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CAPACITY THEORY ON ALGEBRAIC CURVES AND CANONICAL HEIGHTS

by Robert RUMELY ()

This note outlines a theory of capacity for adelic sets on algebraic curves. It
was motivated by a paper of D. CANTOR [C], where the theory was developed for E}.
Complete proofs of all assertions are given in a manuscript [R], which I hope to

publish in the Springer-Verlag Lecture Notes in Mathematics series.

The capacity is a measure of the size of a set which is defined geometrically
but has arithmetic consequences. (It goes under several names in the literature,
including "Transfinite diameter", "Tchebychev constant", and "Robbins constant",
depending on the context.) The introduction to Cantor's paper contains several
nice applications, which I encourage the reader to see. I have mainly been concern-

ed with generalizations of the following theorem of Fekete and Szegt [F-3].

THEOREii. — Let E be a compact set in C , stable under complex conjugation.

Then,

(o) If the logarithmic capacity y(E) is <1 , there is a neighborhood U of

E which contains only a finite number of complete Galois orbits of algebraic inte-

Zers.

(B) If *(E) > 1 then every neighborhood of E contains infinitely many com-
R ’

plete Galois orbits of algebraic integers.

for a lire

H
segment, 11- of its length ; for two segments [- b, - alula, b], {;;(bz- az)%;

for a regular n-gon inscribed in a circle of radius R ,

Some examples of capacities are : for a circle or disc, its radius R

r'(1 + 1/n)
I'(t = 1/n) I'(1 + 2/n) °

R.

The capacity vY(E) in the theorem should more properly be called the "logarith-
mic capacity of E with respect to the point « ". The general definition of ca-
pacity will be given below. Of equal significance with (E) is the Green's func-
tion G(z , © ; E) . Recall that thkisisanonnegative function, harmonic in C\E,
with value O on E and a logarithmic pole at « , such that G(z, = ;E)- log|z]
is bounded in a neighborhood of <« . The Fekete-Szegt theorem is proved by cons-
tructing monic polynomials in Z[ z] whose normalized logarithm (1/deg P) loglP(z)|
closely appreximates G(z , »; E) . The algebraic integers in the theorem are

the roots of the polynomials.

(W) Robert RUMELY, Department of Mathematics, University of Georgia, ATHENS, GA
30602 (Etats-Unis).
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The condition in the Fekete-3zegd theoreus that the mumbers he algebraic integers
is a restriction on their conjugates at finite primes, just aslying in a neighborhood
of E is a restriction at the archimedean prime. CANTOR generalized the classical
theory in several directionss First, he gave an adelic foruulation, placing all
the primes on'an equal footing. Second, he defined the capacity of an adelic set
with respect to several points, not just one, which gave the theory smooth behavior
under pullbacks by rational functions. (In the classical theory over ¢, if F(z)
is a monic polynomial of degree n , then y(F_l(E)) = y(E)l/n .) Thirdly, he for-
mulated versions of the theory with rationality conditions : for example, in the
IPekete-Szegd theorem, if E C R , then the numbers produced in part (B) could be
taken to be totally real. (This special case was originally proved by R. ROBINSON,)
There were some errors in the proofs of the rationality, but no doubt the results
are true. Cantor's definition of the capacity of a set with respect to several
points was quite novel, involving the value as a matrix game of a certain symme-

tric matrix constructed from Green's functions.

The functoriality properties of Cantor's capacitv suggested that it should be
possible to extend the theory to all curves. In doing so, I have given a different
approach to the original results, and found some interesting commections with

Néron's canonical heights.

Notation. ~ Let C be a smooth, geometrically connected nrojective curve defined
over a number field K . If v is a place of K , we write Kv for the completion
of K at v . K will be the algehraic closure of X , Kv the algebraic closure
of K , and ﬁv the coupletion of the algebraic closure of K_ . Gal(K/K) will
be the usual Galois group ; Gal(ﬁv/Kv) the group of continuous automorphisms of
KV/KV « If v 1is nonarchimedean, and lies over a rational prime p , the absolute
value on Kv associated to v will be norualized so that Iplv = 1/p s if v is
archiniedean, then \x + yilv = (x2 + 3{2)“‘;g . Thus, we are using the absolute norma-
lization for our absolute values. These absolute values extend in a unique way to
absolute values on the Kv , which we continue to denote by lx[v . For any field
F, C(F) will mean the set of points of C rational over F , and F(C) the
field of algebraic functions on C rational over F .

Classical theory. - In the classical theory, if E C C is a cowpact set, then

its capacity (with respect to the point « ) is given by the equivalent definitions

l/n(n-l)

v(E) = 1im max M |z, - z.] (transfinite diameter)
n® {7, ,e..,2 JB iFj + Y
1’ ’n
= lim nin max | P(z)] (Tchebychev constant)
n-e P(z)eg[z] z€R
= e—V(E) , where (logarithmic capacity)
: P
V(E) = inf g jﬁ - 1og|z1 - z2| dv(zl) dv(zz)
prob. meas. v on E (equilibrium potential)

]

lin @(z , = ; BE) - log|z|) (Robbins constant) .
o
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Lere a probability neasure is a »ositive icasure of total nass 1 , and G(z,w;E)
is the Green's function of the unbounded corponent of the conplenent of E . If
y(E) # 0 , there is a unique probability measuvre ¢ nininizing the integral defining

V(E) , and Green's function is given by
¢z, =3 BE) =v(@) + IE log|z - w| dulw) .
Throughout the following, we will iuplicitly assuwme that v(B) # 0 . (This is the

case, for exauple, if E contains a one-dirensional continuun.) Tor non-corpact

sets F , the capacity and Green's function are defined by linits :

v(F) = sup (=)
coupact ECF
G(z y ® 3 F) = inf G(z y @3 E) .

conpact BT

An inportant class of scts whose capacities are lmown are PL-domains (Polvnomial
Lermiscate donains). If P(z) € ¢[z] is a nonic polynomial of degree n , then the
set E={ze€ C IP(z)|.$ R} has capacity v(B) = Rl/n . This is because the
Green's function is 1/n.log|P(z)| for z € E, and V(E) can be read off as the
residue of the Green's function at <« ., In particular, the capacity of a circle is

its radius.

The equality of the various definitions of Y(E) was proved by FEKETE and SZEGa.
Bach definition of Y(E) is useful in a different context. Its role as the Tcheby-
chev constant gives functoriality under pullbacks. Its definition in terms of the
neasure W allows the construction of polyionials whose logarithn approxicates the
Green's function. Its expression in terus of V(E) allows it to be computed for nany

sets, and was the definition which CANTOR generalized in the adelic theory.

The canonical distance. — In all definitions of capacity in the classical case, the

crucial ingredient is the presence of the distance function |x - y] which has a
pole at « , The connection between the geouetric and arithietic sides of the theory
cones frow the fact that the distance function can be used to decoupose the absolute

value of a polynonial in termns of its roots.

In constructiné‘a theory of capacity on curves, the starting point is to find si-
nilar functions which can be used to decompose the v-absolute value of algebraic
functions on C(ﬁv) for every place v and every curve C . I call such functions
"canonical distance functions", although the tern should be understood guardedly
since they do not in general satisfy the triangle inequality, but only a weak ver-
sion of it. Yor any place v , and any point (¢ € C(ﬁv) , there is a caronical dis-
tance [zl ’ ZZ]Q which is unique up to scaling by a constant, and satisfies the

following properties :

19 (Positivity) TFor all zZ, s %, € CXKV) \ {¢j , we have 0 £ [Zl , Z2]g < oo

with {zl ’ ZZ]Q =0 if, and only if, 1z, =1z, .
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20 (Normalization at () Let g(z)e KV(C) have a simple zero at ¢ . Then
there is a constant Cy > 0 such that for any z, € C(ﬁv) \ {¢,

lim [zl y ZZ]Q |g(zl)lv = cg .
z,C
1

o] Svrire —_
3 (DyﬁmetrY) [Zl ’ Z2]g - [Z2 ’ Z]. g d

4° (Continuity) [zl , 22]Q is continuous as a function of two variables. If v
is archiredean, log[zl ’ z2]f is harvonic in each variable separately ; if v is

5

nonarchiriedean, 1og[zl ’ szg is locally constant in each variable, provided

z, # Z,

50 (Decomposition of functions) If £(z) e ﬁv(C) has zeros and poles (with mmul-

tiplicity) at a eee B and QA y see gn respectively, then there is a

1 ?

constant ¢, so that for all z e G(ﬁv) where f(z) is defined,

£
£(a)l, = e T, 2, ai]Qi y

6° (Galois invariance) If € is defined over K, , and (€ C(Kv) , then for
all o e Gal(R V/Kv) ,

[Ozl , 022]g = [Zl y Z2]g .

7° {Weak triangle inequality) There is a constant I depending only on C and
< M. . ). i ine-
v such that [zl ’ z3]€ S H max([zl , Z2]s B [22 ’ ZBJQ) If v 4is nonarchine

dean and C has nondegenerate reduction at v , then M =1 ,

Properties 2° , 4° and a weak version of 5° characterigze [z1 y . One can

2,
show that for any 2z, € C(ﬁv) there is a function f(z) € ﬁV(C) whose only poles

2
are at ( and whose zeros all lie in a prespecified ball about =z, . Furthermore,

2
after fixing a unifornizing paraneter g(z) at ( as in property 2° call such an

f(z) norralized if lim ]f(z) g(z)nlv =1, wherec n = deg(f) « Then

z—C

[zl y Z2]Q = lin lf(zl)li/n .
nornalized f
zeros of f — Zy
The existence of the 1linit is a consequence of a naxinun nodulus principle for

algebraic functions on curves. The syunetry cones from Weil reciprocity.

Property 5° suggests a connection with Néron's canonical local height pairing ;
and in fact Néron's pairing and the canonical distance can be defined in terms of
each other. Recall that Néron's pairing is a real-valued, W®ilinear function (D,D'%
on divisors of degree O in (Xﬁv) having coprine support. It has the property
that if D' = div(f) for sowe function f(z) , then, writing log, x for the lo-
garithn to the base p(v) , where p(v) is the rational prime lying below v

(taking p(v) =¢ if v=o ), we have

(D, div(f))v = - logv|f(D)|v .
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It is continuous in both variabled, and thus can be regarded as extending func-
tional evaluation to nonprincipal divisors. (It should be noted that there is sone
variation in the literature concerning the nori:alization of Néron's pairing. Here
we are requiring it to approach + ® on the diagonal, and to take rational values
if v is nonarchinedean). The following clean foruulation for the relation between
the canonical distance and Néron's pairing was shown to ne by B. GRO33 : There is
a constant C , depending on the choice of uniformizing paraieter g(z) at C,
such that

lOg[Zl ’ Z2]€+ C = linw—'(_‘,('\(zl) - (w) ’ (ZZ) - ((:))V + J-Ogvlg(z)Iv) .

This expression allows the finer properties of Néron's pairing, given by inter-

section theory, to be transferred to the canonical distance.

The facts and fornulas above arose frou a study of the classical theory whose
goal was first to put the point « on an equal footing with the points of E}(Q),
and then to find analogues for all v and all C . In a nuuber of cases special
foruulas turned up which suggested considering [zl ’ Z2]Q as a distance. Since
these forrulas also give more insight into the nature of the canonical distance,

it seeus worth presenting them. In all cases, we obtain an expression of the form

((Zl ’ 22))v

L Rl o,

where «zl ’ Z2»v is continuous, nonnegative, and bouinded, with a sinple zero

along the diagonal.

Special fornulas for the canonical distance. - The fornulas are wore or less

explicit, depending on the genus of C .

Genus O : The projective line.

-~ Archinedean case. On E}(Q) one has the spherical chordal wetric, given for

Z, ., Z

L € C by

2

“Z]_ ’ Z2“v = (1+ lzllz)% (1 + |Z2|2ﬁ'

iZy » m“V = - ok °
(1 + 2,97

H

Note that 2y ZZHV is invariant when both z, and z, are inverted, and

is uniforuly bounded above by 1 . When the plane is identified with a sphere of
diameter 1 by stereographic projection, it is the length of the chord from z,
to Zy e For notational compatibility with curves of higher genus, write

(2, » 2ol = zy ZZ”V . Then
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1 ’ ZQ'V

Lz o 2l = f(zl, L 7y, o)

Observe that [Zl , z2]co = |zl - z2| ’

while [zl , z2]€ =|f(z1)\ - f(z2)| for
C# w., where f(z) = (1 + |g|2)%/(z - () . We euphasize that [z

1 ZZ]Q is only
deteriiined up to scaling by a constant c(g) for each (.

— Nonarchinedean case. For finite prines the appropriate analogue of the

N

chordal netric is the p—-adic spherical distance, given for Zy 9 2%, € Kv by

|2, - 2l

“Zl 4 Z2“v ~ max(1 , Tzllv) nax(l , |z

ZIV)

, L 1
nz1" llv nax(1l , |z1|v)

and again putting %zl y Zz»v , we have

llzl ’ ZQHV

12))
1
Loy » 2] z(zl,m oo O

Frou these expressions properties 1°-7° follow casily.

All curves, good redﬁction. - If G/K is any curve, then for v of K where

¢ has nondegenerate reduction with respect to the given embedding in E? , there

is an analogue of the forwuula above, with «zl ,.zz))_V given by the v-adic sphe-

rical netric on EP . This is defined as follows : fix a systen of affine coordi-
1l 74

nates on B_(Kv) . Then, for z, , 2,

in which both z; and z, have integral coordinates,

€ g?(ﬁv) , if there is some affine patch

- 2

lzy + 2,ll, = nax 2ilv

3 12

(using the coordinates in that patch). Otherwise 1 Zy s 2 d =1 . 1t is easy to

check that “Zl ’ zzﬂv is invariant under a change of coordlnaues in PGL(n+1, 0 )y

where @V is the ring of integers in ﬁv .

Genus 1 : Elliptic curves.

- Archinedean case. We use the fact that an elliptic curve over ( is iso-

norphic to a cor:plex torus g/[wl , W2] . NﬁRON has given an explicit foruula
for the local height pairing in terms of the Weierstrass o-function, and by no-

difying things slightly we get the canonical distance. Let

ow)=u T (- u/w)u/u*"‘é'(u/w)2

0FweL
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be the o-function for the lattice L = [w w2] . Write ﬂl for the period of

l ’

Q(u) = d/du(log O(u)) under wl , and ﬂz for the period of g(u) under w2 y SO

that by the Legendre relation, ﬂ2 wl - ﬂl w, = 21i « Given u €C , we can uniquely
OLL - 3 w N . . o - — r:\

deconpose u Wl u, + 5, with w, o, u, € R . Define T(u) lpouy + ﬂz u,

and let

K(w) = a2102) gy

Then k(u + wl) = - ¢"MUz k(u) , and k(u + W2) = - gTu, k(u) , so that

|k(u)| is pertodic (cf LANG [L]). Let u, and u, correspond to z, and z, under
the isouorphisu Q/[wl , wzjzw ®C) . Defining (@l , Z2»v = |gﬂul - u2)|, we have

‘ {(Zl ,WZZ»V :
Loy v ) =TT, o,

- Nonarchiuedean case, bad reduction. The canonical distance is invariant under

base extension, so we can assuue in this case that € is a Tate curve. Then there
is some q € ﬁj with |q|v <1 such that e(ﬁv) is isouorphic to K:/(q) . As
MANIN [1] has pointed out, one can express Néron's local height pairing in terns of
p-adic theta-functions ; similarly, we get the canonical distance. The basic theta—

function is

8(u) = rL;o (1 - qn/u) Il<0 (1-q™u) for ue ﬁi .

Put Vq(u) = ordv(u)/ordv(q) , and define the '"mollifier"
s(u) = |u] #(vaw)?+ve(u))
v b4

Then gﬂu) = 6(u).|6(u)|v is a real-valued function such that for all u ,
k(qu) = gfu—l) = k(u) , as follows fron the functional equations of the theta-func—
tion. It is well known that algebraic functions on a Tate curve can be expressed in
terns of 6(u) , and a short calculation shows that if we put ((Zl ’ ZQ)V = gﬁuluzl)g

then we have the fauiliar foruula

/(Zl ’ ZZ))V
Loy %) "o, o

Gemus g =2 .

- Archinedean case. Although the formulas are not as explicit as in the previous

cases, their theoretical significance is clearer. It turns out thet (:zl R z2»v

is a multiple of the Arakelov-Green's function G(zl ’ 22) o ARAKELOV introduced

his functions in order to extend Héron's pairing fron divisors of degree 0 to di-
visors of arbitrary degree in the archiriedean case, in a way nodeled on intersec—
tion theory (see ARAKELOV [Ar]). Such an extension is not unique ; an Arakelov-Green's
function is deteriined by giving a voluue form, or rore generally a ueasure du ’

normalized so that G(Q) has total mass 1 . Then, there is a unique nonnegative
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real-valued function G(z , w) on @(C) such that

(a) 6(z, w) 4is snooth and positive off the diagonal, with a sinple zero along

the diagonal
(b) (1/4mi)@/3z)(3/02) 1og G(z , w) dzmdz = du - 6 for every w ;

(c) jé Jé@D log G(z ’ w) du(z) =0 for each w .

Condition (¢) is sinply a convenient normalization ; the crucial properties are
(a) and (b), which ensure that 1og(G(z ’ wl)/G(z ’ w2)) is harnonic for 1z # LIEAY
with logarithuic singularities of opposite signs at those points. Green's identi-
ties show that G(z , W) is syumetric. For any choice of an Arakclov-Green's func-
tion, we can vut Qzl y ZZ»V = G(z1 y z2) and get a Tauily of distance functions
[zl ’ ZZJQ by the usual formula. For curves of genus O and 1 above, we have chosen
«zl y Z2»v to correspond to the constant positive curvature and flat retrics, res-

pectively.

It should be noted that GRO3S [GreZ)] has given a foruula for the Arakelov-Green's
function of a curve of genus = 2 with the constant negative curvature netric. His
foruula uses the unifornization of the curve by the upper half-plane, and expresses
G(z ’ W) as the residue at s = 1 of a Poincaré series forned fror: Legendre func-

tions of the second kind.

~ Nonarchinedean case. Here the construction of functions ((zl s zg)v which

deconpose the canonical distance depends on intersection theory. If LW/Kv is a

finite extension, put Cw = CixK spec(Lw) « Let CW be the uininal regular model
of CW., and R(Cw) the dual ngph to the special fibre of CW . After a finite
extension of the base, C has seui-stable reduction, and hence the graphs R(CW)
all have the sane topology for large LW « One can forn a "reduction graph" R((3 ,
which is essentially the direct 1iwzit of the R(CW) together with a netric on the
edges, in such a way that the couponents of the special fihres of the CW corres-—

pond to a dense set of points on R(CG) .
The final result is as follows. There is a deconposition
- 108#[X ’ YJQ = lv(x ’ Y)Q + jv(x ’ Y)g ’
in which iv(x , y) and jv(x , y)g take rational values. Furthermore,
iax, Pp=2ix, y) - iz, -1y, 0
and
jv(x ’ y)c = jv(x ’ Y) - jv(x ’ g) - jV(y ’ Q) .

Here iv(x ’ y) is a purely "local' tern : it is O wunless both x and ¥y
reduce to the saue nonsingular point o1 the special fibre of sone CW , and then
it is iv(x , ¥) = - logvlgy(x)lv for an appronriate local unifornizer gy(x) at

¥y « On the other hand, jv(x ’ Y) is not unique, but is specified by giving a
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msasure of total mass 1 on R(C) . As a function of x and y 5 it depends only
on the special fibre to which x and y reduce. Thus, it and 3 (x ’ y)g can be
regarded as functions on R(€G) . For any two points ¥ , C of R(C, , (x , y)g
is a piecewise linear function of X € R(C) taking its waxinun at y and its mi-

ninun at T o It obeys a mean-value property like that of harmonic functions.

A remark on the triangle inequality. - The constant M in the weak triangle ine-

quality (property 7° of the canonical dlstance) is deflnltely sonetines greater
than 1. For a Tate curve isomorphic to Kv/(q) , M= | | 1/16

arbitrarily large. In the Archinedean case, nunerical conputations for elliptic

e« Thus, M can be

curves Q/[T » 1] yield lower bounds for an M such that
[51 ’ ZB]QSM([Z]- ’ Zz]g"" [22 ? ZBJQ) .

Sone values are in the fouilowing table.

T 2

.5 + 866i 1000

0 + 1.01 1,007

- o2 + 2.11i 1,167
3 + 3.0i 1.486
5 + 3.51 1.725

Construction of local Green's functions. - Given the canonical distance, for each

place v and set Fv Ci(iﬁa) , one can define the capacity and construct Green's

functions following the classical pattern.

For a compact set E_, and a point (e C(ﬁv) not in E_, let

1]

VQ(EV) inf IE IE logv[z1 , ZZJQ dv(zl) dv(zz)

prob. neas. Vv on E
-V _(B
)=e g(v).

Q
If Vv (Ev) # © , there is a unique neasure be s the "equilibrium distribution",

for which the inf is achieved. Define the Green's Tunction by

ez, C3 Ev) = VQ(EV) +f log [z , w]g dp.g(w) .

We understand this to nean <« if VQ(EV) =®,and z, { are not in E_
Define G(z , C 3 E ) =0 if either z or ( belongs to E . (Note that V (E-)
and vy (E ) depend on the normalization chosen for the canonlcal distance [z , w]

but G?z , T3 Ev) and be do mot.) It can be shown that if E < E_, , then for

9

all z , { the inequality G(z , ¢ ; Evl) >06(z, C; E_,) holds. For an arbitrary

’

set Fv , put

¢(z, C; Fv) = inf Mz, C3 Ev) .
XE
Ev = conpact
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At this point there is a conplication, similar to the one in defining a measurahle
set in Lebesgue's theory. Above we have defined the capacity YQ(EV) for a cor.pact
set. Another class of sets for which the capacity can be defined naturally are
PLQ-donains : sets U = {z e C(ﬁv) : If(z)lv < RV} where f(z) is an algebraic
function on C whose only poles are at ( , and Rv belongs to the value group
of ﬁ; « If £(z) has degree n , and is norualized so limzﬁglf(z)|v/[z , w]% =1,
then it is natural to require that v (Uv) = Ri o, Furthervore, for z & UV , one
wants G(z , C; Uv) = (1/n) logv(lf(z)lv/Rv) « The sets for which the formulas for
coupact sets and PLg-domains are coppatible will be called capacitable. For an ar-—

bitrary set Fv y let the "inner" and "outer" capacities of Fv be
4(F) = sup ¥ ()

BTy
Ev =conpact

Y Q( F) = inf v g(Uv) .

U_ =PL ~downain
v ¢

F_ is capacitable if for all ( in the couplement of F_, y Q(Fv) = '«'(‘;(FV) .
(In a ranuscript of this paper, I called such sets adnissible.) An RL-domain (Ra-
tional Leuniscate douain) is a set of the foru f{ze G(ﬁv) H |f(z)|v < Rv} for
sone f(z) € ﬁvQB) o Finite unions of coupact sets and RL-domains are capacitable.
An exanmple of a non-capacitable set is a set containing one point in infinitely ma-
ny residue classes (mod v) of C(ﬁv) . If F_ is capacitable,

¢(z, ¢; F) = sup G(z , ¢3U) «
Uy Py

U =PL ~-donain
v

¢

However, the collection of capacitable sets is not closed under intersection.
The Green's function of Fv has the following properties :

10 (Positivity) G(zl ) 2, 3 Fv) 20 ; and if 2z
G(zl ’ ZZ;FV) =0 .

or 1z, € Fv , then

1 2

o

20 (Symetry) G(zl ) 2y 3 Fv) = G(z2 2y Fv) .

30 (Transitivity) If F_ is capacitable, and if G(z1 y Z

G(z2 ) 2y 3 Fv) are both >0 , then G(z1 ) 233 Fv) >0 .

4o (Galois statility) For all o € Gal(R /K ),

5 3 Fv) and

¢(oz oz, 3 OFV) = G(z1 y Z

1? 2 Fv) ¢

o 3
50 (Approximability) For any RL-domain Uv contained in the conplement of Fv’

any ¢ >0, and any ( , there is an algebraic function f(z) € ﬁv(C) whose only

poles are at ( , such that for all =z € Uv , z# (.,

l6(z , ¢35 F) - (1/n) log |£(a)| | <¢ (n=degt) .
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6° (Continuity) G(z
for z, # z,
each variable separately.

10 %5 Fv) is continuous as a function of two variables

in the conpleuent of Fv « If v is archinedean, it is harnonic in

The ideas behind the proofs. — In the archimedean case, the developuent of capa-

city theory on Riemann surfaces is done by following the proofs in TSUJI's book [Ts]
which are all coordinate-free. Once one has the canonical distance, there is no-
thing new. The nain fact used is the naxinuu nodulus -Hrinciple for harmonic func-

tions.

In the nonarchiunedean case, the goals of the theory are the same, but the methods
are souewhat different., The »rimary difficulty is relating local behavior of func-
tions to global behavior, and this is done by using the rigidity of algebraic func-

tions. There are four main tools, two local and two global.

1° Local parauetrizability of C(ﬁv)- by power series. - Supnose C is embedded

in P, and let lzy » ZZ“V be the v-adic distance on C(ﬁv) induced from
Eé(ﬁv) o« There is a & > 0 such that for any point Zy € CXﬁV) , the ball

B(zg » 8) =z € CR ) 5 ||z , 2yl <8}

can be paravetrized by convergent power series. This is well known, and is proved
by using Hensel's lemua to refine approxinate paranetrizations. The uniformity
contes by using a lemua of Weil from the theory of heights to show that the wv-adic

singularness of CXKV) is bounded.

2° The "Jacobian construction principle" for functions. — Let a # { be two ar-

bitrary points of C(Kv) , and let U be a neighborhood of a . Then, there is a
function f(z) € KV(C) , all of whose zeros lie in Uv and whose only poles are at
{ « Thig circunvents the difficulty that for genus g =2 1 , not every divisor is

principal. It is proved by using the fact that the Abel map
. g - A
c(k )® —> g(Kv)

is open for the wv-adic topology except on a set of codinension 1 . (This is well
known for the Zariski topology, and it follows for the v-topology by the implicit
function theoreu for power series.) One takes the image of the divisor (a) - (g)
in the Jacobian. By choosing n appropriately, one can arrange that n[(a) - (g)]
be arbitrarily near the origin of j(ﬁv) . Then wiggling a few of the copies of (a)

within Uv gives a principal divisor,

39 The maxinun wmodulus principle. - Actually two maxinoun uodulus principles are

used : a local one for power series, which is well known ; and a global one for al-
gebraic functions over RL-domains. It is as follows. Af g(z) € KV(ED is non-

constant, put

D= {ze€ C(ﬁv) ; |g(z)|v <1}
o= aecl) 1 lea)l, = 1) .
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Then, if f(z) € ﬁv(C) has no poles in D, If(z)|v achieves its waxinmun value

for ze D at a point of 0D .

This is proved by considering the equation relating f(z) and g(z) (which
exists because € has dinension 1 ), exauining its Mewton polygon for a fixed =z ,
and reducing to the case of 2} . On 2} it is due to CATOR, who used the facto-
rization of ]f(z)lv in terms of its zeros and poles, and a decouposition theoren

showing that an RL-douain is a finite union of "punctured discs".

4% The intersection theory fornula for Néron's pairing (see GROSS [Gr]). - This

gives an expression for the canonical distance which lets one generalize Cantor's
decaiposition theoren for RL-dorains to arbitrary curves. One of its consequences
is that finite intersections and unions of RL-donains are again RL-domains. The
intersection foruula is mainly used in studying the canonical distance on curves
with bad reduction. A weak version of the theory can be established without it, res-
tricting to compact sets at places where C has bad reduction. We will not discuss

it further here.

In developing the theory, the general technique is to reduce questions about func-
tions on C to questions on balls around their zeros, by the naxinun modulus prin-
ciple. On the balls, algebraic functions can be expanded in power series, and So
controlled. Coupact sets play a key role, because they can be covered with a finite

union of parauetrizable balls, and such sets are RL-donains.

In his original theory for 2} , CANTOR used a different approach. He took the ca-
pacities and Green's functions of RL-dorains as basic, rather than those of con-
pact sets. He could do so because his deconposition theoren for RL-donains (proved
using the global coordina;e syster on E} ) allowed him to construct RL-douains in
profusion. On arbitrary curves, at least at the start, one does not know enough
about RL-donains to get anywhere. The key idea is to replace the global existence
problenr with a local one, which can be solved using the Jacobian construction prin-
ciple. Using capacity theory for coupact sets, nne sradually gains pore and nore
global inforunation, until finally it can be seen that Cantor's aproach would have
succceded after all. However, the capacities of both counpact sets and RL-démains
are iLportant, for it turns out that inner capacitv is the correct notion for pro-

ving one half of the Fekete-3zego theoren, and outer capacity for the other.

Definitinn of the global adelic capacity. - Once one has the local Green's func-

tions, Cantor's formalisn for the extended global capacity goes through unchanged.

In the previous sections, we have stated local capacity theory for sets in (iﬁvL
but we could equally well have done so for sets in (Xﬁv) . There arec no differences.

For the global theory it is convenient to restrict to that case,

It is useful to introduce a crude adelization of K relative to KX . For each
place v of K , fix an eubedding of K into ﬁv , and let 6v be the ring of

integers of Ev . Define K to be the restricted direct product of the ﬁv rela~

A
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tive to the év , where the product is taken over the places of K . K embeds na-
turally in EA "on the diagonal". We will be dealing with sets of the form

g [ 7 3 whi 3 ': hd
ﬂv Dv C(KA) in which each Ev is stable under Gal(Yv/Kv) , 80 the choices of
the ewbeddings will not ratter.

Suppose ¥ = {xl y see xr} CZG(K) is a finite set of ~lobal algebraic points
on €, stable under. Gal(K/K) . For each place v of K, let a set EV'C:C(iv)

be given. We assune ¢
(a) Bach E, is capacitable, disjoint fron % , and stable under Gal(ﬁv/Kv) ;

(b) 411 but finitely many B are "trivial with respect to %" in the follow-
"ing sense : Vv is a place such that C CLEF has nondegenerate reduction, X X,
reduce to distinct points (rnod v) , and E, is the set of points on C(ﬁv) which
do not reduce to the same point as one of the x, . Equivalently, if |j=» , wy, is

the v-—adic spherical uetric on EP(KV) , then
~ T ~ '
= H < .
8= 6 ) \U_ lzec®) s 2z, xfl, <1

Given such a collection, write E = B =]TV Ev « We are going to define the capa-

city v(E , ¥) of E with respect to %,

If L/K is a finite extension, there is a natural way to associate an adelic set
EL(: CKiA) to EK . Namely, for each place w of K 1lying over v of K , fir
an isonorphisn of ﬁw with KV , and put Ew = Ev . The capacity will be defined
S0 as to be invariant under base extension. Hence, without loss, we can suppose that

eagh of the %, € ¥ is rational over K .

For each point X5 choose a function gi(z) on C, rational over K and
having a sinple zero at X . (It is reallv only the choice of a global tangent veo-

tor that uatters, not the uniformizing paraueter.)

Wow, for each v , define a "local Green's uatrix" Fv , which will be an r by

r syumetric matrix with nonnegative entries off the diagonal, given by
(7}(xi
rvi;]:“
, — L e T . .=o
v (Ev) = 1lin (z , X Ev) + 1ogv|gi(z)|v if i=3.

—X.
i 2y

,xj;Ev) if i #

A1 but finitely nany of the lv are the zero natrix. Let ﬁv = [Kv : Qp(v)] and
N =[K: Q] be the local and global degrees, respectively, where p(v) is the ra-
tional prime below V .

The "global Green's natrix" I = I(E , ¥) will be

I = 2% (NV/N) L log(p(v))

where if v = ® we understand p(v) = e . By the product formula, I is indepen-
dent of the choice of gi(z)‘s . It is again a synnetric r x r real rcatrix with

nonnegative off-diagonal entries. Te let V(E_, %) be the value of | as a nmatrix
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gane, defined by

V(E_, %) = nax nin tx 'y .

xeP yer

Here ® is the set of r-eleuent real probability vectors : vectors with unonnega-

tive entries adding up to 1 . Finally, the global canacity is

Y(E ’ %) = e-V(E"m) .

The rost unusual thing in the definition is the value of 1 as a natrix garne.
First, it should be noted that the foriula is Torced if pullbacks are to work pre-
perly. However, it would be hard to anticipate the generalization from the capacity
with respect to one point, and doing so is one of Cantor's nain achieverents. Second,
nost definitions in the subject depend upon the equivalence of two extrerwal proper-
ties, for exanple the vrinciple "ninimizing is the sane as equalizing" for the ne-
gnitude of oscillations of Tchebychev polynouials. V(E_,% ) is a quantity of
that type. If V(E , %) <0 , therc is a unique probability vector w such that all
the entries of Iw are equal ; and their value in that case is exactly V(E_, x) .

Nonetheless, the true meaning of the global capacity renains nysterious.

Functoriality properties of the global capacity. - Y(E_, %) has nice functoria-

lity properties. From the weights which go into the definition »f the Green's na-
trix, it is invariant under base change. That is, if L/K is a finite extension,
then Y(EL , %) = Y(EK , ¥) . Furtheruore, it behaves sioothly under pullbacks.
Suppose P : 61 —_— @2 is a nonconstant rational nap between two curves defined

over K . Let E and ¥ be given on 62 , and let F have degree = . Then

(), Fl) = v(E, 1)YE .

Lastly, if E—=]Tv Ev and F = ﬂv Fv are two adelic sets in (EA) whose capa-
cities with respect to ¥ are defined, and if for each v , EV_C Fv , then
y(g’, %) S-Y(E,, %) . Monotonicity in the variable ¥ is an open question ; sone
care is needed even to formulate what it should nean, since +v(E , %) has only

been defined if almost all of the Ev are "trivial with respect to X " .

In the case of 2} , CANTOR proved a "separation inequality". Suppose E and X
are such that ¥ can be partitioned into two sets $j- and $2 such that for

every v , and any x, € % X, € f£2 , we have G(x1 y X Ev) =0 . This neans

1 %2 2}
that for every v , ml and x2 are contained in different "corponents" of the
conplenent of Ev . CANTOR showed that (under a slight extension of the definition
of capacity above)

v(E, %) (B, )21,

It renains open whether this is true for curves of higher genus.

The nain theorem. — The following generalization of the Tekete-Szegs theorer. holds.
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THEOREM. - Suppose C is a smooth, geonmetrically connected curve over a number

field K . Let % be a finite (nonempty) Galois-stable set of points of C(X) ;

4

et E = ﬂv Ev CZC(KA) be an adelic set such that each Ev is closed, capaci-
table and stable under Gal(K V/Kv) , with all but finitely many of the B, tri-

-

vial with respect to % . Then

(A) If Y(E_, %) <1 » there is a neighborhood of E in C(ﬁA) which contains

only a finite number of complete Galois orbits of points of C(K) .

(B) If (B, %) > 1, then every neighborhood of E in C(KA) contains infi-

nitely wany complete Galois orbits of moints in G(K) .

This is proved by an argument that goes back to FEKETE and 37EGO , and was ela-
borated by ROBINSON and CANTOR during the 1960's and 1970's. The goal is to find
a function f(z) in K(C) whose poles are supnorted on ¥ and whose zeros are
all near E . If (B , £) <1, one constructs a fuuctinn such that ]f(z)lv.s 1
on E_ for all v, and If(z)lv <1 on E_ for archimedean v . Then the
neighborhood U = ﬂv U, , where U = {z € C(Kv) : |f(z)|v <1} for archimedean
v (resp. &1 for nonarchinedean v ), neets the needs of the theorer because
any algebraic point whose conjugates are contained in U wuust be a root of f(z).
If (B, ¥) > 1, then U is given, and one constructs a function f£(z) such
that

{z e c(KV) ; |f(z)|va 1} ©E_ for all v .

The conjugate sets of points on G(K) belonging to U , claimed by the theorem,
are the roots of f(z)m -1=0 for n=1,2,3, ...

The capacity ¢(E , %) and the Green's matrix I° deteruine the relative orders
y; of the poles of £f(z) at the points in % . When v(E , %) > 1 (s0o V(E, %) <0),
the orders are proportional to the coniponents of the distinguished probabiliity
vector w muentioned earlier. The proofs in the two cases are sonewhat different,
but both have a local and a global part. The local part consists of finding, for
each v , a function fv(z) € ﬁv(CD for which (l/deg f) 1ogvif(z)|v closely
approxinates };@E% G(z y Xy 5 Ev) WS outside Ev . This uses the crucial proper-
ty of Green's functions and the canonical distance, that they be approxinatable by
algebraic functions. The global part of the proof consists of "patching'" the local
functions fv(z) into a single global function f(z) which looks rather like

fv(z) at each v .

In his paper [C], CANTOR also gave other applications of capacity, including a
generalized version of the rationality criterion of Polya-Carlson-Dwork-Bertrandias.
I have not attenpted to carry these over on algebraic curves, but I would not

eipect any difficulties in doing so.

Heights. - As has been seen, the canonical local distances are connected with
Néron's local heights. We wish to offer here an interpretation of the Green's

functions thewselves as heights.
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Consider the case C = 2} , with % = {®} , For each place v of K, let
E, = (0, 1) ={z¢€ Ev ; lzlv <1} , the closed unit disc, which we identify as
a subset of E} using the standard affine coordinates. The Green's function of
EV is given by
0 if 2z €E
v

6(z, =, E )=
v . -
1ogvlz|v if ze/ EV

= nax(0 , logvlzlv)

Now for a number O # # € K ,

h(n) =2 » (N./N) nax(0 , log|n| ) = Zv (w /n) ¢(x , =5 B) log p(v)

is none other than the absolute logarithmic height of % .

This suggests that given an algebraic curve C/K and E and % as before, to-

gether with a vector of weights w for the points in ¥ , we should regard
by ol") = inex w2 (W /) e(n, x5 E ) log p(v)]

as a kind of height for a point #n e C(K) . Evidently these heights are "absolute"
since they do not depend on the ground field over which we consider C (identify-
ing the heights obtained from EL and EK , given a finite extension L/K ). Hence

they can be considered as functions on C(K) .

On this view, the Fekete-Szegd theorei. has the following neaning. If Y(E,ﬁQ <1,
then the weights vy can be chosen so that there are oniy a finite nunber of
points ih &(K) with hEJ%(%) <e¢, for some € >0 . If (E, ¥) > 1, then for
every chnice of weights and every ¢ -~ 0 , there are infinitely many points with

%(%) < ¢ o This should be compared with the classical fact that the roots of

unlty are the points for which h(%) , for the naive height on P .
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