] <pj.

The collection of all polar seninorus on I is closed under suprena «nd under
wultiplication hy elewents of FK] « If » is a polar seidinorn on a K-vector
spree Foand if T ¢ B —>F is a K-linear map then p ¢ T is a nolar sewinorn:

on &I,

It is an easy comsequence of the Hahn-Banach theoren ((“), Introduction) that
if K ds spherically couplete each se.inorm on 2 is wolar. For nonspherically
-y 1 it ad ’ s
contplete K we have (1 /co)' = (0) ([ 117, 4.15) so the canonical norm on

lm/co is not polar.

PACPOSITION 3.2. — Let p Dbe a sewinoru on a K-vector space E , let

L :={x € B p(x) £ 13 be its unit sen:iball. The following are equivalent.

(¢«) p is polar.

(3) If a€i, nek, IRI < p(a) then there exists an fe B with

£(a) = & and [£] Sp .

(y) For each onedirensional subspace D, for each ¢ > 0 , for each f € D

with Ifi,s p on D there is an extension fe B of f such that ‘f|$§1+c)p

on B .
(5) For cech a e¢B \ A there is an fe E  with [£(a)] €1 anda |£(a)] > 1 .

>

Observe that for spherically conplete K the nroperties («w)-(08) are true for
each seninoru p (and we nay even allow |A < p(a) in (g) and ¢ 20 in (y)).
'"he proof of Proposition 3.2 (bv the above it suffices to conmsider only dense valua-

tions) is straightforward and is omitted.

Definition 3.3. = Let E be a locally convex space over K , let AC D . Set
0= {rem ¢ |elx)] €1 for all xze &), A% = {xe B : |£(x)] &1 for all
fe AO} . A is a polar set if A= 2% .

The following consequences are iciuediate.

PROPOSITION 3.4. — Let E be a locally convex space over K ,

(i) Bach polar set in E is closed and edged.

(ii) A continuous seminorm p on E is wolar if and only if {xe B : p(x)flj

is a polar set.

(iii) 4 subset 4 of E is a polar set if and only if there is a collection P

of polar continuous seriinorms such that A =tWPEP{x:e E: p(x) <1},

(iv) 4 subset & of E is a polar set if and only if there is a collection
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P = B! guch that A =0 {x € B : !f(x)! 1) .

&F <
If ¥ is spherically complete cach closed eddtod set is wolar (f14], Th. 4.6, Th.
4.8, 'closed & edged® = ' i-closed'). If X is not spherically conplete the
©
'closed! unit ball of 1 /c0 is closed and edged but not polar. 3ee, however,
Theoren 4.7. In the following deiinition we select the two classes of spaces we

shall be Jealing with throughout.

Definition 3.5. = Let E  be a locslly convex space over K . E is a strongly
polar space if cvery continuous sominorm on E is polar. E is a polar space if

its topology is defined by a fauily of polar seuinorus.

4o 3trongly polar spaces.

If X is spherically conplete each locally convex space over K dis sirongly polar.
T . . =] [} .
If ¥ is not spherically couplete 1 /CO (hence, 1 ) is not strongly polar. It
is euasy to see that the image of a strongly polar space under a contintious linear
map (in particular, a quotient of a strongly polar gpace) is again strongly polar.

We also have:

PROPOSITION 4.1. — Bach subspace of a strongly polar space is strongly polar.

Proof. — Let D be a linear subspace of a strongly polar space E , let p be a
continuous sewinorm on D . Jince D carries the relative topology therc is a
continuous seiinorn q on E such that p g on D . The forumla

r(x) = inf&zD nax(p(a), q(x ~ a))

defines a seuinorn r on E . We have r £ q (so that r is continuous) and

r=p on D. r is polar. Hence, so is its restriction p .

THEUREL 4.2. — For a locelly convex space E over K the following are equiva-

lent.

(¢) 3 is strongly polar.

(3) (Hohn-Banach property). For each linear subspace D , for eaci: continuous

seninor.. p , for each € > 0 , for each f e D' with ]f].s p on D there is

an extension f e B' of f such that |f] <(1+¢)p on E.

Proof. - The inplication (g) == («) follows frou Proposition 3.2 (v) =» («), so
we prove («) =» (8). e nay assuue that £ #0 . Set S :=Ker £, let m: E ~EA
be the quotient wap, choose x €D \ 3 . Let g be the K-lincar map defined on
% (x) that sends m(x) into f(x) . For each y ¢ B with i(y) = m(x) we have
vy eD and f(x) = f(y) so that, bv If} £p on D,

le(n(x))] = |£(x)| €inf (p(y) : =(y) = n(x)} .
yek

It follows that |g] <P on Ki1(x) , where P is the quotient sewinorrn of p on



E/S o 48 E/S is a strongly polar space we can use Proposition 3.2 () ==> (v) to
obtain an extersion g e (B/S)' of g such that !és,é (1 +¢)D on E/S . Set

f = emm o then £ €E , f extends f and For each z el we have

()] = |le@) <1+ ¢) plul(z)) (1 + ¢) »(a) .

ol

Definition 4.3. = A norned space over K is of countable type if there exists a

countable suhset whose linear span is dense ([11], n. 66)s A locallv convex space

x

B over Y is of countable type if for each continuous seuinorm p the normed

space E13 (sce ¢ 1 (f) (1)) is of countable tvpe.
iy

B is of countable type if and ouly if “or cach continuous se: inorm p there
exists a linear subspace, whose dimension is at most countable, that is p-dense in
E (i. e. densc with respect to the topology induced by the single sewinorm p ).
It is uot hard to see that in the above we nmay replace without harm ‘'continuous
seiinorn v ' by 'continuous seuinorn p belonging to some basis P of continuous

seuinorus?.

TI30RLE: 4.4. - A locally convex space of countable type is strongly polar.

Proofe = Let p be a continuous seminorn on the space E . It suffices to eheck
that E) is strongly polar. E_ is of countable type hence so is the Banach space
EP . By [11], 3.16 (vil'this space is strongly polar. Then Ep is strongly polar

(Proposition 4.1).

Open problen. = Let K be not spherically couplete (e. 2. X = Qp) . Is every

strongly polar space of countable type ?

4.5. BExauples. ~ The following spaces are of countable tvpe and therefore have the
Hahn-Banach property 4.2 (ﬁ). (See also Corollary 4.14 (i).)

(i) Finite diucnsional spaces, spaces with countable dimension.

(ii) Locally convex spaces with a Schauder basis.

(iii) The weak dual Eé of any locallwv convex space L over K .

(iv) Zny locally convex space £ with the weak topology o(E , nt) .

(v) For any ultrametric space X , the space C(X —=> K) of all continuous func-
tions X --> K with the topology of uniforu convergence on coupact subsets.

3

(vi) For any netrizable locally convex space I , its dual L' with the topology

of uniforn convergence on coupact subsets.

(vii) The spaces CM(X —> K) , C°(X =->K) (X< K coupact), € (U —=>X) ,
(0 —> k) (We g open) , Ggla —->¥), Cla, —-K), 3(g, —> K) , a(x),
A (K) of § 2. -

T

(For (iii) and (iv), observe that Xer p has finite codinension for cach weakly
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continuous seninorn p 3 for (v), (vi) use the isomorphisn C(Y ——> X) ﬁ"co ([11],

3.7) for an infinite coupact ultraretrizable svace Y 3 (v) is a stepping stone for

(vii).)

In view of the open problei: above we arc urged to study strongly polar spaces

and spaces of countable type separately.

Further properties of strongly polar smnaces.

It is quite easy to see that, if D is a dense subspace of a locally convex
space B , then D is sitrongly polar if and only if I 1is strongly polar. In par-
ticular the coripletion of a Hausdorff strongly polar space is strongly polar. Hore

generallv we have the following.

PROPOSITION 4.6, — Let E be a locallv convex space with strongly polar sub-

apaces Elfi B, < 4o such that U En is dense in & . Then L[ 4is strongly polar.

2
In —articular, thce strict inductive linit of a sequence of strongly polar spaces is

strongly vpolar.

roof. = It suffices to prove the first statm.ent. By the above remark we uay

assuse E = U E Let p be a continuous seminor on E, let x €E, e >0
— »

and let f € (Kx)' such that [f| <p on Xx . We extend f to an f eE with
Il < )« ! i e . Lo -
1f| < (L+<)p on E as follows. We have x € E for sonie n . Let €0 Spit?
be positive nuubers such that njim (1 + e.)~§ 1 + ¢ . By the strong polarity of
E_ there is an extension f € E! of f with |[f | (1 +¢)p on E . By
n n n n n

n
Theorer. 4,2 f extends to an f € 1! such that
n n n+l

+1

A

lfn+l‘ < (1 + €n+1)(l + en) p on E_, .

- ka3
Inductively we arrive at an extension f e B of f such that

Bl <M, (G+e))ps(ire)p on B

r'd

Open problen. — Is theproduct of two strongly polar spaces again stironlgy

nolar ?

THEOREM 4.7 (Coupare Proposition 3.4 (i)). - A locally convex space L over K

is strongly polar if and only if cach closed edged subset is polar.

2roof. - If each closed edged set is polar then, Tor each continuous serinorn p
the set {x€ E : p(x) €1} 4is polar. Hence p is polar by Proposition 3.4 (ii).
Conversely, let E Dbe strongly polar, let A be a closed edged subset of E . We
shall prove that for each x € E \ A there exists a continuous seninnrn p such
that p(a) <1, p(x) > 1 . (Then, by Proposition 3.4 (iii), we are done.) We may
assuze that X is not spherically couplete, hence that the valuation is dense.

There is a w € B(0 , 1) such that px d A . Set x

o (T KX 3ince A 1is closed
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there is & continuous seidnorr. g on I such that

)

B:=t{y €k : q(y - X’u‘/ <1}

o~

does not Leet A . Then V :=x. - B+ A 1is open, absolutely convex. 7 contains

(6]
i, B ¢ V. Let p be the seuinorn: associated to V . Then. p  is continuous,
- . : U <
p(4) €1 and p(XO) 21 . It follows that p(x) = p(w XO) >1 . b

COROLLARY 4.8. — An edged subset of a locally Convex space E i weakly closed if

an only if it is a polar set.

Proof. — Frou Proposition 3.4 (i) & (iv) it follows that polar sets are weakly

closed and edged. If, converscly, A is weakly closed and odged then Theorenm 4.7,
appliel to o(B, BY) (which is stroangly polar by 4.5 (iv)), implies thet A is a
polar set in (8, J(E , B')) . But the dual »f this sbace equals BY 8o that, by

definition, A is also a nolar set with respect to the initial topology of B .

CORCLLUARY 4.9. — BEvery closed edged subset of a strongly polar space is weakly

closed. In particular, closed lincar subspaces of a strongly polar space are weakly

closed.

-— . \ -—0
For s subset A of a locally convex space, let 4 be its closure, let A~ be

its weak closure. Ve have the following general relation.

PROPOSTIION 4.10. — Let A be an absolutely convex subset of a locally convex

. =0\ € 00
space, Then (7)) =47 .

. =0 & - 00
Proof. - (&) is weskly closed, edged, hence polar hy Corollary 4.5. As A

is the snallest polar set containing A we have AQO CZ(E?)G . On the other hand,
AQO is weakly closed, edged, (Kd)e is the snallest edged, weakly closed set con-
taining A so that (°)° <A™,

Now let A be an absolutely convex subset of a strongly polar space. Then (1)¢

is closed, edged, hence polar by Corollary 4.9. With Proposition 4.10 we arrive at
(8)° = (I°)° = 2% .
In particular, if A is also closed for the initial topology we obtain
Ac i e’
so that (for densely valued fields X ) we have
AC A CAA

for each A €K, |A| > 1. This leads to the following.

Open problem. - Characterize the weakly closed absolutely convex gets of a

strongly polar space over a nonspherically complete X . (1f K is spherically

complete it is shown in [15] that an ahbsolutely convex subset of a locally convex
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space is closed if and onlv if it is weakly closed.) Theorem 5.13 (iv) offers a per-

tial answer.

Related to this problem is the following proposition, extending [1], Proposition

5, that will be used later on (Corollary 1J.9).

PROPOSITION 4.11, — Let E Dbe a strongly polar Hausdorff space. Then each weakly

convergent sequence in E is convergent.

Egggi. - Let us say that a locally convex space has (OP) (Orlicz—Pettis) if each
weakly convergent sequence is convergent. A standard reasoning shows that if each
member of a family of locally convex spaces has (OP) then so has their product.
Further, subspaces of spaces having (OP) have (OP). How let E Dbe strongly polar,
Hausdorff. For each cimtinuous seminorm p the space E; , hence E; is strongly
polar. By [9], 5.2, E_ has (OP). Then also E , being isomorphic to a subspace of
F% E; , has (0OP).

Remark. — The conclusion of Proposition 4,11 holds for every Hausdorff locally
convex space over a spherically complete K . If K is not spherically complete
then 4° is not strongly polar (but 4 is polar) ; the sequence (1,0,0,0,e.0),
(0,1,0,0, ), (0,0,1,0, ...) converges weakly (to O ) but not
strongly.

Further properties of snaces of countable type.

e denote the class of spaces of cnuntable type over K by (SO) . Ye have the

following stability properties.

PROPOSITION 4.12., — Let E be a locally convex space over K .

(1) If E GE(SO) and D is a linear subspace of E then D € (So) and E/DfE(S\L

(ii) If D is a demse linear subspace of E then D€ (SO) if and only if
E e (bo) .

(iii) (So) ig closed for products and for countable (locally convex) direct sums.

(iv) Let E1<: EZ(I ««. be subspaces in (SO) of E such that lJEn is dense

in E . Then B ev(so) .

Proof.

(i) Let p be a continuous seminorm on D . There is a continuvous seminorm g

on ® whose restriction to D is p . In the comautative diagram (see § 1,(f))

E -3 > 8

bt

D .-.—--R.-b,) DA
D
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(where i is the inclusion may) the map j is a linear isometry. % is a Banach
space of countable type. Hence ([117, 3.16) so is D . It is an easg exercise to
show that the normed space Dp (a dense subspace of D; ) is also of countable type.
It follows that D e (SO) . Similarly, if p is a contiruous seminsrm on /D then
pen (where m: B —>E/D is the quotient map) is a contiruous seminorm on E .
The map Ep - --> (B/D) is surjective, continuous ; the normed space E orr is of

>

countable tvpe. Hence, so is (E/D)P . It follows that ®/De (SO)

(ii) If D is dense the map j in the above diagram is a surjective isometry.
So if De (SO) then for each continuous seninorm q on £ (with restriction p
o A

on D ) the space Dp is of countable type. Hence, so are E_ and Eq . Thus,

B es(S ) .

(iii) Ye first prove that B, € (SO) ; € (S ) implies E, B, (SO) . It

1
suffices to prove that (E x B ) (b ) for p (p ) a continuous seminorm
2°D1%Pa 1 2
on E (E o) and where (Pl x py) (x, y) :=max(p,(x) , p,(y)) ((x,5) B<E 5)
But ( 5, ) is isometrically isomomphic to (u ) (E ) which latter
55 Py %Py 2°Pa

space can be embedded into cO X cO °*co « It follows that (o ) is closed for fi-

nite products. For the general case let I be an indexing set and, for each i € I,
let B De a space in (SO) . Let p be a continuous seminorm on rg E; . Since
the unit semiball of p is open in the product space it contains a subset of the
form 1 U, where U, is open E; for each i and where U, # E; only for

ie {11 y ees in} for some n E N . Thus p factors turouoh ﬂ? B
- J

n

_——-_.—-»-—.__.-.._ >

\/

where the wap g in the diagram is the canonical vrojection. Tie sewinorm p is

continuous so by what we just have proved there is a countahle set A in ﬂ?—l 3
such that [A] (the K-linear span of A ) is p-dense in TP EiJ . Then, if B

is a countable set in I E, such that g(B) = A, the set EB} is p-dense in

ni B, . Tkus, (SO) is closed for products. Now let E -~tb y B De the locally

convex dircct sum of the space El ’ E2 y see E (S ) « For n e N , set
7 ;—n . < -~ 16} , ~ IR
=@ Ei , considered as a subspace of E . Then Fn ﬂ 1 30 that, by the

preceding proof, F e (SO) . The result E € (SO) now follows from (iv).

(iv) By (ii) we may assume lJEn =E . Let p be a continuous sewminorm on & .
For each n € N , choose a countable set A © E such that [Ah] is p-dense in

E . Then A := UA ~ is countable and A} is p-dense in I .

As a corpllary we obtain the following characterisation.

THROREL 4.13. — A locally convex Hausdorff space is of countable type if and only

if it is linearly homeomorphic to a subspace of cé for some set I .
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Proof. - By Proposition 4.12 cach subspace of cg is in (SO) . Conversely, if
E es(SO) , L Hausdorff, then each E; (3 1,(£)) is linearly homeszorphic to a
supspace of o One easily constructs an embedding E —-> oé where 1 is the col-
lection oi continuous seminorms of ¥ .

It turns out that the class (so) coincides with the class (So) of [4], 33,

Definition l. This, combined with Proposition 1.3 vields the following.

COROLLARY 4.14.

(i) Bach nuclear space is of countable type.

(ii) The strict inductive limit of a sequence of nuclear spaces is nuclear,

(iii) C:(U —>K) (see y 2.4) is nuclear.

Proof. - (i) igs immediste, (iii) follows from (ii). To vrove (ii), let E Dbe the
gstrict inductive limit of the nuclear spaces E1<; Ez*l eee By Proposition 4.12
(iv) B is of countable type. To prove that E also satisfies the second condition

of Proposition 1.3 (i), let T e L(E , co) .

For cach n there is an absolutely convex neighbourhood Un of O in En such
that TUn is a compactoid subset of the unit ball of o Choose Al’AZ""GEK?
with limnﬂmbkn =0 and set U := E:An u . Then U is absolutely convex and open
in the inductive limit topology. for each <« > 0 we have for almost 2ll n that

Kn U C{x€c. : ;x| <e¢j . It follows readily that TU = E:Kn TU_ is a compectald.

0

In ¢ 8 we shall discuss spaces whose duals are of countable type.

5. Polar spaces.

5... Examples. — The following spaces are polar (Definition 3.5).
(i) strongly polar spaces (see 4.5).

S -
(ii) & . liore generally:

(iii) Punction spaces (E , T) of the following type. Let X be a set, let E
be a linear space of functions X —> K , let B be a collection ol subsets of X
such that ecach f € E is bounded on each eleient of B, let T he the topology
of uniform convergence on members of B . (For example, the Banach space BC(X~~>K)

([11], 3.D) is polar, the strong dual of a locally convex space is polary

(iv) Tor each locally convex space E and each polar space F , the space L(B,F)
with the topology of uniform convergence on members of anu class of bounded subsets

of T .
(Direct verification.)

The proofs of the next two propositions are also straightforward.
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PROFOSITION 5424 — For a locally convex space E the following are equivalent.

(¢) E is a polar space.

(ﬁ) For each continuous seminorm q on E there is a polar continuous seminormu

p on E such that p 2 q .

(y) Tre polar neighbourhoods of O forn a neighbourhood basis of 0O for the

topology of E .

PROPOSITION 5.3. - Projective linits (in particular, subspaces and products) of

polar gspaces are polar.

otients of polar spaces need not be vpolar (Zm/co for a nonspherically come—

plete base field). But we do have the following.

PROPOSITIUN 5.4, - The (locally convex) direct suu of any collection of polar

spaces ig polar.

Proof. - Let E be the direct sum of the polar spaces Ei (i € I) where I is
an indexing set and let @i : Ei -—>E (ie I) be the canonical injections. Let
q be a continuous seminorm on E . For each i € I the seuinorm g ° @i is con-
tinuous, so there is a continuous polar seuminorn p; on Ei with p; 2q° @i .
Bach x € B has a unique representation x = Ei Qi(xi) where x; € Eﬁ for each
i and where {i : x; # 0} 4is finite. Set p(x) := max, pi(xi) . Then p is a
seninorn on E . It is continuous since p ° e =Py for each i€ I ., For each
x € E we have q(x) = q(2 @i(xi)) < max q ° @i(xi).s nax pi(x).= p(x) so that
P 2 q « We finish the proof by showing that p is polar unsing Proposition 3.2
(d) => (a)., Let x = z:&i(x) elb,let Aek, IKI < p(x) . e have p(x):pj(xj)
for soue jeI. ghere is an fj € E! such that f.(xj) =\, |f.] <p. on
By . Definc fe E* by the formula £(2 §(y,)) = fj(yj) . Then |f| £p, f(x)=:

and we are done.

PROPOSITIUN 5.5. — Let E be a dense linear subspace of a locally convex space

F . Then E is polar if and only if F is polar. In particular, the corpletion

of a Hausdorff polar space is polar.

Proof. ~ Left to the reader.

PROPOSITION 5.6, — Let D be a finite dimensional subspace of a Hausdorff polar

space E .

(i) Bach f € D' can be extended to an f € B! .

(1i) D is a polar set.

Proof. - ofE , B') is Hausdorff, so D is weakly closed, hence polar by Corol-
lary 4.8. To prove (i), let f e D' . By (ii), Ker f is a polar set. For
a €D \Ker f there is a g€ E' with g=0 on Ker f and g(a) = f(a) . Then

g 1is an extension of f .
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Renark. - It is not possible to extend lrvyposition 5.6 by adwittine D to be of
herically complete, set B := P
Then ([11], 4.15 (¢) => (v) , (3) === (y)) ﬂJO =%, the nap x ¥+-> z:xn

(X € D) cannot bhe extended to an elewent of E!' .

countable type ¢ let K Dbe not sp

It is owr purpose to prove the Tundanental Theorern 5.12 for polar epaces. First
gsome gensral observations and lemmas. Let U bhe a volar zero neighbourhood in a
locally convex E , let a €B . It is somewhat doubful whether U + oo(a) is
again polar, or weakly closed, or edged. (Of course, U + co(a) is absolutely con-

vex ond strongzly open and closed.) But we can prove the following.

LMt 5.7. = Let U be a polar neipghbourhood of O in a locally convex space &,

let ael . Then (U + co(a))OO = (U + co(a))® .

Proof., ~ If K 1is spherically complete then B is stroagly »olar and the equa-
1lity follows frou Theorer 4.7. 30 assume that the valuation is demse. It suffices
to prove (U + co(a))oo < (U + co(a))ej i. e. that for ecach A €K , |A] > 1 the
weak closure of U + co(a) is contained in A(U + co(a)) (Proposition 4.10). 20
let x € 6—1_55(570 s there is a net (xi) (i eI) in U + co(a) converging
weakly to x . The seﬁinorm p associated to U is polar so there is an f € E!
with || <p and lf(a)] BilA_lf pl(a) . For each i € I we have a decomposition

, = + & a (uiee U, § € B(0, 1)) . So, for each i , jeI

£(x,) - f(xj) = £(u, - uj) + (g - ‘ij) £(a) .

There is an i such that ]f(xi) - f(xj)l §1 for all i, j 21, . Since also

|f] €1 on U we find

(s - gio) f(a)l ¢1 (124 .

e have p((gi - §% )a) 5-!A| |§i - gi)l If(a)l £ ]AI « It follows that

(5, - 5, )acap for izi; . Fron

i 0
x, - % a=u +(§ -4 )a
i
i i, i iy
we obtain x. - §. ae U+ N = AU . Since U is weakly closed we have
i ig
X - gi a€ AU, i, e« x €U + co(a) « A(U + co(a)) .
0 b

COXOLLARY 5.8, — Let U be a polar neighbourhood of O in a locally convex space

- 00 . e
E, let Xy oeee s x, € E . Then (U + CO(Il y ees xn)) = (U + co(x1 r ™y xn)) .

Proof. - By induction. The case n = 1 is Lemma 5.7. Suppose the staterent is
true for n=m--1 . Let xl,...,xmeE.Set V:=U+CO(X1,-.o,X13_1).

By the induction hypothesis VOO < ve . So we get, using Lemma 5.7 again,
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00
(U + colx; 5 eevy x))

= (V + co(xm))oo<: (VOO + co(xm))oo - (VOO + co(xm))e<; (ve + co(xm))e
= (V + co(xm))e = (U + co(x

1 9 oo xm))e .

LEMMA 59. = Let U be a polar neighbourhood of O in a locally convex space E,

let a €E . Choose AeKj; |\ >1 if the valuation is dense, A =1 if the

valuation is discrete.'zg (Xi) is a net in U + co(a) converging weakly to O

then I, € AU Tor large i .

Proof, - Let p be the seminorm associated to U . Therc is an f € E' with
l£] € p, |f£(a)l ;;l)fll p(a) . 4s in the proof of Lema 5.7 we have the decompo-
sitions X, =u o+ §i a . Since f(xi) —> 0 and lf(ui)]<5 1 we have lf(§i a)lsl
for lerge i . Thus, p(«‘;i a) S|4, If(gi a)| <|M, i. e § a e AU for large i.

It follows that xi e AU for large i .

COROLLARY 5,10, - Let U, a , A be as in the previous lemna. Let (xi) be a

net in (U + co(a))e converging weakly to O ., Then xi € AU for large i .

Proof. = It suffices to consider the case where the valuation is dense. Choose
wekK, 1<]|u <|A . Then e WX, €U + co(a) for all i so that, by Lemma
5.9, A1 bx € Wi, i. e, x; € AU for large i .

l 9
(xi) is a net in (U + co(al g e an))e converging weakly to O then X € AU

for large i .

Proof. — If the valuation is dense, choose Al y see o An € K such that IAj|>l
for all j and ] lAjl LAl o If the valuation is discrete set Ay =1 for all

je {l g oo ,n} .Wehave

(U + co(a1 , eee an))e =[(U + co(a1 y eee s an—l))e + co(an)]e .

By Lemma 5.7 the set (U + cola , e , an_l))e is a polar neighbourhood of O

so by Corollary 5.10 we have Kgl z, e (U + co(a1 s ses an—l))e for large i .
bt )\;1

Inductively we arrive at 1 5 9 eee s

X € U for large i inplying that

xi € AU for large i .

THEOREM 5.12. -~ Let E be a polar space. Then, on compactoids, the weak topology

and the initial topology coincide.

Proofs = Let A be a coupactoid. We may assume that A is absolutely convex so

that it suffices to prove that, for a net (xi) in A, X, —> 0 weakly implies
x; ——> 0 strongly. Let V be a neizhbourhood of 0 in B, let A€ X, |A] > 1.
E 1is a polar space so there is a polar neighbourhood U of O such that U:X—lv .

There exist Ay g eee B € E such that ACTU + co(a1 s eos an) . By Corollary
5.1l we have x; € AU €V for large i . It follows that x, —> 0 strongly.



The previous nachinery yields the following.

THI0REE 5.13. - Let E  be a polar space, let AL be a coupactoid.

(i) AQO is a compactoid.

(1i) A is closed if and only if A is weakly closed.

(iii) If A is closed and absolutely convex then A% < 4 .

(iv) If A is closed and edged then AQU = A .

(v) If A is absolutely convex then A is complete if and only if A4 1s weakly

conplete.

Proof.

(i) Let U be a polar neighbourhood of O , let A€ K, 0 < |Al <1, There
are X, , ees 5 X € E such that A C AU + co(x1 g ees o xn) . Using Corollary
5.8 we obtain

2% < (AU + co(xl y ees g xn)

.

)OO

e . -1
= (AU + co(x oo xn)) <A (AU o+ co(x1 y eee xn))

1 9
-1 ,
=U+CO(A Xl g ®s 0 n

(ii) From (i) it Tollows that A  is a compactoid. Now apply Theoren 5.12.

(iii) and (iv) follow from (ii) and Proposition 4.10, The proof of (v) is stan~
dard.

6., Polarly barreled and bornological spaces.

Definition 6.1l. — A locally convex space over K is polarly barreled if every

polar barrel is a neighbourhood of O .

This notion will suit our purposes in duality theory rather than just 'barreled'.
Obviously each barreled space is polarly barreled so that Banach spaces, Iréchet
spaces, LF-spaces (see [147]) are polarly barreled. Hence, the spaces of ¢ 2, (2.1)-

(2.8) are (nolarly) barreled. In general, we have :

PROPOSITION 6.2. — A strongly polar space is barreled if and only if it is polar-

ly barreled.

Proof. - Suppose I is strongly polar, polarly barreled. Let A ™ho a barrel in
E . Then A° is edged, closed, so by Corollaries 4.9 and 4.8, A% is a polar set.
Then &A° is a neighbourhood of O . For each A €K, Ikl > 1 we have A% < aA .

It follows that A is a neighbourhood of O so that E is barreled.

Open problem. — Do there exist (polar) spaces that are polarly barreled but not

barreled 7
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The pronfs of the following two propositions are easy and therefore omitted.

PROPOSITION 6.3. - For a locally convex space & :over K the following are
eguivalent.

(v) E is polarly barreled.

N il Y PR 5 . N
(8) If P B! and p :=supi|f] ¢+ fe Fj exists then p is continuous.

(y) The set of all polar continuous seninorms on E is closed for suprema.

PROPOSITION 6.4. - Inductive limits (in particular, direct suns and qpotients) of

polarly barreled spaces are polarly barreled.

PROPOSITION 6.5, - Let E be a polarly barreled snace, let H < &' , The follow-

ing are eguivalent.

(¢) H is bounded for o(B' , E).

()

(v)

(s)

(e¢) There is a continuous polar scminorm p on E such that |fl <p for all
f €H .

o=t
=

s a coupactoid for o(BE' , B).

bounded for b(E' , E).

=
[ d
w

m
e
[0

egquicontinuous.

Proof. - («) => (8) is a consequencc of the fact that Ker p has finite codinen~
sion in E' for each G(E' , E)-continuous seminorn p on E!' . For («) ==> (e)
observe that p(x) := sup{|f(x)| : f eHf <o for each x €% . By Proposition
6.3 p is continuous. From the definktion of p it follows that p is polar. The
proofs of the remaining implicatioﬁs are either obvious or are similar to the cor-

responding ‘'classical! proofs (see [167] Ch. 33).

PHEORE:: 6.6, — Let E be a nolarly barreled snace. Then Eé, and Eé are (polar)

quasiconplete Hausdorff spaces.

Proof. — 3imilar to the proof of [16], 34.3, Corollary 2.

Je briefly consider a polar version of the nntion of a bornological space.

Definition 6.7+ - A noneupty subset A of a vector space E over X is K-polar

«
if ror cach x €E \ A there exists an f € B such that |£(a)] g1, |£(x)|>1.

A locally convex space E over K is polarly bornological if every K-polar set

that absorbs every bounded set is a neighbourhood of O .

Moving along the line of the 'classical' theory the following proposition is not

hard to prove.

PROPOSITION 6.8, — Let E be a nHolarly bornological space. Then E% is complete.



PROPUSITION 6.9. - The spaces of ¢ 2, (2.1)-(2.8) are bornological, their strong

duals are conplete,

Proof. [ 14] and Proposition 6.8.

7. Topologies compatible with a duality.

Let E be a locally convex space over K . Tor each x € E we define the rmap

jE(x) : BE' —> X by the formula jE(x)(f) =f(x) (feg).

LEMMA Tele -~ Let B be a locally convex space over K .

(i) jE is a linear map of E onto (Eé) .

(ii) If B is Hausdorff and polar then is a bijectinn of E onnto (E')‘ .
— B —_— o}

Proof. — For (i) see [14], Th. 4.10. To prove (ii), let x €T

exists a polar continuous seminorr: p with p(x) # 0 . Ye have

, X # 0 « There

p =supi|f| : £ eB', |f] <p}

so therc exists an f & B' with f£(x) # 0 . It follows that jE is injective.

Fron now on in ¢ 7, E is a polar Hausdorff locally convex space over K with

topelogy 7, , also called the initial topology. B! := (B, To)' .

Definition 7.2. - A polar topology v on E is To—compatible it (B, v)' = B .

If vherc exists a strongest To-compatible topology on E it is the Mackey topology.

It is wroved in [ 14] (Th. 4.18.a) that for a locally convex space over a spheri-
cally corplete X the Mackey topology exists and equals the topology induced by the
sepinerns x o p-> sup{|f(x)| : £ € Af where A runs through the coliection of all

subsets of E'!' that are bounded and c—conpact for the topology G(E',, E) .

Open problen. — For a polar Hausdorff locally convex space over a nonspherically

counplete field, does there exist a Mackey topology ?
(For a partial answer sece Corollary 7.8.)

Fortunately it will turn out in the subsequent sections that a full answer is not

needed t> set up a decent duality theory.

Definition 7.3. — A special covering of E' is a covering G of &' such that

(i) cach nmember of G is edged, o(E' , E)-hounded, u(E' , E)-complete,
(ii) for each A, B €G there is a C € G such that A uBCC

(iii) for each A €G and A €K there isa BE€ G with M < B,

For a special covering G of E' the G-topology on I is the topology induced

by the se.inorms X b=> sup{lf(x)| : fe A} where A runs through G .
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By identifying E to the dual of Eé (as vector spaces) by means of the nmap
jE (Lemma 7.1 (ii)) we mav view a G-topology as the topology on (Eé)' of uni-
forn convergence on newnhers of G . Hence, (Bxample 5¢1 (iv)) a G-topology is poler.

Tt is also Hausdorff since G 1is a covering of h' i

PROPOSITION 7.4. — For a (polar, Hausdorff) locally convex topology v on E  the

following are equivalent.

(@) v is TO*OOUpatible.

(3) v is a G-topology for some special covering G of BE' .

Proofes - (a) => (ﬁ) . For each v-continuous polar sei:dinorn p set

* .
Ay = {r e : |f] <p} .

Then, by («) , Ap C B! . It takes a standard reasoning to show that (B) is true
for G := {Ap : p is a v-continuous polar seminorm on E}. (8) => («). We have
seen that v is polar, Hausdorff. It is easy %o sce thet the weak topology
o = o(E , Et) is TO—conpatible and that v is sironger than ¢ . Hence we have
an inclusion map B' “—> (E , v)' which is obviously a homeonorphism into with
respect to the weak topologies induced bv E ., Let g e (B ’ v)!' ;3 we shall prove

that g € B' . There are A, , «e. , & € ¢ and A e K such that

lel < |l uax(p, , eev s D)

where pi(x) = supi|f(x)| = £ € A} (x € E) for cach i € {1, ..., n} . There
ise BeG with B2 A(4 U ... ua) . Set p(x) = supt|£(x)] : fe B} (xeE).
Then Igl £p . B 1is complete in Eé and therefore closed in (B , v)é . As B

is also edged and (E , v)é is strongly polar (Example 4.5 (iii)) we have by Theo-
ren 4,7 that B is a volar set in (e, v)é . It therefore suffices to prove that

g e (where B is considered as a subset of (&, v)é ), i. ¢. that

|3(g)] €1 for all b€ 8% . By Lemua 7.1 (i) each cleuent of the dual of (E', v)'
has the form & Tor some x € E , where 6x(h) = h(x) (he (B, v)é) . Thus, letu

9 eB , 6=5_. Then lo’x(h)l = |n(x)|] €1 for all he B so that p(x) €1,

X ™

Hence, |o(g)| g(z)| <p(x) £1 and we are done.

As a corollary we obtain the following non—archinedean version of Mackey's theoreu.

THEOREL Te5. = All TO—compatible topologies on 1} have the same bounded sets.

Pronf. — Jince the weak topology o(E, E') is To-compatible it suffices to
prove that any o(E , E!)-bounded set B CE is v=boimded for any To-compatible
topology Vv . By Proposition 7.4 v is a G-topology for soue special covering G

of B! . We prove that for each C € G the seninorn

p: x b= sup{|f(x)] : xe C

O
is bounded on B . Now C is absolutely convex, bounded and couplete in E& apd B
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is a barrel in L' ., By Lemma 7.6 below there is a A - K such® that C CiAEp and

it follows that p <|a] on B.

LEGA 7.6, — Let B be a barrel in a Hausdorff locallr convex space, let C  be

bounded, absolutely convex, couplete. Then there is a A € K such that C <« AB .

Proof. - Sinilar to the proof in the couplex case (see for exanple [ 167, Lemnas

3642, 36.1, 34.2) and therefore ovitted.

COROLLARY 7.7. - A subset of E is bounded if =and only if it is weakly bounded.

On the existence of the lackey topology we have the following result.

B

COROLLARY 7.8. - Supnose L has the following propertv. Tach polar buarrel that

absorbs every bounded set is a neighbourhood of 0 . Then the lHackey topology for

B exists and is cqual to the initial topology To

Proof., — Let v bhe any To—compatible topology on L ; we prove that v £ To

Let U be a wv-open neighbourhood of O . To prove that U is also T.-open we

0
uay assuw:e that U is a volar set for v . Then U is also wolar for ™ and U
is a polar barrel in E . U absorbs every v-bounded set, hence every To-bounded

get by Hackey's ‘Theorew 7.5. By assunption U is a To—neighbourhood of O .

CURCLLARY 7.9. - The conclusion of Corollary 7.8 holds for polarly barreled

spaces and also for polarly bornological spaces. In particular, each one of the

spaces of ¢ 2,,(2.1)-(2.8) has a Mackey topology which equals the initial topolozy.

8. Duals of countable type.

If X is not svherically couplete the spaces cO and Lw are strong duals of
one another ([11], 4.17). ¢y is of countable type, %~ is not. In this section
we derive conditions on & in order that Eé be of countable type. To this end we

establish sowne properties of compactoids in general locally convex spaces first.

LEMMS 8,1, — Let A be an absolutely convex compactoid in a locallv convex space

E over X .Let A€ K, |Al >1 if the valuation is dense, A = 1 if the valua-

u.’x [ )\A
n

tion is discrete. Then for each neighbourhood U of O there exist Xy

such that A< U + co(xl y eee xn) .

Proof. - (A proof appears is [8] but is also included here for the reader's con-
venience.) There is a continuous seuinorn p such that {x : p(x) K1} < U . Ve
use the novations of ¢ l‘(f). = (A) dis an absolutelv convex coupactoid in B .
By [6], Proposition 1.6, n?(A) is also a compactoid in F := E;;(Zji . By [11],
48 (viii), the space F is of countable type so that by [117, 4.37 (i), every -

ortnogonal sequence in ﬂp(A) tends to 0 . By [1l], 4.36 A and C, there exist
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A

€ s ey ee € N ﬂp(A) with 1lim e =0 in Ep and such that

,,P(A) < Eg(el , e, vee) o e have f)(em) £ 1 For large m so there is an n&l

9
such that np(A) < f{x o plx) 13+ co(e1 y ey en) R

Choose X, , «es , X € AL with np(xi) = e, for i e il , «.. , n; . Then, using

-

the fact that Xer ”p = Ker p we arrive easily at

A< {x : p(x) < l} + co(x1 gy eve o xn)'g U + co(xl g eee xn) .

PROPOSITION 8.2. — Lot A be a metrizable absolutely convex coumpactoid in a

locally convex space E over K ., Let A- be as in lemma 8.1. Then there is a com-

pact set X < A4 guch that A “co X . For X we may choose a set of the form

o, €1 1 €5y see} where 1imnﬁm e = 0.

Proof, - (Gur proof is a slight modificati-n of the one of [ 7], 2.3.) There is a
sequence Vl :>V2 D +ee of absolutely convex neighbourhoods of O in E such that
for each neighbourhood U of O there exists an n €N such that U n A :)Vn nA.
Choose p, , Py s »»+ € K such that |p | > 1 for all =n, ﬂ]pn} <Jaoir x
has a dense valuation and such that Pn =1 for all n if K has a discrete va-
luation. By the previous lemma there is a finite set Fl(; Py A such that
A< Vl + Cco Fl . Since (A + co Fl) N Vl is an absnlutelv convex compactoid there

is a finite set F, < p2[(A + co Fl) n V1] such that

(A + co Fl) N Vl<: V2 + Cco F2 .

Inductively we obtain a sequence Fl , F2 ; sees of Tinite sets such that for
each n €N
* <
(*) (A+co(F, Uwew UF )) AV CV . +coF
R _ i se e F n .
( ‘) Fn+1 Pn+1L(A * co(Fl v v n)) vn]

Je claim that X := {0} LJlJn Fn has the required properties :

(1) From P L =Py A and (**) we obtain inductively that F < b P
(n €N) so that X < A4,

n-1 **° P1 A

(ii) Let U be a neighbourhood of 0 ; we prove that X \ U is finite. (Then it

follows that X = {0 , e e..} for some sequence e, » €, 5 +oe with limit

1’ 727? 1
0 and X is compact.) Choose a neighbourhood U' of O such that AU' < T .,

There is an n €N such that V. nACTU' nA . For m2n we have, by (¥%),

I -1 .=l -
C oy . 2 : A A' ’k— S -

Fm+l ol Vm L_Avn Using (i) we get Fm+l(_ X< A so that
APV AnACU'N ACU' . We find F C ANt CU for all m2n, i. e.
m+1 n m+1 2

X\U CZFl U s LJFn , a finite set.

(1ii) Pinally we prove A CGo X - Let x €A . Since A GV, + co F, there is
an x; € coF  such that x - x, € V, n (4 + co Fl) . By (*) there is an x

such that x - xl - x2 € V2 N (A + co F

EcoFé
weX

2

+ co F2) . Inductively we find =x,,x

1 2!
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et ; -1
that x - 2. . x, : - 7 ‘
such tha Zl:il:l X eVn for each n . Hence A (x S xi) € Vn n A for

each n so that x x; + It follows that x e co X .

il
™

THOREL 8.3, — Let E be a Hausdorff polar space. The following conditiohs are
equivalent.

(«) Bl is of countable type.

(#) Each bounded subset of E is o(B , E!)-metrizable.

Ezgggfi- (@) ==> (p) . Let B Dbe a bounded abgolutely convex set in E . The semi-
norm p on E' defined by the formula p(f) = sup{if(x)} ¢+ x € B} is continuous
for b(E' , E) . By («) there are £, f,, +e. din B' such that Ufl » Ty eeedl
is p-dense in E% « Without loss we may assume that p(fi) <1 for each i . It
takes a standard reasoning to show that d : B x B -—> R defined by the formula
a(x , y) = maxilfi(x) - fi(y)] 2—i is an ultrametric on B whose induced topology
equals the o(B ’ E')-topology on B . To prove (J) == (u) consider a hounded sub-
set A of E . The same argument as used in the proof 6f Proposition (6.5) (@)=>(s)
yields that A is a compactoid for o(E , E') . By (3) the set A is metrizable
for o(E, E') . By Proposition 8.2 there is a (bounded) sequence € 5 €5y eee
)Y . It follows that the

converging weakly to O such that A< co(e1 » €5 s
topology b(E! , E) equals the topology of uniform convergerce on (bounded) weakly
compact sets. Also we know that each such weakly compact set is metrizable. A slight
and obvious generalization of the proof needed for Example 4.5 (vi) shows that Eé

is of countable type.

To obtain an interesting characterization in the spirit of Theorem 8.3 for a res=

tricted class of spaces we first prove the following variant of Proposition 4.11.

Liiilh 8.4, — Let E Dbe a polar Hausdorff space. Suppose that cach bounded subset

of E is a compactoid. Then each weakly convergent sequence in E is convergent.

Proof. ~ Let X; 9 Xy g eee € B, limn_‘OD x = 0 weakly. Then {0 , Xy X5 o]

is weakly bounded hence bounded by Corollary 7.7, hence compactoid by assumption. By

Theoren 5.12 the weak and strong topologies coincide on {0 , X, 9 X vee} o Henco

2 ?
lim Xn =0 strongly.

-

THLOREM 8.5. — For a polar Hausdorff space E the following are equivalent.

(«) Eé is of countable type. Each weakly convergent sequence in L is conver-

gent.

(3) Bach bounded subset of E 4is a metrizable compactoid.

Proofe - (u) ==> (ﬁ). Let A be a bounded subset of E . From the second part of

the proof of Theorem 8.3 we obtain a sequence € 9 5 g eee such that e, - 0

weakly and A.ulco(el y €5 s ...)0 . Now we have e -> 0 strongly so that



24-26
co(el r €5 ee.) 1is a compactoid. By Theoren 5.13 (i) the set co(e1 » €5 ,,,)OO
is a compactoid, hence so is E5f52—:_5;_:“:77 ° by Proposition 4.10. Tt follows
that A is a compactoid. A is métrizable ror o(E , B') by Theorem 8.3. By Theo~
ren 5,12, A is also metrizable for the initial topology. ow suppose (5). By Theo-
rem 5.12 each bounded set is metrizable for o(E , E') so, by Theoreu 8.3, El is
of countable tvpe. The second condition of («) follows from Lemma 8.4.

Observe that, for a nonspherically complete X , 2" satisfies the conditions of

Theoreix 8.3 but not the ones of Theorem 8.5.

COROLLARY 8.64 - Let E be a nolar Hausdorff space satisfving one of the condi-

tions (a), (ﬁ) of Theorem 8,5.

(i) For eacn bounded set A C E there exist € 9 €5y eee € E with limn“u?n=o

such that 4 < cole; , e, , vee) 4

(ii) The b(E! ’ E)—togology on E!' eguals the topology of uniform convergence on

compact sets.

(iii) Bach weakly compact set in E is conpact. Sach o(E , E')-compactoid is &

conpactoid.

Proof. - For (1) combine Theorenm 8.5 and Proposition 8.2. The assertion (ii) fol-
lows frou (i). For (iii) observe that weak compactoids are bounded by Corollary 7.7,
hence they are compactoids by (8) of Theorem 8.5. For the first stateuent, apply
Theorem 5,12.

COROLLARY 8.7. - The strong dual of a nuclear spacc in which each bounded set is

metrizable is of countable type. In particular the strong duals of nuclear Fréchet

spaces or nuclear LF-spaces are of countable t:pe.

Proof. - Proposition 1.2 and Theorem 8.5 (8) => («) take care of the first sta-

tement. For the 'LF-part! of the second stateient use [ 147, Theorem 3.14, 1° .

CUROLLARY 8.8. — The duals of the spaces C (X —»K) (X conpact), C (U -->X) ,
*® : ® < 17 ‘e
CC(U -~>K) (U open in gp) , CO(QP -——>K) , S(gp -—>K) , A(X), Al(K) of

y 2 are of countable type.

9. Reflexivity.
For a locally convex space E over K we denote, as usual, the space (Eé)'b by

E" , We have the inclusion (E&)'(: E'" as linear spaces so that, by Lemma 7.1, jF

raps E linearly into E" .

>

Definition 9.1. — A locallv convex space E over K is reflexive if
jE : E —=, EM

is a surjective homeomorphisme.
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LEdA 9.2, - Let E Dbe a Hausdorff polar space. Then j. : E -—>E" 1is injec-

)

tive and its inverse : jE(E) --> K , is continuous.

Proof. - Injectivity foliows from Lemr.a 7.1 (ii). Let (xi) be a net in E for
which jE(xi) -~> 0 in E" ; we prove that X, = 0 in E'. Let p be a polar
continuous sewinorm on E + Then B := {fe B! : lf]Aﬁ p} is equicontinuous hence

bounded in L' . Hence jE(xi) --> 0 wuniformly on 3B . But then, since

]
b
p = sup{|f| : £ e€Bj we have also p(xi) --> 0 . By polarness of &, x —>0.

“

Lidiik 9.34 = Let E be a polarly barreled spaceé. Then jE : B —=» E" is conti-

nusus.

Proof. - Let (xi) be a net in E , converging to 0, let B be a bounded subset

of Eé « By Proposition 6.5 there exists a polar cmtinuous seninorm p on E such

that [fl &p for all fe€ B. As p(xi) --> 0 we have jE(xi) —> 0 uniformly on
B ., It follows that jE(xi) -> 0 in E" ,

LEMMA 9.4. — If E is reflexive then s0 is Eé .

Proof. - The map (jE)‘ ° jE' H Eé —=> EMt > E% is the identity. Now ig is

an isomorphism of locally convex spaces hence so is its adjoint (jF)' . It follows

that is an isomorphisi, i. e. that E! is reflexive.
Y 7

Ig! b

LEM#A 9.5, -~ Let E Dbe a polar space such that jE : B -— E" is surjective.

Then Eé is polarly barreled.

Proofs — Let B he a polar barrel in E% . Fron surjectivity of jE it follows

that B = AO Tor some set ACE . Since B is absorbing we have that f(4) is
bounded in K for each f € E' i. e. A is bounded in the topology o(E , E') .
By Corollary 7.7 A is bounded for the initial topology implying that B = 4 is

nei zthbourhood of O in Eé .

TISCREl 9.6, — For a locally convex space L over K the following are eguivalent.

(¢) B is reflexive.

(ﬁ) E is a Hausdorff, polarly barrcled, polar space. E is weakly quasicorplete.

inl

Proof. - («) => (8) . B is isoworphic to a dual space, hence £ is Hausdorff
and polar (BExample 5.1 (iv)). By Lemmza 9.4 the space Eé is reflexive and E" is
polarly barreled by Lemma 9.5. lience, so is E . Fron Theoren 6.6 and the polar
barreledness of E% we obtain that E" is o(Bn y E')—quasicomplete. jE is a ho-

meomorshisu of (B, ofE , E')) onto (E", of(m" , E!')) .

(p) ==> (W). From the Lenmiias 9.2 and 9.3 it follows that jE is a homeororphism
of E into E" . To prove that jy is onto it suffices, by Leuua 7.1 (ii), to
prove that (Eé)' = (E%)‘ as sets. In other woms « we must prove that b(E! , E)
is o(E! , BE)-coupatible. Now, the topology b(E! , B) equals the topology of
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uniforr. convergence on all o(E , E!')-bounded subsets of E (Corollary 7.7). This
is also the topology of uniform convergence on ueubers of G := {A S E : A edged,
A closed and hounded for ofE , E')} . By assuuption each meutber of G is completc
for o(E , B') . Using the rap jp of Leuna 7.1 (ii) (which is obviously a homeo-
norpnisu of (B, o(E, BE')) onto (Eé)é ) we find that G, := {jE(A) : A eG} is
a special covering of (Eé)' and that b(E! , E) is the Glniopology. By Proposi-

tion 7.4 we then have (Eé)‘ = (Eé)' .

As an application we shall prove Theoren 9.8 extending [11], 4.17 (which says that
if K is not spherically complete, every K-Banach space of countable type is

reflexive).

LEMiiA So7e = Let B be a strongly polar space with a quasicouplete linear sub-

space D . If B is o(BE , E')-quasiconplete then D is o(D, D')-;uasicouplete.

Prooye - Let (xi) be a net in D that is G(D , D' )-bounded and (D , D')—
Cauchy 3 we prove that it is (D , D' )=convergent. Obviously (xi) is bounded and
Cauchy for o(B , E') so there is an x € B such that x; —> x for o(E , B1) .
To prove that x € D consider X := (53(5;7;)3 where the har indicates the closure
in D for the initial (relative) topology. D is strongly polar by Proposition
4,1. X is bounded by Corollary 7.7. Then, since X is also closed in D, X is
conplete, hence closed in E . X is also edged and we have by Corollary 4.9 that
X is o(E, B')-closed. It follows that x = o(E , E') - lin, x, € X =D . To
prove that x, -->x also for o(D, D') , let f e D' . By Treoren 4.2 f hes anex—
tension fe E! . Ve have f(xi) ——> F(x) , hence f(xi) ——> f(x) which finishes

the proof.

TIEOREN 9.8, — For a locally convex space E of cohuntable type over a nonspheri-

cally complete K the following are equivalent.

(¢) B is rellexive.

(3) B is Hausdorff, quasicouplete, (polarly) barreled.

Egggf.— (@) = (ﬁ) follows from Theorem 9.6 and the observation that a reflexive
space is quasiconplete since it is the strong dual of a polarly harreled space
(Theorem 6.6). e vrove (ﬁ) ==> (a). By Theoren 4.13 there is a set I such that T
can be viewed as a subspace D of c, . As ¢, is reflexive it is weakly quasi-

0 0

.
couplete by Theoren 9.6 ; it 18 an easy exercice to show that also 06 is weakly
quasiconplete. Frou Lerma 9.7 we obtain weak quasicompletcness of D . YNow apply

Theoren 9.6 to D .

COROLLARY 9.9. -- Bach Fréchet space of countable tvpe over a nonspherically com-

plete K is reflexive. Countable strict inductive limits of such spaces arc refle-

xive.
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Proofe - The conditions of Theoren. 9.8 are satisfied. (See [14]. Theorew: 3.13,

30, Theorew 3.16 and Proposition 4.12 (iv) of this paper.)

COROLLARY 9.10. — Let K Dbe not spherically couplete. Then all thc spaces of
¢ 2, (2.1)-(2.8) are reflexive.

If K is spherically comuplete no infinite dimensional normable space is reflexive
([11], 4.16). In that case the spaces € (X —>K) (v 2.1), cg(gp -——>K) (3 2.5)
are 20t reflexive, e will see in the next section that the remaining spaces of

(2.1)—(2.8) are reflexive.

10. Montel spaces.

4

Definition 10.1., - A locally convex space over K  is a lontel space if it is

Hausdorff, polar, polarly barrecled and if each closed bounded subset is a complete

conpactoid.

It follows fron the definition thet quasicouplete barreled nuclear spaces are
Montel spaces so that all the spaces of 9 2, (2.1)—(2.8), with the exceptions

¢ —>k), 2

O(Qp --> K) , are liontel spaces.

LiMiuh 10.2. — Let E be a polar space for which each bounded subset is a compac-

toid. Then E is weakly quasicomplete if and only if E is quasicouplete.

Proofe — Suppose E is quasicomplete and let A be a set which is closed and
bounded for o(E , B') . Let B be the weak closure of the absolutely convex hull
of A . Then B is weakly bounded hence bounded by Corollary 7.7, and B is a
conpactoid. B 1is closed in I hence conplete. By Theorem 5.13 (v) B is weakly
coriplete. Then A , being weakly closed in B , is weakly conplete. Conversely,
assune that E is weakly quasicouplete, let A be a stronglv closed and bounded
subset of I . Then A is counpactoid. By Theoren 5.13 (ii) & is weakly closed
(and weakly bounded) so that A is weakly complete by assuription. According to a

standard reasoning A is also strongly complete.

THEORL 10.3. - A lMontel space is reflexive,

Proofe - Lemma 10.2 and Theoren 9.6.

In this context it is interesting to quote the following 'converse' in case K

is gpherically couplete.

THEOREL 10.4. ~ Each reflexive gpace over a spherically conplete field is a

Montel space.

Proof. —([ 1], Proposition 4 a).

The exanple c. shows that if K is not spherically couplete there exist reflexive

0
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gspaces which are not kontel spaces.

To prove Theorem 10.7 we need the following two general lemmas.

LEMHA 10456 - Let Tl < 72 be locally convex topolozizs on a X-vecior space

———

B such that T, =T, on Tl—compactoida.Then (m, Tl) and (D, T2) have the

sane coupactoid sets.

Proof. = Ve prove that an sbsclutely convex Tl—compactoid A ig also 72—

compactoid. Choose Ae K, |A| > 1 . Then T, =Ty o0 A Let U Dbe a Ty

neighbourhood of O in E . Then there exists a Tl—neighbourhood V of 0 in E

such that V n AL CU nAL ., Since A is Tl—compactoid there exist, by Lemma 8,1,

Xy g ese , X € ALl such that A<V + co(x] y see xn) « Then, by convexity,

).

L ah and 4 < (VN AA) + co(xl,m,xn)(: (Un M)+ oo(xl,m,xn) <U + co(xl,m,xn

Ladish 10464 = (Compare [ 2], Proposition 13). Let E be a locally convex space

over K . Then on equicontinuous sets of E' the tonology o(BE! , B) coincides

with the topology of uniform convergence on compactnids.,

Proof. - Let HCE'!' be equicontinuous, let (fi) be a net in H converging to
fed for ofB* , E) . Let A be a coupactoid, let ¢ > 0 , ¥We prove that
]

| £ - fil £e on 4 for large i . By equicontinuity there is a neighhourhood U
of 0 in E such that |(fi-f)(U)l <¢ for all i .

There exist x, , «eo , X € E such that A< U + colx coe X ) « There is an
1 n 1°? ' "n
i

0 o It

follows that Ifi - f] <¢ on U+ co(x1 y see xn) , hence on A, for i Z-io .

such that l(fi - f)(xj)l £e for jeE€{l,2, oo , n; and i =i

TEOREL 10.7. - The strong dual of a liontel space is a llontel space,

Proof, - Let E be a liontel space. By Theorer: 10.3 and Lemna 9.4 its strong

dual E% is reflexive. It therefore suffices to show that a bounded subset of E%

is a coupactoid. Consider the topologies T, = o(B' , B) and T, = p(o! , E) on
E' « On Tl—coupactoids (i. e., on equicontinuous sets of B! , see Proposition
6.5) L coincides with the topology of unifsrm convergence on compactoids (Lemna
10.6). It follows that T, =T, on T,-coupactoids.

By Lerma 10.5 each Tl—conpactoid is also a T,-coupactoid. Thus, each bounded sub-

2

set of E! is a compactoid.

!
b

THEOREE 10.8. ~ Each quasicouplete polarly barreled subspace of a kontel space is

a dontel space.

Proof. -~ The gtatement follows directly from the definitions after observing the
following fact which is a consequence of Lemua 8.1. If A is a coupactoid in E ,

ACSDIEB, D is a subspace of E then .4 1is a coupactoid in D .

4L cocbinaison of the theory of ¥ 8 and ¢ 10 yields the following corollaries.
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COROLLARY 10.9. ~ Let E be a Hausdorff, volar, wolarly harreled, quasicomplete

space for which ecach weakly convergent sequance is convergont. If Eé is of coun-
—_ =2 s oA

table type then ® is a liontel space. In particular we have the foliowing.

(i) Let ¥ Dbe sphericallv complete. If_ E is a Fréchet snace or an LF-space

and E% is of countable type then ¥ is revlexive.

(ii) Let E be a Fréchet space or an LP-space, of countable type, whose sirong

dual is also of countable type. Then E is a Montel space.

Proof. — Theoren 8.5 yields the gencral statecent. For (i) and (ii) use Proposi-
tion 4.1l and observe that, for spherically complete K , each locally convex space

over K is strongly polar.

CORCLLAZY 10,10, — Let « he the class of all reflexive locally convex spaces

E over K such that both E and E% are of countable type. For a locally convex

space I over KX the following are equivalent,

(¢) Bex.

(3) E 4is a Montel space. Bach bounded subset of F is netrizable. E is of

countable type.

({) E and E% are of countsble type. E is Hausdorff, barreled, quasiconplete.

COROLLIRY 10.11. - The spaces C (X —=>K) (X compact), € (U -5 X) ,

S (o]
CC(J ~—>K) (U open in ‘Qp) , CO(Qp*K),S(Qp*K),Aw(K) , Al(h) of § 2 are members
of the class X of Corollary 10,10.

Remark. — From the definition of a llontel space it follows, with Theorem 5.13
(iv), that each closed, edged, bounded set in a lontel spacc is a polar set. With
an aye on Proposition 4.7 one ray wonder whether every iiontel space is stirongly
polar. The following example shows that this is not so. Let K be not spherically
couplete, let E be the K-vector space zm on which we put the strongest locally
convex topology (i. e. the topology induced by all seminrons on Zm ). The canonical
nors: on ,Zw/cO is not polar so that I is not strongly polar. On the other hand
it is easily scen that E is a Montel space (bounded sets are f inite dirensional,

E can be viewed as a locally convex direct sun of one-dinensional spacee, Proposi-

tion 5.4, the seminorm associated to some barrel is continuous).

11, Huclear duals.

In the spirit of ¥ 8 we derive conditions on F in order that E% be nuclear,

using Proposition 1.3

LEMMA 1l.1. - Let E be & metrizable or an LI-space over K . Let Xy s x2 g s

bc a sequence in E converging to O . Then there exist Moo A? , see €K with

\ ‘ = o and 1lio A x =0,

lin l/
n—e' — nTe non
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Proof. = By [ 14], Theoren 3.14, Corollaire, it suffices to consider the case whore
E is wetrizable. There are absolutely convex neirhbourhoods Ul :>U2 2 eee of O
forming a neighbourhood basis at O . Choosz p €KX, ]p] > 1 . There are

Nl <1H2 < vee in I! such that for exch n , n ell

- 1 n
g > Hn == p X € Un .

. . . 2
C se / = = eee = = / = ese = / = - = eee = N =
hoose 4y =, W, T b N Mo TP Mt M, " Vo
etc. Unc checks casily that iin Aox =0, :

noe n n

LEMIIA 11.2. - Let E be a metrizable or an LF-space over K . Suppose B is

scpireflexive (i. e. jE : B --»> E" is surjective) and also that each weskly con-
vergent sequence is strongly convergent. Then every T € L(®

-2 CO) is compact.

Proof. — For every n the map f > (TF)n (fr e E%) is in " , hence by semi-
reflexivity there is an x € E such that (Tf)n = f(xn) for all f € B! ., Thus,
T has the Torm

f o (f(xl) , f(xz) , +e.) (fe E%) .

As T maps into ey we have X, —> 0 weakly and, by assunption, X, - 0

strongly. By the previous lemnia there exist Mos My ees € K with

1imn_m| Anl = and B := {/\n X, * n elNj is wounded. Then BO is a neighbourhood
. Oy . . . - .y =1 :

of 0 in E% and T(B”) u-{(gl y 52 , ses) € o 3 Ibnl < lAn‘ for all nj .

The latter set is easily seen to be a compactoid in o o

THREORE: 11.3. - Lot E be a polar serireflexive locally conveXx space over K .

Suppose that each brunded subset of E is a coupactoid and that E is either

1

cetrizable or an LF-gpace. Then Lé is nuclear.

Pronf, - It suffices to combine Lema 8.4, Lema 11.2, Theoreu 8.5 (d) == (a),

|).

and Proposition 1.3 (for Bl

COROLLARY 11.4. — (Extension of [5], Proposition 5.7 (ii)). Let X be sphericallv

couplete. Then the strong dual of any reflexive uetrizable or LF-space is nuclear.

Proof, - Theorern 10.4 and Theorem 11.3.

COROLL/RY 11.5. — The strong dual of a llontel space which is either metrizable or

LF is nuclear. The strong dual of a nuclear Fréchet space or a nuclear LF-space is

nuclear.

Proof. — The first staterent follows from Theoren 11.3. For the second statement
observe that the space is barreled and couplete. lence, by Proposition 1.2, it is a

Yontel space.

COROLLARY 11.6. — The duals of the spaces C (X —>K) (X coupact) , (U ~=> )




CC(U

—>¥) (U openin Q) , Cyla — %), slg -—>©) , &), 4 of

3 2 are nuclear.

1]
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