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ON THE TATE CONSTANT

by Bernard DWORK

Groupe d’etude d’Analyse ultramétrique
(Y. G. CHRISTOL, P. ROBBA)
lie année, 1983/84, n° 11, 14 p. 16 janvier 1984

Chapter I
1. Introduction. - Our work on the relation between the congruence zeta function

and p-adic analysis began in February 1958 with the suggestion of J. TATE that his

constant C (described below) may be constructed by p-adic analytic methods. (For an

alternate description of C , see [Dw 5J, Introduction (0.1 ) ).

Let k be a field of characteristic zero complete with respect to a discrete va-

luation, with valuation ring 0 and residue class field k = !~/~ . Let A be an

elliptic curve defined over k by an equation

(1)

where the a. 
~

Letting x = ty , find

and hence there exists a unique solution in k((t)) for y with a pole’of order 3

at t = 0 . This solution is of the form 
.

(2)

and the coefficients Bi lie in 0 . Clearly

(3)

Let

(4)

a differential of the first kind on A . In terms of the uniformizing parameter

t = x/y at infinity, we have after integration

(5)

where the D. lie in 9 *

2. THEOREM.

Part 1.- If the reduced curve A defined over k is non-singular and has

3asse invariant not zero, then there exists a unit C in the maximal unramified ex-

tension K of k such that expCu(~K[[tD) has, in fact, integral coefficients

(L"BO) Bernard Fine Hall, Washington Road, PRINCETON, NJ 08544 (Etats-Unis).
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~ x *

Part is finite., i. e. k is a p-adic field, then the unit root of
the zeta function of the reduced curve A is C ** y where a is the Frobenius

automorphism of K over k .

3~ Explanation of the Tale’s theorem. - Let

In terms of the uniformizing parameter, t = x/y ,

and so S is parametrized by t e D(0 , 1-) . The map of t --&#x3E; u(t) gives a ho-

momorDhism of S into k .

Since k is of characteristic zero,

f or each P E S which i s divis ion point. Since u i s a one to one map of

D(O , onto itself, u(t) =0 can only be valid for tQ = 0 if

t 0 E D(0 , the other hand, it is shown by LUTZ [L] that, for P E S ,

and hence if 0 , then t(pv D(0 , for suitable v and so

P~ is a p p ower division point. 
0

Since 1 + p ( ~ = D(0 , 1")) does have points of finite order, TATE sought an

isomorphism of S into 1 +)J such as t )2014-&#x3E; exp 6.u(t) . If one exists with in-

tegral coefficients then it is invertible and gives an isomorphism of ~~~ with

1 + ~ where K is a complete field containing k(ü) . The exact sequence

together with the fact that for (~ , p) = 1 both A and A have h2 points of

order ~ shows again that the only division points in S are of p power order.

If there are p points of order p in A then there are only p in S (as there

are in 1 + ~ ) and so the isomorphism of Tate could (and infact does) exist. If

A has no points of order p then there are p 2 such points in S and then the

suggested isomorphism is impossible. This explains the role of the Hasse invariant.

4. Pro of o f part 2 o f Tate’s theorem.

In 1958 (unpublished), we obtained a proof of part 2 of Tate’s theorem for the

Legendre model .

Using t = 1~~,,~x as parameter at co, we may write

(4.1)
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where

(4.2)

If À lies in an unramified extension of Qp then the existance of C (again in
an unramified extension) is equivalent (by the Dieudonne criterion [ Dw to con-

gruences

(4.3)

for all s E N , (m , p) = 1 , where 03C3 is the absolute Frobenius. The consistency

of these conditions is demonstrated by means of the formal congruences

(4.4)

where

By means of these congruences, we showed that extends to an analytic

element f on the Hasse domain

(4.5)

Congruences -similar to (4.4) are treated else where [Dw 2~ [Dw 4].

Thus if J xo = À6 ’ i. e. À is a Teichmüller representative of its residue
class then C(B,.) e K is to be chosen so that

(4.6)

More generally if B == ~ + ~ , ~ ~ ~  1 . Then we must put

(4.7)

where

The point being that ? is an analytic element on H whose restriction to
s

D(0 , I") is as indicated. This may also be expressed by the condition

(4.8)

where v is the unique branch of F(1/2 , 1/2 , 1 ,À.) at 03BB0 i. e. the unique

solution of the corresponding second order differential equation which is bounded on

D( À.O ’ 1-) and such that

In appendix B, we indicate how these results should be generalised to curves with

ordinary reduction.
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5. Heuristics. - assume the reduced curve is ordinary.

If w2 are "eigenvectors" of Forbenius, i. e.

where ~,~ , S2 are daggerized algebraic functions on and we think of a as

operating on coefficients of the differential forms while § represents x --&#x3E; xp y
then upon integration, setting I2.03BB = j w2 , À ’ a local abelian integral, we obtain

(5.1)

(5.2)

We are tempted to deduce Tate’s theorem by applying Dieudonne’s criterion to

(5.l). There are two questions :

(5.3) bounded by p on a generic disk ?

(5.4) 11 , À need not be an integral of the first .kind ?

Our purpose is to show how these objections may be met by means of the theory of

normalized solution matrices of the hypergeometric differential equation as explained

in Chapter 9 of [Dw 5].

Chafer II. 
’

We shall consider the hypergeometric differential equation

(1.0)

in a split case of period one. By this, we mean that a, b , c are elements of Q

whose denoiinators divide p - 1 , and such that after replacment by minimum repre-

sentative mod 1 , c does not lie on the real interval connecting a and b . To

fix ideas, we assume that we have the Type 1 situation, i. e. 

(1.1)

The Type II case can be treated similarly. We shall restrict X to the region

(1.2)

We recall 1À = analytic functions on the conplement of sets of the type
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(were e. is less than the distance from i to the remaining elements of

to , 1 ,À ,aej, distance from ~ to be computed in terms of 1 x .

Hasse domain = set of all residue classes where ( 1 .0) has a bounded solution,

Gauss norm is relative to the x variable.

We start with [Dw 2] (6.3.2), which ~ write in the form

(1.3)

We show (chap. III) below that

(1.4)

We apply 03B2 to (1.3) and deduce

(1.5)

(1.6.1)

W E I03BB, I W|Gauss  1.

Proof. - The mapping " induces a map of into "i,p with í3 as inverse.

Hence equation (1.6) with w E L’A is trivial. Ue need only check the Gauss norm.
For this, we need only find a formula =or w valid on an annulus

(1X6.2)

The formula for f shows that we may write
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Then

and so

i. e.

and so

(1.6.3)

Now

a representation valid on (1.6.2), and the boundary norm (as ~ ~0) being bound-
ed by unity, we have

Since (&#x26; ~ - 1) annihilates # if we find

(1.6.4)

(There is no constant of integration as z is single valued in the 

2).) The assertion now follows from the boundary norm of g~ . This completes the

proof.

It follows from (1.4)~ (l*6) that there exist z 1 p z2 E L.
~1.7.1~

such that

(1.7.2)

Our object is to find "eigen vectors" of j3 . For this purpose, we ask for an

invertible matrix Y(B) , defined on a disk D(~O ’ 1’) for which the differential

equation is not super singular, such that

(1.8)
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The cr ( = absolute Frobenius) referring to the fact that Y Day be defined over

a maximal unramified extension of Q . This condition is equivalent of
--p

(1.9)

Y = Y ) ) and so we may take Y to be the normalized solution matrix

of (1.0) on D(ÀO ’ 1-) .

Thus we may satisfy (1.8) by setting

(1.10)

where u , ~ , ~ ~ T satisfy the following conditions [Dw 1] (9.6)

. is analytic element bounded by 1 on the Hasse domain of ( 1 .0 ) .

(l.li.2) Ti) is the unique bounded solution of (1.0) on D(A. ~ 1 ) .

(1~11.3) extends to an analytic element on the Hasse domain.

(1.11.4) 
’ r(B) uod p (V X 6D(~ , 1-» .

(l.JLl.5) ’~ = wronskian/u .

(l.Ll.6) take on unit values throughout D( ii~ , 1 ) .

Putting

(1.12)

and multiplying (1.7) by Y and using ( 1 . 8 ) ,

(1.13)

Putting

(1.13.1)

we may rewrite (1. 13) in the form

(1.14)

Applying E-l to both sides and writting as function on a general residue class

y 1-) in x tine (with x~ = XÕ )

we obtain

(1.15)
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(where I~ is function on D(x~ , 1 ) ).

Since

(1.16)

It follows from (1.13.1), that

(1.17)

and hence, by (1.7.1~, (1.11.~~,

(1.17.1)

Thus, by (1.15),

(1.18)

now put

(1.19)

For Type I, this is the unique (up to factor independent of x ) integral of first

kind associated with the differe-tials in the integral representati on of

F(a , b , c , f A) and its derivatives. [Dw 1’] (chapter 14). By (1.12),

(1.20)

and so

(1.21)

Multiplying the second equation of (l.l5) by r(~) , and adding to the first

(1.22)

where

(1.22.1)

We observe that, by (1.18), (l.U.4), (1.7.1),

(1.23)

on 1-) x D(x , 1-) . By the Dieudonné’s conditions we now 
have the first

part of Tate’s theorem

(1.24)

where K is a sufficiently large field containing ~ . The second part of Tate’s

theorem is also demonstrated since (u, is an "eigenvector" of a semilinear

transformation ,dth uatrix A corresnonding to eigenvalue 1. Using Adolphson’s
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explanation in the appendix of [ Dw 1~ we nay deduce the connection between

(u(03BB0))
1-03C3 

and the unit reciprocal root of the corresponding L-function. In the

next section, we complete the treatment by verifying (l.4).

III

1~ Our object is to verify the estimates of II (l.4).

LEMi-iE. - Let L = ~(~)[x , x"~ , (l - x)"~ , (l - ~xF~ . For s ~ 2 there exist

03B1_, t3 , ’YB , 5 ~ Q(iB.) and 03BE , T) e L such that
S S 3 S ’~** ~ ’’"" S S 

’ ’

(1.1)

(1.2)

and subject to II (1.2),

(1.3)

(1.4)

Proof . - E quation (1.1) follows from [Dw l] (l.2). In terms of [Dw l] (2.3.5.10)

(1.5)

(1.6)

and so ~ (resp. ~3 ) is given by the coefficient of in the formula for

~1 in [Dw 1J (p. 25) with A=0 , B = A(a - c) (resp. A=b -c , B=A(c -b)) .

The estimates for )a ) , ) j ) follow from this A second proof of these
’ 

s s

estiLates will appear below.

The proof of (1.1) [1M 1J (p. 10) shows that 03BEs ~ T-11 Q(03BB)[T-11] and is of degree

bounded by s - 1 as polynomial in 

On the other hand, we nay solve (l.l) for § 
s 

by sitting the solution in the

form

(1.7)

and so

(1.8)

where e is defined by

as endomorphism of Q(03BB)((T1)) . (Since b - c ~ Z , there is no ambiguity due to
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possible constant of integration. Since both d 1 dans 0 T lie in

we conclude that

(1.10)

where P~ denotes the principal part at x = 1 . Writting

(1.11.2)

we compute

(1.12)

the inner sum being over all pairs m y ill J 0 such that

(1.12.1)

Estimate (l.3) for § follows from (l.l2) and the fact that g , h . ! lie in
s d Ei

. 

Z .A second proof of the estimates (1.3) for 
s 

now follows from (1.1).
The proof of (l.4-) follows by the sane methods.

2. The proof of II (1.4~ follows the proceedure of ~Dw 1~ (chapter 6). We write

(2.1)

(2.2)

where

The matrix x was computed [Dw ij (6.4) and subject to certain conditions it is
shown [Dw 1] (6.l) that the matrix p is bounded by Ipl . For our present purpose,
we note that

(2.3)

For case 1, it is shown [Dw 1J (p. 100) that

(2.4)

We apply [Dw 1] (6.l) to equation (2.2). We may here take

(2.5.1)

and

(2.5.2)
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By [Dw 1~ (6.1.15), we have

(2.6)

(2.7)

Thus in [Dw 1 ] (6.1.12)y we have in the representation of (say) 

(2.8.1)

(2.8.2)

On the other hand, by definition

(2.8.3)

(2.8.4)

and by [ Dw 1] (lemua 5. 2, and 6.1.l6)y

(2.9)

(2.10)

Thus, by lemme 1, we have

(2.11)

Precisely as in [Dw 1J (6.l), we may deduce IY1 2B ~ p) by means of equations

(2.9) - (2.11) subject to conditions [Dw 1J (6.1.8~ which reduce here to the condi-
tions

(2.12)

These conditions are a consequence of II (1.1) and the condition that (a, b , y c)

be of period one. This completes the proof.

The theorem of Tate for elliptic curves in Legendre normal form requires

(a , b , c) = (1/2 , 1/2 , 1) . This is of type II. In the notation of [Dw 1J (9.5.

l)~ the normalized bounded solution of II (1 .0) is (u Q , ü).

Here, equation II (l.l2) must bn written

and so



11-12

Here + fdx is the unique differential of the first kind and putting
- x

we obtain the analogue of II (1.22), (1.23). Here ü ls a branch of 
’~.

F(1/2, 1/2, 1 ,À) and l/ü(À) is the constant of Tate.

Families of curves with ordinary reduction.

For the split case of period greater than one, we must leave the situation invol-

ving a two dimensional piece of cohomology. For this reason, we briefly sketch how

the theory extends to curves, consider a fauily f( À , x , Y) = 0 of (possi bly
singular) plane curves with generic ordinary reduction.

There exists a basis {03C91.03BB, ... , W "l} for the differentials of the first
,/B’ ~ ~

kind together with set of representatives wg+1 1 "l , ..., 03C92g,03BB B of a basis of dif-
51- , f1c 

ferentials of the second kind modulo exact + d.f.k. such that

(1)

where the zi are daggerized algebraic functions Gauss norm bounded by unity,
Furthermore .

so that the pairing matrix is

The matrix A is an over convergent 2g x 2g matrix function of À and

(2)

where Ãl is the Hasse-Witt matrix. (Furthermore
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is invertible mod p ).

In teras of the theory of normalised period matrices [ Dw 3], we have

(3)

and

(4)

multiplying ( 1 ) on the left by obtain

(5)

Putting

we set

(5.1)

(5.2)

(5.3)

(5.4)

it being anderstood that

We conclude that

(6,1)

(6.2)

It follows from ( 5.4) that z 2 is bounded by 1.

Setting

we obtain

(7.1)
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(7.2)

We deduce that 1~~ (x) is bounded by 1 on D(xO’ 1-) .
We put

a g-tuple of abelian integrals of the first kind we deduce from (6) that

(8)

where

By the theory of normalized period matrices we deduce that H(~ ~ x) is bounded

by unity.

The completes our sketch of the generalization of theorem.
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