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ON THE TATE CONSTANT

%
by Bernard DWORK ()

Chagter I

1. Introduction. — Our work on the relation between the congruence zeta functicn

and p-adic analysis began in February 1958 with the suggestion of J. TATE that his
constant C (described below) may be construwted by p-adic analytic methods. (For an
alternate description of C , see [Dw 5], Introduction (0.1)).

Let k bhe a field of characteristic zero complete with respect to a discrete va-
luation, with valuation ring O and residue class field k = ﬂ/p « Let A be an

elliptic curve defined over k by an equation

2 _ 3 2
(1) vy o+ (al X + a2) ¥y =x + 8y X + 8, X+ ag

where the a, € 0.
Letting x = ty , we find

3,3

v + y2 (=1 - a t + a t2) +y(-a.,+a, t) +a.=0

3 2 4 5
and hence there exists a unique solution in k((t)) for y with a pole of order 3

at t =0 .+ This solution is of the form

2 = - + - + oee

( y =t B, t 2

and the coefficients B* liein © . Clearly

(3) E X = t_2 + B_2 t-l + ece
Let

(4) du = - ax/(2y + a, X+ a2)

a differential of the first kind on A . In terms of the wmiformizing parameter
t = x/y at infinity, we have after integration

2.ip 24

1
(5) w=t+3D t°+5D,

where the Di lie in @ .

2. THEOREM.

Part 1. — If the reduced curve A defined over k is non-singular and has

Hasse invariant not zero, then there exists a unit C in the maximal unramified ex-

tension K of k such that exp Cu (e K[[t]]) has, in fact, integral coefficients

(") Bernard DYORK, Fine Hall, Washington Road, PRINCETON, NJ 08544 (Etats~Unis).
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Part 2. - If k is finite, i. e« k 38 a p-adic field, then the unit root of
the zeta function of the reduced curve A is CO"1 y where o is the Frobenius

automorphism of K over k .

3. Explanation of the Tate's theorem. - Let

s=1{(x, vy ear; |x|>1}.

In terms of the uniformizing parameter, t = x/y ’

-2 -1
x =% + A.__l t "+ AO + eee

and so S is parametrized by t €D(0 , 17) . The map of t |--> u(t) gives a ho-

momorvhism of S dinto k; .
Since k is of characteristic zero,
u(t) =0

for each P € S which is division point. 3ince u is a one to one map of

D(0 , |n]7) onto itself, wu(t) =0 can only be valid for %, =0 if

t, € p(0 , |m”) . On the other hand, it is shown by LUTZ [L] that, for P € 8 ,
ord t(pP) > Min(1 + ord %(P) , 4 ord (P))

and hence if u(t(PO)) =0 , then t(pv PO) € D(O ’ ]nl—) for suitable v and so

Po is a pth power division point.

Since 1 + ¥ (p = D(O , 1-)) does have points of finite order, TATE sought an
isomorphism of 8 into 1 + p such as t»I-—> exp B.u(t) « If one exists with in-
tegral coefficients then it is invertible and gives an isomorphism of SK with
1+ K where K is a complete field containing k(68) . The exact sequence

0 ——ssifd, pTed 7 .o

together with the fact that for (4, p) =1 both A and X have 22 points of
order 4 shows again that the only division points in S are of p power order.
If there are p points of order p in i then there are only p in S (as there
are in 1 + ) and so the isomorphism of Tate could (and infact does) exist. If
K has no points of order p then there are p2 such points in S and then the

suggested isomorphism is impossible. This explains the role of the Hasse invariant.

4, Proof of part 2 of Tate's theorem.

In 1958 (unpublished), we obtained a proof of part 2 of Tate's theorem for the

Legendre model
y2 = x(l - x)(t -X) .
Using t = 1/,/x as parameter at « , we may write

(4.1) au =73 28 D, (A)
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where

(4.2) b, = (- )P R, (Y VL,

If A lies in an unrawified extension of Q  then the existance of C (again in
an unramified extension) is equivalent (by the Dieudonné criterion [Dw 17]) to con-

gruences

(4.3) ¢“rp _ (on) =D (A) mod p™*!
s s+1
mp -1 mnp -1

for all s e XN, (m , P) =1, where o is the absolute Frobenius. The consistency

of these conditions is dewonstrated by means of the formal congruences

(48) > 0 W= 02 G p)/F0P) moa p7 2 (W]
-1

s+1
np mp -1

where
PO =FG, 551, 8 =2(3),/3 D%,

By means of these congruences, we showed that F(A)/F(Kp) extends to an analytic

element f on the Hasse domain
(4.5) H={\; le_l(A)l > 1} .

Congruences similar to (4.4) are treated else where [Dw 2], [Dw 4].

Thus if © ho = A£ , i. e« A is a Teichmiiller reprigentative of its residue
class then C(XO) € K is to be chosen so that
. \O=-1 X
(4.6) | c(ag)™ " = £(a)) -
More generally if A = KO + kl , Ihll <1 . Then we must put
= ¢(; X2 S
(4.7) c(d) = c(r )/l + 2, 1 (h) 4]

where
n = B Q—.l F(S)/F .

5]

The point being that ﬂs is an analytic element on H whose restriction to

D(0 , 17) is as indicated. This may also be expreased by the condition
(4.8) c(a) = c(r))/v(d)

where v is the unique branch of F(1/2, 1/2, 1, A) at Ao 1. e. the unique

solution of the corresponding second order differeqtial equation which is bounded on

D(A, , 17) and such that

v(ko) =1.

In appendix B, we indicate how these results should be generalised to curves with

ordinary reduction.
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5., Heuristics. - We assuue the reduced curve is ordinary.

If w, , w, are "eigenvectors" of Forbenius, i. e.

1 2
Ww? = P w +d g
1,AP LA )
g
W = W + d g
2’)\p 2, A 2

where §l ’ §2 are daggerized algebraic functions on A , and we think of ¢ as

operating on coefficients of the differential forms while & reprcsents x -—> x¥ ’

then upon integration, setting 12 A =‘r W, )y 8 local abelian integral, we obtain
’ ’ .

o _ s
(5.2) 12 'S I2,h + &, .
b4

We are tempted to deduce Tate's theorem by applving Dieudonne's criterion to

(541). There are two questions :
(5.3) 1Is gl bounded by p on a generic disk ?
(5.4) Il X need not be an integral of the first kind ?
’
Our purpose is to show how these objections may be met by means of the theory of

normalized solution matrices of the hypergeouetric differential equation as explained
in Chapter 9 of [Dw 5].

Chapter II.

We shall consider the hypergeowmetric differential equation

¢ c - a
a kS 1-A
(1.0) x (31"u2) = (ul ’ “2) c-b a+b-c
A 1 - A

in a gplit case of period one. By this, we wean that a , b, ¢ are elements of Q
whose denorinators divide p - 1 , and such that after replacasent by minimum repre-
sentative mod 1 , ¢ does not lie on the real interval connecting a and b . To

fix ideas, we assume that we have the Type 1 situation, i. e.
(1.1) 1 > Max(a , b) > Min(a , ») >c >0 .
The Type II case can be treated similarly. We shall restrict A to the region
(1.2) Al = r-1] =1.
We recall Lh = analytic functions on the complement of sets of the type
D(0 , ey) UD(1, &) U p(a7t e}\_l) UD(w, c)
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(were € is less than the distance from i +to the remaining elenents of

-1

{o sy Ly A ’ o} , distance from <« to be couputed in *erms of 1/x) ¢

£=xt (1= %)% - )78,
G = xf(r, X)/Xp f(xp ’ Xp) ’
E = x(o/ox) ,

D, = (x£)7! o B o xf

@=y oG,

B=0"oq,

dx = xp ’

: =1 .
(v§)(x)==21) &(y) , the swa being over {ylyp =x} ,
Wy = Ty/Dp Ly

Hasse domain = set of all residue classes where (1.0) has a bounded solution,

Gauss norm: is relative to the x variable.

We start with [Dw 2] (6.3.2), which we write in the form

(1.3) a(l i x) = A (1 f x) + Dt » (Yz)

where ¥, o Y, e pr .
We show (chap. III) below that
(1'4) Max(‘yllGauss ? IyZIGauss) 5 1pl 4

We apply § to (1.3) and deduce -

By
(1.5) SR ECER AR D RSP ol
1 -x 1 -x 1 -x

(1.6). PROPOSITION. - If z e Ly , |zlg, o &1

(1.6.1) Bau=-1)2z= Dy AW

?
c < .
where w € Ih ’ |W|Gauss <1
Proof. — The mapping ¢« induces a map of Wk into W-P with { as inverse.

A
Hence equation (1.6) with we Lk is trivial. Ve need only check the Gauss norm.

For this, we need only find a formula for w valid on an annulus
(1£6.2) 1-¢<|x] <1.

The formula for f shows that we nay write
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X1y = x g(x), eez[WI[x].

Then
“Hp P
¢=x *g(x)e ()
AN p
A
and so '@
Mo &40 g -
Q°(¥_xo-—)-\-°\i)owo.i.wa
g\ g@
'}\P
e I A
EN A
i. e
Mo 1 -
Df W=x ;?-(9 - 1) g, X z
A
and so
b pb “Hyp
(1.6.3) BE(x g, w) =x (3¢-1) g, X Z .
Now
R e
€\ i

a representation valid on (1.6.2), and the boundary norm (as & ==> 0 ) being bound-

ed by unity, we have

'le.sl Vm.

Since (& y = 1) annihilates %= if plm , we find

— +@
(1.6.4) g=-x" L 2 ¢ P4 pp) .
g, D= m
pfm

(There is no constant of integration as 2z is single valued in the annulus (1.6.

2).) The assertion now follows from the boundary norm of g, - This coupletes the

proof.
It follows from (1.4), (1.6) that there exist Z, 5 By € Ly
(1'7°l) Max ('leGauss ’ |Z21Gauss) St
such that
(1.7.2) (Fyaxfa(t e, (Y.
*he 1 1 f,4 "z,
1 -v 1 -x

Our object is to find "eigen vectors" of 3 . For this purpose, we ask for an
invertible matrix Y(k) , defined on a disk D(K , 1-) for which the differential

equation is not super singular, such that

(1.8) () 4" = (5 0) Y0P
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The o ( = absolute Frobenius) referring to the fact that Y nay be defined over

a maximal unranified extension of Q? . This condition is equivalent of

# #*
(1.9) () a= (g )Y
- 3
(Yy = (Ytranspose) 1) and so we nmay take Y to be the normalized solution matrix

of (1.0) on D(A, , 17) .

Thus we uay satisfy (1.8) by setting
¥ 1 Oy (u O 1 7

where u, @, 1, T satisfy the following conditions [Dw 1] (9.6)
(1.11.1) 7 is analytic element bounded by 1 on the Hasse domain of (1.0).
(1.11.,2) u(i, 1) is the unique bounded solution of (1.0) on D(xO , 1) .

(1.11.3) u(k)/uc(Xp) extends to an analvtic eleuent on the Hasse domain.

{

(1?11.4) Vor%(aP) =p (M) nodp (VAe D(gg , 17)) .

(1.11.5) Q= wronskian/u .
(1,11.6) u , U take on unit values throughout D(,\O ’ 1) .
Putting

e 5 -
(1.12) ) (7)Y =5 W

1 4
T % 2, A

and wultiplying (1.7) by Y and using (1.8),

(1.13) ot )T (P, 1 (D
.1.3 gx Y P sxp f,)\ 22 e
‘Putting N R

Zl N Zl

(1.13.1) () =z=1x(a) ()

2 p)

we may rewrite (1.13) in the form

1 0 T @ A
(1.14) x £, & = (5 o) (x 5 ghp) +Exf, 7.

)

Applying m—l to both sides and writting as function on a general residue class

D(x, , 17) in x time (with xg = xg )

I, (x)=[C fg,,d,

Je A XO- Jo A
we obtain
_L1g0 (g
( Il,h(x) =3 Il'kp (=) + x £, %
1.15) o
- ) p >
IZ,A(X) = I2,k9 (x ) + X fk z,
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(where IO is function on D(xo ’ 1—) )e

Since
(1 =Ty (1/u 0 1 0
It follows from (1.13.1), that
R 1

(1.17) Z, =~ 5(n) (Zl (X)) - 22)
and hence, by (1.7.1), (1.11.1), (1.11.6),
(1.17.1) EX P

Thus, by (1.15),
(1.18) lI2,h(x)l <1 for all x€ D(xO , 1) .

We now put
(1.19) 7. =gy § (&) ax

For Type I, this is the unique (up to factor inderendent of x ) integral of first

kind associated with the differentials in the integral representation of

Fla , b, c, A) and its derivatives. [Dw 1] (chapter 14). By (1.12) ,

S1,A 7 E%XT‘l - 1(3) %2, A
(1.20)
gz,,\:a%x;(- W) 1+ =)
and so
(1.21) Il’h(x) = Jh(x) - 7(A) I2’h(x) .

Kultiplying the second equation of (1.15) by T(K) , and adding to the first

(1.22) 7,(x) = %-Ji(xp) + 8(n , x)
where
(1.22.1) a(n , x) = (1(A) - To(hp)-%) IS’AP (xP) + x £, ?ﬁ%i) .

We observe that, by (1.18), (1.11.4), (1.7.1),
(1.23) la(x , x)] €1
on D(?\0 ’ 1-) x D(XO , 1) . By the Dicudonné's conditions we now have the first
part of Tate's theorem

(1.24) exp JA(X) € Oyi[x - XO]]

where K is a sufficiently large field containing A . The second part of Tate's

theoren is also denonstrated since (u ’ ul]) is an "eigenvector" of a semilinear
transfornation with matrix A corresvonding to eigenvalue 1 . Using Adolphson’'s
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explanation in the appendix of [Dw 1], we may deduce the connection between
1- .
(u(ho)) ° and the unit recipocal root of the corresponding L-function. In the

next section, we complete the treatuent by verifying (1.4).
Chapter III
L. Our object is to verify the estimates of II (1.4).

LE#HE, - Let L = oM)x , x ! , (1 - x)_l , (1 - hx)—ll . Por s > 2 therc cxist

@, B,y Yy b € QM) and g, N e L such that

(1.1) (1ax)®=a 1+31- e D ) &

-8 . -1 -
(1.2) (1 - &x)7° = Yy 1+ bs(l -x) + Df,k g

and subject to II (1.2),

2 . 1
(1.3) Nax(lasl ’ lasl ’ Igs'Gauss) < SUPhsngs-1 Tb = ¢ + o
: ' 1
(1.4) Max (lel ’ l6sI ! lnslGauss) N SWPosngs-1 Ta + m| °

Proof. - Equation (1.1) follows frow [Dw 1] (1.2). In terms of [Dw 1] (2.3.5.10)

3

-3

(105) Q’S = <T]. 9 1 >
(1.6) 5= ®, (aTH
8 1 ? 1
and so Qs (resp. BS) is given by the coefficient of Ti—l in the formula for

5, in [Dw 1] (p. 25) with A =0, B=Ala=-c) (resp. A=b-c, B= Alc = b)) .

The cstimates for |aS| ’ |pS| follow frow this “oruula. A second proof of these
estinates will appear below.

-1

1 Qﬁh)[Tzl] and is of degrec

The proof of (1.1) [Dw 1] (p. 10) shows that g, € T

bounded by s - 1 as polynonial in Tzl .

On the other hand, we nay solve (1.1) for gs by writting the solution in the

form
: d . -3 -1
(1.7) -Tl-a-;-r-;(x £,08) =1 H17° - -8 1) ]
and so
' . =S -1
(1.8) ~ g, = 6[1° - -8 1)

where © is defined by

-b a ,b=c d -1 1+c-b b-1 -a
(19) &=(1-1)7 (1 -t T,)° T (T, Eﬁz) T (1-7)" (1=t 1)

as endormorphism of g(x)((Tl)) . (since b -c ¢ Z , there is no ambiguity due to
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possible constant of integration. Since both ©1 dans © Tzl lie in
E&K)[[le] , we conclude that

s -8
(1.10) - g, =P 0T

where Pl denotes the principal part at x =1 . Writting

b-1 (l

(1.11.1) (1-1) -4, 1) =1 e, T ez z[r 1]

(1.11.2) (1 - Tl)'b (1

1’

1)% =3 a1 ez (lT,1]

we compute

1 !+b-c

. -1 c-b+m+1—s
(1.12) - €, =P, Z;’m,=o hooe, T, (Tl ar, ) T
_zs' "JZh -

n' ne-brm+l-s’
the inner sut. being over all pairs m , m' 20 such that
(1.12.1) n+n'=sg-1-3j.

Estinate (1.3) for §, follows frou (1.12) and the fact that g, » b, liein
) gp . A second proof of the estiwmates (1.3) for @, 3, mnow follows from (1.1).
The proof of (1.4) follows by the same methods.

2. The proof of II (1.4) follows the proceedure of [Dw 1] (chapter 6). We write

THy  HpTHe By X % 1 i1
(2.1) A LR N T ) ( )+ D, s (1D
1 = Ay % el De & T,
1 1
p
(2.2) w(ty =Y (e, L (MP)
TIi Py By gl T TN T,
where
= oll) G(2) -1 .

The matrix ¥ was computed [Dw 1] (6.4) and subject to certain conditions it is
shown [Dw 1] (6.1) that the matrix p is bounded by |p| . For our present purpose,

we note that
(2.3) Y, =Y, + Y, (1=1,2).
For case 1, it is shown [Dw 1] (p. 100) that

(2.4) Y. ,=0.

We apply [Dw 1] (6.1) to equation (2.2). We may here take

(2.5.1) i = (p-1) v, 4, =0 =14,
and
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By [Dw 1] (6.1.15), we have

(2.6) 0 for s31

<3
w
I

(2.7) b, =0 for s=1.

Thus in [Dw 1] (6.1.12), we have in the representation of(say) W,

(208-1) 7 KO =0 ’

(2.8.2) K (a constant) .

w p‘(n’o
On the other hand, by definition

@ -3
(2.8.3) K, =:Zs=1 b s T

=Z®_1p, TS
1/aP == /AP s 1/AP

and by [Dw 1] (leuwa 5.2, end 6.1.16),

(2.8.4) K

(2.9) sup oy Uy Iy e |5 lug ol3 € 2/p

l/Rp,s

(2.10) sup sy Ly o lw ; IR ALIEE

1 Kp,s

Thus, by lemme 1, we have

g€ + Zw HI

(2.11) Y, =2 "
1,2 s=1 "1,8 78 s=1 l/}\p’.s s

Precisely as in [Dw 1] (6.1), we may deduce |Y1 2] < |pl by weans of equations
(2.9) - (2.11) subject to conditions [Dw 1] (6.1.83 which reduce herc to the condi-
tions

(2.12) ol = ool =]acel =1.

These conditions are a consequence of II (1.1) and the condition that (a, b, c)

be of period one. This completes the proof.

Apoendix A.

The theoren of Tate for elliptic curves in Legendre normal form requires
(a, b, c)=(1/2, 1/2, 1) . This is of type II. In the notation of [pw 1] (9.5.
1), the normalized bounded solution of II (1.0)is (@@, W) .

Here, equation II (1.,12) nust be written

a7, u 1 51 A
(« ___ 20, ="
u+ Tul, Tu TS 2, N
and so
I =[w ax
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— W
Io =J 2\ &

1 1 -y
“IATER) Tox L - (A “2.A

fdx) .

1 = 1
w2,7& = %1-(—}:) (fdx - T]()\.) T %

Here

T fdx is the unigue differential of the first kind and putting

1 P 1
Jh(x) = =% J T fax
we obtain the analogue of II (1.22), (1.23). Here u is a branch of

F(1/2, 1/2, 1, M) and 1/u(A) is the constant of Tate.

Appendix B.

Families of curves with ordinary reduction.

For the split case of period greater than one, we nmust leave the situation invol-
ving a two dimensional piece of coborology. For this reason, we briefly sketch how
the theory extends to curves. Ye consider a fanily @ , X, Y) =0 of (possibly

singular) plane curves with generic ordinary reduction.

Therc exists a basis {wl Aot Yy h} for the differentials of the first
? ?

kind together with set of representatives of a basis of dif-

w w
grl,A 7 *°° ? 2g,A
ferentials of the second kind modulo exact + defeke such that

w ‘W A z
I 1, M 1
(Y]

28, b 2g\ | 28

where the z, are daggerized algebraic functions with Gauss norm bounded by unity,

Furthermore

so that the pairing matrix is

Al ! A2
(2) A= mod p
\0 , 0
where Kl is the Hasse-Witt matrix. (Furtherunore
g )
€ A
p I
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is invertible mod p ).

In terms of the theory of normalised period matrices [ Dw 3], we have

/-

I, o\/u o I, 1
=1 8 #
(3) 1(a) (T I Jlo v'llo 1
g g
and
/- P I,
(4) (M) 4= ® T(a) ,
pl
g
nultiplying (1) on the left by Y(')\)ir , we obtain
e
o (9. 0N T o w ] z
* (Y9 A P AP * .
5) I (&1';\% R RACOM BE A S (DR R
Zgy"-} -8 wzg’r}\.p Z2g :
Putting
%A ERARE B+1yh
1L,A lw 28w ’
’ gy A 2g,A
we set
o1 @ ==-UN®, . +U%_ .
(5 ) 2,k L 1,A 25\
A *
(5.2) 1,h i TR By
*
~ _ — _m ~
(5.3) 2, =0 =z - 1)z,
(5.4) Z, =~ U1 z, + U 5

it being understood that

E _ Z,l E _ Ezg+l
17 |z %2 Tz ‘
g 2g
We conclude that
A~ . —l C) Q ~
(601) wl,ﬂ‘\\— 1Y ( 1’AP) +d Zl
& o @ ~
(6.2) 2’)“-—(0)2,&?) + d Z2 .
It follows from (5.4) that Z, is bounded by 1 .
Setting
X ~
— W, =
LN J’XO 1 P12
we obtain
-1 o

(701) Il,)\ =P I]_ }\'p + Zl
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o ~
(702) Iz’l = I2’;y + 22 .

s

We deduce that I (x) is bhounded by 1 on D(x , 1—) .

T2
We put

<) =) oo
NORLIOM

a g-tuple of abelian integrals of the first kind we deduce fron (6) that
(8) Ia(x) = 7" 3% () + HO , x)
where

B, x) = 195, (20) - 57 0R)) (YT E

By the theory of normalized period matrices we deduce that H(R , X) is bounded
by unity.

The conpletes our sketch of the generalization of Tate's theoren.
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