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SINGULAR RESIDUE CLASSES WHICH ARE ORDINARY FOR F(a,b,c,\)

by Bernard DYORK ()

In early work [2], on the p—adic theory (p # 2) of the differential equation

A(1 - A) + (1 - 2A).—— -

1
=~u=0,
dA dr 4

a critical role was played by the existance of ratio T of formal solutions such

that
(1) exp T(A) €3 [fA]]

Indeed if F(A) denotes the unique solution holomorphic and taking the value 1

at A =0, (hence F(A) = F(1 , =, 1, A) ) then there exists a second solution

2

= F(A)(1og A + X w(A))

defined uniquely by the condition that v € QL[A]] . It is known that if we set

u(n) ,

16 qg=~Ae
then
1+ 8
1+ q '

In a subsequent article [3], an clementary proof of (1), independent of the theory
of elliptic modular functions wa presented. However insofar as the hypergeometric
function 2Fl(a,b,c,?\) is concerned, this second treatnent was restricted to the

case of logarithmic singularit i- e« Cc € 7 .
& 7 =

In wore recent work [47], the behavior of the Frobenius matrix was carefully com=
puted on the singular disk D(O y 1—) , but the question of normalized solution
matrix on the singular disk and the question of whether singular disks are ordinary
was not treated. The object of the present note is to respond to these questions

for the hypergeometric function.

The usual condition for being ordinary, the non-vanishing of the Hasse invariant
is not quite appropriate in the present situation. A better definition involves not
having a too high order of zero at A = 0 . A precise definition of ordinary singu-

lar disk is given below (1.11). We show that our definition is consistent with the
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usual one in terus of the existence of unique bounded solutions of the differential
equation and in terms of special solutions of the Riccati equation. We do not give
a detailed exanination of supersingular, singular disks comparable of that of [4],
chapter 16, for supersingular, nonsingular disks. In § 5, we pose the question of
whether the canonical 1ifting extends to all of the ordinary, singular disk. The
terainology used here is that of references [4], [5]. We take this opportunity to
0, 4 5, 5 B,(0)
B1 should all be divided by p . This error does not appear in [5], Theorem 4.

observe that in [47], Theorem 25, in case 4 the values given for

1. Review of previous work and definition of ordinary singular disk.

We study the differential equation

( 4 ( N [1/x 0
1.1) —(u, , u,) = (u u ‘
(a,b;c) dArT1 2 17 72 c-b, a+b-c (9 1/(1 = )

with fa,b,c) subject to the conditions

(1.2) (a, b, c)eq r1ZP

(a,bv)e (@, 1), ce(c,1], a#fc#b.

Je choose 4 € N such that

(»* -~ 1)(a, b, o) EZ_B .

We use B in the sense of [ 4], equation (9.1.1.2), as matrix of the mapplng

l o 4 1 5%
o TR of Kf’A p” into Kf’A relative to the basis {1 ( ) } .

We know that

b

( ) === ( o'’ 5
(1.3) u uy) === (u; o, u,

l 9

is an endomorphism of the solution space of (1.1)(a be)* Here m is the number
e - My

of steps of type 4 in the sequence «. , oo , @

0 1
e shall assune
(1.4) a:_l is split step of type 1 (resp. type 2)7.
As in [4], Chapter 24, we set if ¢ # 1
(c-b) P(a,b,1+c,n) | c F(a,b,c,A)

U(A) =
(1-c) F(a-c,b=c,1-c,A) (c-a) A F(atl-c,b+l-c,2-c,A)
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(resp.
(1=p)F(a, b, 2, 4) Fla, b, 1, A)

u(n) =
(1-v)HEEa, b, 2, A) Ha, b, 1, A)

if c=1 where Hek: [A]] is defined by the following condition). The choice
of U is such that

i1 ¢
U(/\)
0o A °
(I'esp.
1 0
u(a) )
log A 1

is a solution matrix of (1.1)(a b,c)*
[ Bt |

It is known{4], Chapter 4, that aside frou possible poles at 0 , © , the rmatrix

B is analytic for
(1.5) [n - 1f > [l = p VD)

In fact, there is no pole at A = 0 . This can be deduced from the explicit cal-

culations of [5] (refining [5], (3.15.1), by replacing the factor A THR™P 1y
)\1'*'“'2 ).

The situation at A =0 way also be explained by the method of [4], Chapter 24,

using the calculation of constants in Chapters 25, 26 of that work. In this connec—

w e

tion, it is useful ot recall that the steps Co g eee y W | are either all loga-
-
rithuic or all non-logarithnic.
1.6 LEMMA. = If ¢ #1 (resp. c =1),
A 8, 0 \ 1 0
u(xP) B = e(pPe1) U(r) (resp. e ) Uw(dh))
0 e, AOP Y/ Y p”?
4 . I
where el ’ e4 € Qp
ordn e, = Al ( = the number of steps of type 1)
ordp 64 = 32 ( = the number of stepu of type 2 )
b(p*
(resps e = (= 1)°'P -1) Y ER )..Note that do = 4, + 4y , the number of split

steps.

There is no need to give the completely elementary proof, except to remark that
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the calculation of ordp e1 results from the explicit formula for 81 ([4],

Theorei: 25) which must be repeated for each step «. y eee y & 1 together with
o -
the forrula ([4] p. 246)

(1.7) (p - 1) ord yp(— t+py, y) =t

provided t€ {0 , 1, +«ee , p - 1} . Thus in computing ord y (x , y) with
x,ve(Z FLQ) -Z, py-x €4, we nust use the translation formula [4],
(21.4.3), to reduce to the situation in which py - x is a positive integer bounded

by p -1 . Also we nust remenber to remove a factor , p , for each step of type

4 .

As in the treatment of [4], Chapter 24, we may use this last lemna to determine
the value of B at A =0 .

1.8, LHMMHA,

B = 1 2
B
0 1 B3 4
Kl AK2 ( ) e 0
Q) =
., Cc~=D
B3 B4 &l S el

(iﬁ_ ¢ =1 +then e = e, e4 = ep” ).

Aside for possible poles at infinity Kl , K2 R B3 , B4 are analytic on the set
(1.5).

Proof. - For 4 = 1 this is shown in [47], Chapter 24. The generalization to

4# 1 is trivial.
We now recall the nod p type calculations of B .

1.9. LEiMA, — There exists a 2 x 2 natrix B  with coefficients in

, 1 X .
EP[A y To A] such that for |A| =1 = |A - l|
B, , B
. = 17 72
B(A) mod p = B (=(3~ 3)) .
37 74
s
Purtheruore if L is of type 1 (resp. type 2 ) then the 2nd row (resp. the
- - =
first row) of B is trivial and neither Bl nor B2 (resp. neither B, nor B4)

is trivial.

Proof. — This is shown [4], (9.1.4) subject to the further conditions ([4] (6.6.4)).

These last conditiond were used in verifying [4], Theoren 6.6. These hypotheses are
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eliminated in the calculation of [5], 3 4.

’z
1.10. COROLLARY, — elp-1)

.. - . - - 1
divides Bl in EP[A y T 1j .

(It follows fron the lemna that B  is bounded by unity on the generic disk and
hence the Taylor series expansion of B mnay be deduced from that of B by reduc-

tion mod p .)

We are now prepared to define supersingularity for the singular disk D(0 , 1_) .

Ki

l.11. Definition. - We say that D(0 , 1) is ordinary for (1.1)(h bo) if
T ————— C(p _1) Ay ,C

(resp. B ) not zero at

is split of type 1 (resp. type 2) and El/h N

0 .

i~1
de recall ([47], Theorew 9.6), the Hasse donain, Sy » is the union of all residue
classes (% o, T y w) such that Bl(K) (resp. B4(K)) is a unit. sside from the
trivial factor, our condition for D(0 , 1) is formally of the saue type. However

we note that under our definition, by Lemma 1.6, D(0 , 1) is ordinary if, and
only if, the sequence @ s ses a: 1 has at least onc split step and all other
o

split steps arc of the sane type.

We extend the synbol HO(SH) and let Sf = Sy v p(o, 17) ir p(o, 17) is
ordinary, and let Hb(Sﬁ) denote the ring of analytic elewents on Sﬁ which are
bounded by unity.

<%

1.12. THEOREH, - If o is of type 1 (resp. type 2) and if D(0 , 17) is

-1

ordinary then the fixed point 1 , (resp. 7 ) in Hb(SH) of
B, + B w@. *®

l.12.1 w ——> E——t——  if «, . is of type 1
B, + Bs w'
B, + B rr'?‘)z %

(resp. W —> _é_;__i_leZ if w, L is of type 2)

et N

BIL + BB W(P

extends to an elenent of HO(Sﬁ) and
70) =0 (resp. 1(0) = (¢ - b)/c) .

Proof. — To fix ideas we restrict »ur attention to the type 1 case. By leunas
1.8’ 1599

1 2

4
(AC(P -1 N\ k. o«
X K

(1.12.2) B =

W
N

Y0 p/
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~ -~ r . . "1’\
where each K2 and 1/k1 lie in Hb(bH) .

Putting w = A % , we reduce the problem to that of finding the fixed point of

Ko + pKy A(l—c)(pé—l) WQM

T

p) 3
K, + pKs n(l‘°)<P -1) AT

This napping is clearly contractive on HO(S%) and so the asserted fixed point

on HO(Sﬁ exists, clearly coinciding on SH with the fixed point deronstrated in

[4], Theorem 9.6. This coipletes the proof.
1.13. CORCLLARY,

7 = c-a AFla+1l-c, b+l=c , 2~—-0C 4, A

T 1l-c Ma-c¢c, b-c, 1~c, A) :

- = c¢-b Fla,b, 1+c, \)
(resp. 1) = c Fla, b, c, A) )

Procf. - We know that 7| (resp. ﬂ) satisfies the condition that (ul , N ul)

(resp. (7 u, u2)) is a solution of (1.1) for suitable wu, (resp. u, ) (ef.

1
[4], Theoreu 9.6). Hence 1 (resp. 7 ) are solutions of a Riccati equation. Our

formula for U gives us two solutions for this Riccati equation. To make sure that
we have the correct solution it is enough to check the initial value. This conpletes

the proof.

2. Normalized solution matrix.
%
-1

ﬁul) is a solution of (1.1) with A% ue Jl4]] + In fact,

Let D(0O , 1) be ordinary for (1.1). To fix ideas, let w
We know that (u

be of type 1.
l b
(2.1) (ul , Tul) B = e4(ul , nul) ,

and by hypothesis e4 is a unit. If follows from (1.12.2) and (2.1) that A° u
is bounded on D(O , 1) .

We now define the normalized solution matrix

(2.2) Y = (g—c 2)'V(A)

of (1.1) by the condition that V have coefricients in K[[A]], where K is an

infinite unracified extension of Qp , and that

U&(p \ ;
(2.2.1) Y B(A) = LY
0
0O »

and that
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(2.2.2) Lin|, laet V(A)| = 1

.\’ -1

(2.2.2) L) v (WD =1,

vl being the first coefficient of the first row of V . Here o« denotes the

Frobenius antouorphisn: of ¥ over @p and (2.2.1) is equivalent to

o, ph 10 ‘/AdP{4) O\
(2.2.1) (P ) B(A) = Y 1 v(x) .

A
O p 0 Kp 1 /

As in [4], Chapter 9, we write

_,

1 0Y/u o\{1 7
Y = |
T 1f\o alio 1

c Fla,b, 1+c, A)
Fla-c, b=-c, 1-c¢c, A)

so that

T:k}\.

k, "erla-c, b-c, 1-c, A)

o
]

=2(1 - )% P/pa-c, b-c

o>

y, 1-c, M)

where k , k k € K . lore explicitly,

l ?

.1-0&

1 e4o

A &
1-0 0
k - (el/p )/84 .
Following the proof of [4], Theoren 9.6, we deduce :

2.3+ THEOREM.

o o
3. = Wwoe H (s
(2.3.1) u B, + B, Y By (5y)
b 4
) A 4 A0TQ
0 CoT _u
(2.3.2) poT =T == By

Using (1.12.2) and putting

we obtain
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) p 3
(2.3.3) S X, A=) (1-c) 20

: )

Y t-:’ ,,”.‘1 ;.)1 aQ C?

0 (p-1)e o w7
(2.3.4) po T = A S¥ ap 2 K, .

This congruence is the generalizatisn of (l). There is a similar formula for the

type 2 situation.

Notee. = The evaluation at A = 1 of the right side of (2.3.3) has been studied
by XOBLITZ [6] and DIAMOED [1].

3. Relation between type 1 and type 3.

It follows from the symplectic relation ([47 (2.5.2)), that if Y is a solution
i o (]
natrix of (l'l)(a,b,c) then

6.1) sy om0

0 (b - e)(1 = A)

(S

is a solution matrix of (1.1) . Here Y is the transpose of the in-
(1-a,1-b, 1-c)
verse., It follows from [4], Theoreu 4,7, that if we use B to denote the matrix of

? 1 with (a,b,c) replaced hy (1—a,1—b,1—c) , and if

bk
(3.2) Y? 3=cy (C = constant natrix)
then
R X y
(3.3) B0 ¢ T
Thus if
h’ l "Jf)
P C’ rZJO ¢ P - O
C = i? then p ~ C = &l .
0 1 0 P

If (a,b,c) is of type 1 then (l-a&,1-b,1-c) is of type 2 and this shows how

we may pass from one situation ot the other.

4. Supersingular - Singular digk.

We justify our definition of ordinary.

# -
LEHMA, —.Ef w@_l is a split step but D(0 , 1 ) 1is not ordinary, then -
(1.1) has no solution bounded om D(O , 1) .
(2,b,c)

Proof. - By hypothesis ¢ 41 . It is enough to show that each row of the matrix

s

U is unbounded on D(C , 17) . We use Lenua 1.6 and, to fix ideas, we let o, ,

be of type 1, and let (u1 , u2) be the first row. ‘e assune Uy, U, bounded.



23-09

We have
4 2
4 fe(p®-1) - 1+e(p”®-1) \\
(4.,]_) el(ul ’ u2) — (ul R ug)@ A hl ’ A K2 .
K
PE, , 1291
The inportant point is that lel' < |p| , while Kl(h) takes on unit values.
Thus for |AI very close to 1, e ul is dominated by AC\P -1) u? and hence
we nust have
& 2 4
) 9" yelp™1) oy _ 9
(4.2) Iu1 A K1| = Ipu2 RB

for such values of A . This shows that, in the boundary norn,

|u1‘bdy < Ipl qulbdy .

P

Putting T = u2/ul s we obtain a solution of the Riccati equation.

A 1 - A
(4.3) L1, W) /3)
dA P c-D> a+b-c¢ \ﬂ
n Y

where 1 is meromornhic, bounded on D(O ’ 17) with boundary norm greater than
1/|p| . Clearly the term E;%_%_ﬁfi nz douinates alli the other tems and this
contradicts the assertion.

The same argunent is valid for the second row of U as e

4

is not a unit.

5. Canonical 1lifting.
We again assume that D(O , 1) 4is ordinary and that (1.1)(a b,o) 9 type 1. We
v
then know [4], Chapter 13, that therc exists a canonical 1lifting of Frobenius,
@, =9 *ta
such that equation (2.3.4) takes the form
P b/
0 .c c o .
(5.1) po Aoro= (o, (M) T (e, (4) .
1 4 1 ~
The important point here is that we know that 9, is defined on an annulus

e <|A <1, but do not know if ¢, extends to the disk D(0 , 1) .

Our basic relation [47], equation (13.3.21"), does not help here as the matrices
Ms have poles at A =0 . We wmay elininate this pole by a change in veriable. If

c=n/m, (n,u) =1, and we put A=z

(5.2) v =u (Zm 01



23~-10

then (l.l)(a b,c) takes the form
9

0 (c - a) mzm_n-l/(l - zu)

&lg
il
<

(5.3
ka,b,c) . n—-1 n-1 Li
(¢ = b) nz nz (a+b-c)/(l ~-2)

which shows that the pole at 2z = 0 has been renoved. The Frobenius natrix for

(5.3) is given by

(5.4) B =

(5.5) B = 1.

The canonical lifting ¢, for =z is then given by

A
K ) , a X a &
= n —3— . " p (n—l) it ~8 "C:J n ___3_ rcP
(5.6) 0 = pz Kl + q(-(ec - b) nz )+'Zs=2 q (- Ms,} + pz Kl Ms,l> ’
where a Py
M i
N J'S,l I\s,2
M =
=]
M il
1s,B Ils,4

is defined starting with (5.3) by the equation

]
1 d -
(5-7) —S—"_ E-Z—é- v = VMS .

We see no reason to believe that ¢ is defined by (5.6) on the punctured disk.

If however 4 =1, c¢ =1 then equation (2.3.4) takes the form

(5.8) T = log i + Tl , Tl e X[[A]] .
o \
pr, = 1,(0") moa p o [[4]],
0,, = ring of integers of K .

K
We deduce that

eTl(X)—Tl(O)

(5.9) e a0 [[n]]
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7,(0)
and that e €1 +p OK o This shows that

(5.10) o™ M) _ A(po + P, At oees)

1

where is a unit and each pj € Ok .

Po

Letting y(A) = P M+ Py hz + +es the condition for the csanonical 1lifting ?

now take the forn
(5.11) (9, (1) = y(A)® .

It is clear that this relation defines 9, on the disk D(0 , 17) .
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