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CAPACITY THEORY ON ALGEBRAIC CURVES AND CANONICAL HEIGHTS

by Robert RUMELY

Groupe d’ étude d ~ Analyse ultrametrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
12e année, 1984/85, n° 22, 17 p. 13 mai 1985

This note outlines a theory of capacity for adelic sets on algebraic curves. It

was motivated by a paper of D. CANTOR where the theory was developed for P~ .
Complete proofs of all assertions are given in a manuscript [R], which I hope to

publish in the Springer-Verlag Lecture Notes in Mathematics series.

The capacity is a measure of the size of a set which is defined geometrically

but has arithmetic consequences. (It goes under several names in the literature,

including "Transfinite diameter", "Tchebychev constant", , and "Robbins constant", ,

depending on the context.) The introduction to Cantor’s paper contains several

nice applications, which I encourage the reader to see. I have mainly been concern-

ed with generalizations of the following theorem of Fekete and Szegö [F-S].

T?IEOREI. - Let E be a compact set in C , stable under complex conjugation.

Then,

(A) If the logarithmic capacity is  1 , there is a neighborhood U of

E which contains only a finite number of complete Galois orbits of algebraic inte-

(B) If y(s) ~ 1 , then every neighborhood of E contains infinitely many com-

plete Galois orbits of algebraic integers.

Some examples of capacities are : for a circle or disc, its radius R ; for a line

segment, 2014 of its length ; for two segments I- b , - 3’’] u Mb - a) ;

for a regular n-gon inscribed in a circle of radius R,

The capacity y(E) in the theorem should more properly be called the "logarith-

mic capacity of E with respect to the point ~ n. The general definition of ca-

pacity will be given below. Of equal significance with /(E) is the Green’s func-

tion E) . Recall that thisis a nonnegative function, harmonic in E ,

with value 0 on E and a logarithnic pole at , such that I
is bounded in a neighborhood of ~. The Fekete-Szegö theorem is proved by cons-

tructing monic polynomials whose normalized logarithm P~ I
closely approximates G(z, ~ ; E) . The algebraic integers in the theorem are

the roots of the polynomials.

(") Robert RUMELY, Department of Mathematics, University of Georgia, ATHENS, GA
30602 (Etats-Unis).
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The condition in the Fekete-Szegö theorems that the members be algebraic integers
is a restriction on their conjugates at finite primes, just as lying in a neighborhood
of E is a restriction at the archimedean prime. CANTOR generalized the classical

theory in several directions, First, he gave an adelic forraulation, placing all
the primes on an equal footing. Second, he defined the capacity of an adelic set
with respect to several points, not just one, which gave the theory smooth behavior
under pullbacks by rational functions, (In the classical theory over C , if F(z)
is a monic polynomial of degree n , then ~(F (E)) = ’{(E) l/n .) Thirdly, he for-
mulated versions of the theory with rationality conditions : for example, in the

Fekete-Szegö theorem, if R , then the numbers produced in part (B) could be
taken to be totally real. (This special case was originally proved by R. ROBINSON.)
There were some errors in the proofs of the rationality, but no doubt the results
are true. Cantor’s definition of the capacity of a set with respect to several

points was quite novel, involving the value as a matrix game of a certain symme-
tric matrix constructed from Green’s functions.

The functoriality properties of Cantor"s capacity suggested that it should be

possible to extend the theory to all curves. In doing so, I have given a different

approach to the original results, and found some interesting connections with

Néron ’ s canonical heights.

Notation. - Let C be a smooth, geometrically connected projective curve defined
over a number field K . If v is a place of K , we write K for the completion
of K at v , . K will be the algebraic closure of K , Kv the algebraic closure

of and K the completion of the algebraic closure of K . Gal(K/K) will

be the usual Galois group ; the group of continuous automorphisms of
K /K . If v is nonarchimedean, and lies over a rational prime p, the absolute

value on K v associated to v will be normalized so that if v is

archinedean, then x + yi) 
v 
= ( x + y2)~ . Thus, we are using the absolute norma-

lization for our absolute values. These absolute values extend in a unique way to

absolute values on the # , which we continue to denote by jxj v . For any field

F , C(F) will mean the set of points of C rational over F , and F(C) the

field of algebraic functions on ~ rational over F.

Classical theory. - In the classical theory, if E C C is a compact set, then

its capacity (with respect to the point ~ ~ is given by the equivalent definitions

(transfinite diameter)

(Tchebychev constant)

(logarithmic capacity)

(equilibrium potential)

(Robbins constant) .
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Eore a probability measure is a positive Measure of total mass 1, and 

is the Gr eexl’s function of u.nbounded cor:ponent of the complement of E . If

03B3(E) ~ 0 , y there is a unique probability minimizing the integral defining

V(E) , y and Green’s function is given by

Throughout the following, we will implicitly assune that Y’(~) 0 . (This is the

case, for example, if E contains a one-dimensional continuum.) For non-compact
sets F, the capacity and Greeii’ s function are defined by llimits:

iriportant class of sets whose capacities are known are PL-domains (Polynomial
Leuniscate If is a donic polynomial of degree n , y then the

set E = C ; I I ~ R} has capacity ~ ~(~ ) - This is because the

Green’s function is for and V(E) can be read off as the

residue of the Green’s function In particular, the capacity of a circle is

its radius.

The equality of the various definitions of was proved and 

Each definition of y(E) is useful in a different context. Its role as the Tcheby-

chev constant gives functoriality under pullbacks. Its definition in terms of the

measure  allows the construction of polynomials whose logarithm approximates the

function. Its expression in terns of V(E) allows it to be computed for 8any

sets, and was the definition which CANTOR generalized in the adelic theory.

The c ano nic al dis t anc e. - In all definitions of capacity in the classical case, the

crucial ingredient is the presence of the distance function y~ which has a

pole at co . The connection between tlle geouetric and arithmetic sides of the theory

cones froLi the fact that the distance function can be used to decompose the absolute

value of a polynomial in terws of its roots.

In constructing a theory of capacity on curves, the starting point is to find si-

uilar functions which can be used to decompose the v-absolute value of algebraic

functions on S(K ) for every place v and every curve C. I call such functions

"canonical distance functions", although the tern should be understood guardedly

since they do not in general satisfy the triangle inequality~ out only a weak ver-

sion of it. For any place v, and any point ç E there is a canonical dis-

which is unique up to scaling by a constant, satisfies the

following properties : 

i° (Positivity) For z2 e B we have 0  [z1, z2JÇ;  co ,
21 . = 0 if, and only if , zl = z2 .
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2° (Normalization at ~ ~ Let g(z) e K (c) have a simple zero at ~ . Then

there is a constant c &#x3E; 0 such that for any z2 E C(K ) B (~ ~

3° (Symmetry)

4° (Continuity) [Zl’ Z2]Ç is continuous as a function of two variables. If v

is archimedean, log[z1, z2], is harmonic in each variable separately; if v is

nonarchimedean, log[ zl ’ Z2], is locally constant in each variable, provided

~2 °

5° (Decomposition of functions) If f( z) E K (C) has zeros and poles (with nul
v

tiplicity) at a1’ ... , an and ’1’ ... , ’n respectively, then there is a

constant cf so that for all Z E where f(z) is defined,

6° (Galois invariance) If C is defined over E C(K ) , then for

all 

7° (Weak triangle inequality) There is a constant II depending only on C and

v such that z2]03B6, [Z2 ’ z3JÇ) . is 

dean and C has nondegenerate reduction at v , y then M = 1 .

Properties 2° , 4° weak version of 5° characterize Z2B: . One can
show that for any Z2 ~ C(K ) there is a function fez) ~ K (C) whose only poles

are at 03B6 and whose zeros all lie in a prespecified ball about z2. Furthernore,
after fixing a uniformizing parameter g(z) at § as in property 2° call such an

f(z) normalized if l f(z) = 1 ,where n = deg(f) . Then

The existence of the limit is a consequence of a naxinun nodulus principle for

algebraic functions on curves. The symmetry coues from Weil reciprocity.

Property 5° suggests a connection with Neron’s canonical local height pairing ;

and in fact Neron’s pairing and the canonical distance can be defined in terns of

each other. Recall that Néron’s pairing is a real-valued, bilinear function 
v

on divisors of degree 0 in C(K ) having coprine support. It has the property

that if D’ = div(f ) for some function f(z) , then, writing log v x for the lo-

garithu to the base p(v) , where p(v) is the rational prime lying below v

( t aking p(v) = e if v = ~ ), we have
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Tt is continuous in both variable~., and thus can be regarded as extending func-

tional evaluation to nonprincipal divisors. (It should be noted that there is sone
variation in the literature concerning the normalization of Néron’s pairing. Here

we are requiring it to approach on the diagonal, and to take rational values

if v is nonarchinedean). The following clean formulation for the relation between
the canonical distance and Neron’s pairing was shown to ne by B. GROSS : There is

a constant C, depending on the choice of uniforuizing parameter g(z) at
such that

This expression allows the finer properties of Néron’s pairing given by inter-

section theory, to be transferred to the canonical distance.

The facts and formulas above arose frou a study of the classical theory whose

goal was first to put the point ~ on an equal footing with the points of 

and then to find analogues for all v and all C . In a number of cases special
formulas turned up which suggested considering [z1,z2]03B6 as a distance. Since

these formulas also give nore insight into the nature of the canonical distance, y
it seeus worth presenting then. In all cases, we obtain an expression of the form

where ((zl ’ z2))v is continuous, nonnegative, and bt)’lnded, with a simple zero

along the diagonal.

Special formulas for the canonical distance. - The formulas are more or less

explicit, depending on the genus of e .

Genus 0 : projective line.

- Archimedean case. 0n one has the spherical chordal metric, given for

z2 E 2.- by

Note that , is invariant when both z1 and z2 are inverted, and

is uniforuly bounded above by 1 . When the plane is identified with a sphere of

diameter 1 by stereographic projection, it is the length of the chord from zl
to z2 . For notational compatibility with curves of higher genus, write
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Observe z2]~ = IZ1 - z2|, while for

03B6 ~ ~, where f(z): (1 + I çI2)i/(z - ,) . We emphasize that [zl’ is only

determined up to scaling by a constant c(~) for each ~ .

- Nonarchimedean case. For finite primes the appropriate analogue of the

chordal metric is the p-adic spherical distance, given for z. , z2 e K by

and again putting ((zl ’ z2))V = Bzl ’ z211v ’ we have

From these expressions properties 1°-7° follow easily.

All curves, good reduction. -If C/K is any curve, then for v of K where

e has nondegenerate reduction with respect to the given embedding in there

is an analogue of the formula above, with I(z~ , .z~))~ given by the v-adic sphe-

rical metric on This is defined as follows ? fix a systeu of affine coordi-

on Then, for z2 E if there is some patch

in which both z and z have integral coordinates,

(using the coordinates in that patch). Otherwise ~z1, z2~v = 1 . It is easy to
check that !lz1, Z2~v is invariant under a change of coordinates in 

where 0 is the ring of integers in K .

Genus 1 : Elliptic curves.

- Archimedean case. We use the fact that an elliptic curve over C, is iso-

morphic to a complex torus 03C92]. NÉRON has given an explicit formula
for the local height pairing in terns of the Weierstrass 03C3-function, and by mo-

difying things slightly we get the canonical distance. Let
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be the 03C3-function for the lattice L == [03C91, 03C92]. Write T; for the period of

(,(u) = d/du(log o(u)) under 03C91, and Tt for the period of under 03C92, go

that by the Legendre relation, 11 03C91 - Tj a) == M . Given u we can uniquely

u1 + 03C92 u with u , u2 e R . Define 1l(u) = T. u + Tj u ,
and let

i ~/ B

Then k(u+ =- k.(u) , and k(u + UJ2) =- k(u) , so that

I is periodic  L»iG [L]). Let u and u correspond to z and z under

the isomorphism C/[03C91 , 03C92] ~ c(c) . Defining ((z1, z2))v = |k(u1 - u2) I, we have

- Nonarchimedean case, bad reduction. The canonical distance is invariant under

base extension, so we can assuwe in this case that C is a Tate curve. Then there

is sone q E K wi th  1 such is isomorphic to K*v/(q). As
has pointed out, one can express Néron’s local height pairing in terns of

p-adic theta-functions ; similarly, we get the canonical distance. The basic theta-
function is

Put vq(u) = and define the "nollifier"

Then k(u) = b(u~ . ~ is a real-valued function such that all u ,

k(qu) = k(u-1) = k(u), as follows from the functional equations of the theta-func-
tion. It is well known that algebraic functions on a Tate curve can be expressed in
terns of e(u) , and a short calculation shows that if we put «z.1 &#x3E; = 

then we have the fauiliar formula

Genus g ~ 2 .

- Archimedean case. Although the foruulas are not as explicit as in the previous

cases, their theoretical significance is clearer. It turns out that (z1, z ))
is a multiple of the Arakelov-Green’s function z2) . ARAKELOV introduced
his functions in order to extend Neron’s pairing frou divisors of degree 0 to di-

visors of arbitrary degree in the archinedean case, in a way uodeled on intersec-
tion theory (see ARAKELOV [Ar]) . Such an extension is not unique ; an Arakelov-Green’s

function is determined by giving a voluue foru, or uore generally a ueasure du ,
norualized so that c(c) has total uass 1 . Then, there is a unique nonnegative
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real-valued function G(z , w) on such that

(a) G( z , w) is snooth and positive off the diagonal, with a simple zero along

the .

(0) log G(z , w) dz = 

w 
for every w ;

(c) ~ ’ a ~(c.) log G( z , w) 0 for each w .

Condition (c) is simply a convenient normalization ; the crucial properties are

(a) and (b), which ensure that w2)) is harmonic for z ~
with logarithmic singularities of opposite signs at those points. Green’s idcnti-

ties show that G( z , w) is symmetric. For any choice of an func-

tion, we can put j~z 9 z2))v = G( and get a of distance functions

by the usual formula. For curves of genus 0 and 1 above, we have chosen

((zl ’ to correspond to the constant positive curvature and flat ietrics, res-

pec tively.

It should be noted that GROSS has given a foruula for the Arakelov-Green’s

function of a curve of genus % 2 with the constant negative curvature metric. His

formula uses the uniformization of the curve by the upper half-plane, and expresses

G( z , w) as the residue at s = 1 of a Poincaré series fOrDed from Legendre func-

tions of the second kind.

- Nonarchimedean case. Here the construction of functions (( which

decompose the canonical distance depends on intersection theory. If is a

finite extension, put CW = e spec (1 ) . Let C be the regular model

of C, and R(C ) the dual graph to the special fibre of a finite
w w w

extension of the base, e has semi-stable reduction, and hence the graphs R(C )
w

all have the sane topology for large L . One can forn a "reduction graph" R( e) ,
w

which is essentially the direct limit of the R(C ) together with a metric on the
w

edges, in such a way that the components of the special fibres of the C "’1 corres-

pond to a dense set of points on R (e) .

The final result is as follows. There is a decomposition

in which take rational values. Furthermore,

and

Here i (x , y) is a purely "local" term: it is 0 unless both x and y
v

reduce to the same nonsingular point 0:1. the special f ibr. e of some CW , and then

it is i (x , y) -- - g v 
for an appropriate local uniformizer g (x) at

y . on the other 
v 
(x ,y) is not unique, but is specifiea by giving a
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measure of total mass 1 on R(C) . As a function of x and y , it depends only
on the special fibre to which x and 

. 

y reduce. Thus, it and j v (x , y~ can be

regarded as functions on R( e) . For any two points 00FF, ç of R(e;;, y~-
is a piecewise linear function of x E R( e) taking its naxinun at y and its m-

ninun at 03B6. It obeys a mean-value property like that of harmonic functions.

A remark on the triangle inequality. - The constant M in the weak triangle ine-

quality (property 7° of the canonical distance) is definitely sometimes greater
than 1. For a Tate curve isonorphic to 111 = q v . Thus, M can be

arbitrarily large. In the Archimedean case, numerical computations for elliptic
curves 1J yield lower bounds for an M such that -

Some values are in the following table.

Construction of local Green’s functions. - Given the canonical distance, for each

place v and set F c c(:R: ) , one can define the capacity and construct Green’s
v v

functions following the classical pattern. 
’

For a conpact set E , and a point’ E not in E , let
v v v

If V03B6(EV) ~ ~, there is a unique the "equilibrium distribution",
v

for which the inf is achieved. Define the Green’ s ~~~unc tion by

We understand this to mean ~ if V03B6(EV) = (X) ,and z, , are not in E .
Define G( z § . E ) = 0 if either z or 03B6 belongs to E . (Note that V (E .)’ ’ v v c v

and y "(Ev) depend on the nomalization chosen for the canonical distance [ z , w]"
but G j z , I.: ; Ev) and 03B6 do not.) It can be shown that if EVl C Ev2 ’ then for
all z, , the inequality G(z, , ; EV1) ~ G(z , , ; holds. For an arbitrar,y

set F ,put
v
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At this point there is a complication, siuilar to the one in defining a measurable

set in Lebesgue’ t s theory. Above we have defined the capaci ty f°r a compact

set. Another. class of sets for which the capacity can be defined naturally are

sets U = ~z E ~(K ~ ; ~ ( .~ R ~ where is an algebraic
1 v v v v

function on C whose only poles are at 03B6, and Rv belongs to the value group.
V 

n
of K . If f( z) has degree n, and is normalized so lim| f(z) ( /[Z, w]n = 1,

then it is natural that R1/n.
wants G( z , S y U ) = (1/n) log ( Rw). The sets for which the formulas for’ ’ 

v v Y v
coupact sets and PL03B6-donains are compatible will be called capacitable. For an ar-

bitrary set F v ,let the "inner" and "outer" capacities of F be

F is capaci table if for all 03B6 in the o f F , Ý r.(F ) = Y...(F ) .
(In a manuscript of this paper, I called such sets adnissible. ) An RL-domain (Ra-
tional Lemniscate douain) is a set of the form (z E e(íè ); I f( z) I R J for

v v v

some f(z) E Finite unions of compact sets and RL-domains are capacitable.

An example of a non-capacitable set is a set containing one point in infinitely ma-

ny residue classes (nod v) of e(K) . If F is capacitable,
v v

However, the collection of capacitable sets is not closed under intersection.

The Green’s function of Fv has the following properties :

i° (Positivity) z~ ; F )~0 ; and if z or z~ then

3° (Transitivity) If F v is capacitable, and if G(zl’ z 2 ; F) and

4° (Galois statility) For all 03C3 E 

5° (Approximability) For any RL-domain U contained in the complement of F y

any e &#x3E; 0 ~ and there is an algebraic function ~(~) whose only

poles are at ~y such that for all z~ ~~
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6° tContinuity) G~ z~ , ; F ; is continuous as a function of two variables

for z # z2 in the conpleuent of F . If v is archimedean, it is harmonic in

each variable separately.

The ideas behind the proofs. - In the archimedean case, the development of capa-

ci ty theory on Rienann surfaces is done by following the proofs in TSUJI’ s book [Ts]
which are all coordinate-free. Once one has the canonical distance, there is no-

thing new. The main fact used is the maximum nodulus principle for haruonic func-

tions.

In the nonarchiuedean case, the goals of the theory are the sane, but the nethods

are somewhat different. The primary difficulty is relating local behavior of func-

tions to global behavior, and this is done by using the rigidity of algebraic func-

tions. There are four nain tools, two local and two global.

1° Local parauetrizability of C(v) by power series. - is embedded

in P, y and let be the v-adic distance on induced fron

Pn() . There is a 6 &#x3E; 0 such that for any point C(v) , the ball

can be parametrized by convergent power series. This is well known, and is proved

by using Hensel’s lemma to refine approximate parametrizations. The uniformity

comes by using a lemma of Weil from the theory of heights to show that the v-adic

singularness of e,(K) is bounded.
v

2° The "Jacobian construction principle" for functions. - Let a =} ç be two ar-

bitrary points of e(K) , and let U be a neighborhood of a. Then, there is a
v v

function E K (e) , all of whose zeros lie in U and whose only poles are at
v v

03B6 . This circumvents the difficulty that for genus g  1 , not every divisor is

principal. It is proved by using the fact that the Abel nap

is open for the v-adic topology except on a set of codimension 1 . (This is well
known for the Zariski topology, and it follows for the v-topology by the inplicit
function theorem for power series.) One takes the image of the divisor (a) - (ç)
in the Jacobian. By choosing n appropriately, one can arrange that n[(a) - ((,)’]
be arbitrarily near the origin of J(v) . Then wiggling a few of the copies of (a)
within Uv gives a principal divisor.

3° The naxinun modulus principle. - Actually two naxinun uodulus principles are

used : a local one for power series, which is well known ; and a global one for al-

gebraic functions over RL-donains. It is as follows. if g(z) E is non-

constant, put
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Then, if f(z) E K 
v 
(e) has no poles in D, 

v 
achieves its maximum value

for ze D at a point of 

This is proved by considering the equation relating f(z) and g(z) (which
exists because C has dimension 1 ), its Newton polygon for a fixed z,

and reducing to the case of P1 . On P1 it is due to CANTOR, who used the facto-

rization of in terns of its zeros and poles, and a decomposition theorem

showing that an RL-domain is a finite union of "punctured discs". 

4° The intersection theory formula for Neron’s pairing (see GROSS [Gr~)). - This
gives an expression for the canonical distance which lets one generalize Cantor’s

decomposition theorem for RL-domains to arbitrary curves. One of its consequences

is that finite intersections and unions of RL-domains are again RL-domains. The

intersection formula is mainly used in studying the canonical distance on curves

with bad reduction. A weak version of the theory can be established without it, res-

tricting to compact sets at places where C has bad reduction. We will not discuss

it further here.

In developing the theory, the general technique is to reduce questions about furc-

tions on C to questions on balls around their zeros, by the maximum uodulus prin-

ciple. On the balls, algebraic functions can be expanded in power series, and so

controlled. Compact sets play a key role, because they can be covered with a finite

union of parametrizable balls, and such sets are RL-domains.

In his original theory for P~ , CANTOR used a different approach. He took the ca-
pacities and Gre en’ s functions of RL-donains as basic, rather than those of con-

pact sets. He could do so because his decomposition theorem for RL-domains (proved
using the global coordinate systen on P1 ) allowed him to construct RL-domains in

profusion. On arbitrary curves, at least at the start, one does not know enough

about RL-domains to get anywhere. The key idea is to replace the global existence

problem with a local one, which can be solved using the Jacobian construction prin-

ciple. Using capacity theory for compact sets, one gradually gains more and more

global information, until finally it can be seen that Cantor’s approach would have

succeeded after all. However, the capacities of both compact sets and RL-d0153mains

are important, for it turns out that inner capacity is the correct notion for pro-

ving one half of the Fekete-Szego theorem, and outer capacity for the other.

Definition of the global adelic capacity. - Once one has the local Green’s func-

tions, Cantor’s formalism for the extended global capacity goes through unchanged.

In the previous sections, we have stated local capacity theory f:)r sets in 0(K ),
but we could equally well have done so for sets in C(v) . There are no differences.
For the global theory it is convenient to restrict to that case.

It is useful to introduce a crude adelization of K relative to K . For each

place v of K , fix an embedding of K into and let 0 be the ring of -

integers of K . v Define K to be the restricted direct product of the K rela-
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tive to the ,.., ë , v where the product is taken over the places of K . K embeds na-

turally in K "on the diagonal". We will be dealing with sets of the form

nEe C(K.) in which each E is stable under Gal(v /K ) , so the choices of
v v A v v v

the embeddings will not matter.

Suppose X = ... , xrJ c e(:K) is a finite set of global algebraic points

an e, stable under. Gal(K/K) . For each place v of K , let a set E c 
be given. We assume :

(a) Each E is capacitable, disjoint fron X , and stable under 

(b) All but finitely many E 
v 

are "trivial with respect to X tf in the follow-

. 

ing sense: v is a place such that e has nondegenerate reduction, x1,...,xr

reduce to distinct points v) , and Ev is tho set of points on which

do not reduce to the same point as one of the x.. Equivalently, if , w||v is

the v-adic spherical uetric on P. (K ) y then

Given such a collection, write! = % = "v Ev . are going to define the capa-

city ’y(!, X) of E with respect 

If L/K is a finite extension, there is a natural way to associate an adelic set

1B c to EK . Namely, for each place 11{ of K lying over v of K, f17-

an isomorphism of L with K , and put E = E . The capacity will be defined
so as to be invariant under base extension. Hence, without loss, can suppose that

each of the x, E ’l’ is rational over K.
i

For each point x. , chaose a function g. ( z) rational over K and
1 1

having a simple zero at x.. (It is really only the choice of a global tangent vec-

tor that matters, not the uniformizing parameter.)

for each v, define a "local Green’s I , w.hich will be an r by

r matrix with nonnegative entries off the diagonal, given by
1f/IIIfà. . ,

All but finitely many of the are the zero natrix. Let = [Kv : Q.( ) ] and

N = [K : ~J be the local and global degrees, respectively, where p(v) is the ra-

tional below v .

The "global Green’s uatrix" F = F(E , 3l) will be

where if v = 00 we understand p(v) = e . By the product fornula, 1" is indepen-

dent of the choice of gi (z) ’s . It is again a symmetric r x r real r:atrix with

nonnegative off-diagonal entries. let V(E , 3C) be the value of r as a matrix
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gane, defined by

Here (P is the set of r-element real probability vectors o vectors with iionnega-

tivc entries adding up to 1 . Finally, the global capacity is

The Lost unusual thing in the definition is the value of F as a matrix gane.

First, it should be noted that the formula is forced if pullbacks are to w ork pro-

perly. However, it would be hard to anticipate the generalization from the capacity

with respect to one point, and doing so is one of Cantor’s main achieveLents. Second,
nost definitions in the subject depend upon the equivalence of two extreal proper-

ties, for example the principle "minimizing is the sane as equalizing" for the ma-

gnitude of oscillations of Tchebychey polynomials. V(E ,X ) is a quantity of

that type. If V(E , X)  0 , there is a unique probability vector w such that all

the entries of fw are equal ; and their value in that case is exactly V(lS , 3E) .
Nonetheless, the true meaning of the global capacity remains uysterious.

Functoriality properties of the global capacity. - ~Y(E , X) has nice functoria-

lity properties. From the weights which go into the definition of the Green’s ma-

trix, it is invariant under base change. That is, if L/K is a finite extension,
then Y(~. ~ ~~ _ ~~ . Furthermore, it behaves smoothly under pullbacks.

Suppose F : C --&#x3E; C is a nonconstant rational nap between two curves defined

over K . Let E and X be given and let F have degree m . Then

Lastly, if E = , I 
v Ev and F = " 

v Fv are tii* adelic Sets in K/» ) Whose capa-

cities with respect to 3l are defined, and if for each v , E C F ,then
v v

y(E , 3l) % Y(F , lC) . Monotonicity in the variable X is an open question; some

care is needed even to formulate what it should mean, since Y(E , % ) has only

been defined if almost all of the E are "trivial with respect to X It 
.

v

In the case of P1 , CANTOR proved a "separation inequality". Suppase E and 3l

are such that 3l can be partitioned into two sets X1 and X2 such that for

any ~2 ’ ~ have G(x1’ x2 ; E) = 0 . This Deans
that for every v , X1 and X2 are contained in different "components" of the

coupleuent of E . CANTOR showed that (under a slight extension ?f the definition
v

of capacity above)

It renains open whether this is true for curves of higher genus.

The r~ain theorem. - The following generalization of the Fekete-Szego theorem holds.
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THEOREM. - Suppose C is a smooth, geometrically connected curve over a number

field K .Let X be a finite (nonempty) Galois-stable set of points of e(K) ;
be an adelic set such that each E is closed, capaci-

table and stable under Ga1(1 g"’’K ) , with all but finitely many of the E tri-

vial with respect to X . Then

(A)l~ /(E.~)1 ~ there is a neighborhood which contains

only a finite number of complete Galois orbits of points of C(K) .

(B) If X) &#x3E; 1 , then every neighborhood of E in C(A) contains infi-

nitely many complete Galois orbits of points in c(K) * ’

This is proved by an argument that goes back to FEKETE and and was ela-

borated by ROBINSON and CANTOR during the 1960’s and 1970’s. The goal is to find

a function f(z) in K(c) whose poles are supported on X and whose zeros are

all near!. If  1 , one constructs a function such that f(z) ) v % 1
on E 

v 
for all v, and jf(z)) 

v 
 1 on E 

v 
for archimedean v. Then the

neighborhood where U = iz E e(K ) ; )t(z)) I l) for archimedean

v 1 for nonarchimedean v ), neets the needs of the theoreL because
any algebraic point whose conjugates are contained in V uust be a root of f(z) .
If X) &#x3E; 1 , then U is given, and one constructs a function fez) such

that

The conjugate sets of points on C(K) belonging to U , claimed by the theorem,
are the roots of f(z)~- 1=0 for 1 , 2 , 3 , ...

The capacity ~(E , 3~) and the Green’s matrix F deteruine tlie relative orders

y, 1 of the poles of f(z) at the points in X . When y(E , 3E) &#x3E; 1 (so V(E , 3C) 0),
the orders are proportional to the components of the distinguished probability
vector w mentioned earlier. The proofs in the two cases are sorlewhat different,
but both have a local and a global part. The local part consists of finding, for
each v, a function f v (z) for which (l/deg f) log v 

closely

approximates Z G’{- G(z , x. ; E ) w. outside E . This uses the crucial proper-

ty of Green’s functions and the canonical distance, that they be approxinatable by

algebraic functions. The global part of the proof consists of "patching" the local

functions f v (z) into a single global function f(z) which looks rather like

f v (z) at each v .

In his paper [C], CANTOR also gave other applications of capacity, including a
generalized version of the rationality criterion of Polya-Carlson-Dwork-Bertrandias.
I have not attempted to carry these over on algebraic curves, but I would not

expect any difficulties in doing so.

Heights. - As has been seen, the canonical local distances are connected with

Neron’s local heights. We wish to offer here an interpretation of the Green’s

functions themselves as heights.
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Consider the case C = P~ , with X = por each place v of K , let

EV = D(O , l) = tz e K ; 1} , y the closed unit disc, which we identify as

a subset of P1 using the standard affine coordinates. The Green’s function of

E 
~ 

is given by 
r- - 

Now for a nunber 0 # n e K ,

is none other than the absolute logarithmic height of h .

This suggests that given an algebraic curve and E and X as before, to-

gether with a vector of weights w for the points in X , , we should regard

as a kind of height for a point x E C(K) . Evidently these heights are "absolute"
since they do not depend on the ground field over which we consider C (identify-
ing the heights obtained from E- and , given a finite extension L~~1 ~. Hence
they can be considered as functions on C(K) .

On this view, the Fekete-Szego theorem has the f ol lowing raeaning. If  1,
then the weights wi can be chosen so that there are only a finite number of

points ih with ~ ~(~) ~ ~ ~ for some e &#x3E; 0 . If (E, X) &#x3E; 1 , then for

every choice of weights and every e / 0 , there are infinitely nany points with

~ ~- ~ * This should be compared with the classical fact that the roots of

unity are the points for which h(x) = 0 , for the naive height on P1 .
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