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SINGULAR RESIDUE CLASSES WHICH ARE ORDINARY FOR F(a,b,c,03BB)

Bernard DWORK

Groupe d’étude d’Analyse ultrametrique
(Y. miCE, G. CHRISIOL, P. ROBBA)
lOe annee, 1982/83, n° 23, 11 p. 13 juin 1983

In early work C2~, on the p-adic theory 2) of the differential equation

a critical role was played by the existance of ratio T of formal solutions such

that

Indeed if denotes the unique solution holomorphic and taking the value 1

at À = 0 , (hence F(A) = , 1 , À) ) then there exists a second solution

defined uniquely by the condition that G It is known that if we set

then

In a subsequent article [3]~ an elementary proof independent of the theory

of elliptic modular functions wa presented. However insofar as the hypergeometric

function F is concerned, this second treatment was restricted to the

case of logarithmic singularity, i- e" 

In more recent the behavior of the Frobenius matrix was carefully com-

puted on the singular disk D(0 , 1-) , y but the question of normalized solution

matrix on the singular disk and the question of whether singular disks are ordinary

was not treated. The object of the present note is to respond to these questions

for the hypergeometric function.

The usual condition for being ordinary, the non-vanishing of the flasse invariant

is not quite appropriate in the present situation. A better definition involves not

having a too high order of zero at À = 0 . A precise definition of ordinary singu-

lar disk is given below (1.11). We show that our definition is consistent with the

( ) Bernard Mathematical Department, Fine Hall, Princeton University,
PRINCETON, NJ 08540 (Etats-Unis).
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usual one in terns of the existence of unique bounded solutions of the differential

equation and in terms of special solutions of the Riccati equation. We do not give

a detailed examination of supersingular, singular disks comparable of that of [4~

chapter 16, for supersingular, nonsingular disks. In $ 5, we pose the question of

whether the canonical lifting extends to all of the ordinary, singular disk. The

terminology used here is that of references [4]~ [5’j. We take this opportunity to
observe that in [4J, Theorem 25, in case 4 the values given for 0 ~ , B4(0) ,
B should all be divided by p . This error does not appear Theorem 4.

1 a and definition of ordinarv singular disk.

bie study the differential equation

with subject to the conditions

choose l E N such that

use B in the sense of [4 j, equation (9. 1 i 1. 2), as matrix of the mapping
..:~ A !L

We know that

is an endomorphism of the solution space of Here m is the number

of steps of type 4 in the sequence 03B1*0 , ... , 03B1.

We shall assume

As Chapter 24, y we set if c # 1
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(resp.

if c = 1 where H E A is defined by the following condition) . The choice
of U is such that

(resp.

is a solution matrix of (1.1)(. a, b ,C )8
It is known ~~.~, Chapter 4~ that aside froii possible poles at 0 , (;0 , the natrix

B is analytic for

In fact, there is no pole at A = 0 . This can be deduced from the explicit cal-
culations of [5J (refining r 5J, (3.15.1), by replacing the factor by
~ ).

The situation at A = 0 may also be explained by the method of [4~ Chapter 24,
using the calculation of constants in Chapters 25, 26 of that work. In this connec-

tion, it is useful 0 t recall that the steps 03B1*0 ’ ... , y are either all loga-
rithmic or all non-logarithmic.

There is no need to give the completely elementary proof, except to remark that
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the calculation of ord 
P e l resul ts from the explicit formula for el ([ 4],

Theorem 25) which must be repeated for each step 0:’0 ’ y .... , together with

the formula ([4.J p. 246)

provided Thus in computing y y) with

x , y ~ (2 n Q) - Z , py - X E Z , we must use the translation formula [4J,
(21.4.3) , to reduce to the situation in which py - x is a positive integer bounded

by p - 1 . Also we nust remember to remove a factor, p , for each step of type
4 .

As in the treatment of [4], Chapter 24, we may use this last lemma to detemmine

the value of B at A = 0 .

1.8. IJElB0152IA.

Proof. - For l = 1 this is shown in [4], Chapter 24. The generalization to

~~ 1 is trivial.

lle now recall the mod p type calculations of B .

1.9. LEI4MA. - There exists a 2x 2 natrix B with coefficients in

Furthermore is of type 1 (resp. type 2 ) then the 2nd row (resp. the
first row) of B is trivial and neither B nor B (resp. neither B~ nor B4)
i s trivial.

Proof. - This is shown [4], (9.1.4i, subject to the further conditions ([4] (6.6.4)).
These last conditions were used in verifying [4], Theoren 6.6. These hypotheses are
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eliminated in the calculation of [5~ ~4.

( It follows fron the that B is bounded by unity on the generic disk and

hence the Taylor series expansion of B may be deduced from that of B by reduc-

tion rod p .)

We are now prepared to define supersingularity for the singular disk D(0 , 1 ) .

recall ([4-Ii? Theorem 9.6)y the Hasse domain, SH , y is the union of all residue

classes (~ 0 y I y ~) such that B1(03BB) (resp. ° B (X)) is a unit. Aside from the

trivial factor, our condition for D(0 y 1 ) is formally of the same type. However

we note that under our definition, by Lemma 1.6, D(0 y 1 ) is ordinary ify and

only ify the sequence 03B1*0 , y ... , 03B1*l-1 has at least one split step and all other
U -.r-l

split steps arc of the same type.

We extend let S’ == S.- D(o , I") if D(0 , I") is

ordinary, and l-et IL (S’H) denote the ring of analytic elements on S’ which are

bounded by unity.

1.12. THEOREM. - If is of type 1 (resp. type 2) and if D(0 y I") is
2014 ~~ 201420142014201420142014201420142014 

~2014.--.. 
201420142014. 2014201420142014 2014

ordinary then the fixed point T) ~ , in H (s~) ~
.?

(resp.

extends to an eleuent of and

Proof. - To fix ideas we restrict our attention to the type 1 case. By lemmas
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where each K and lie in 

Putting w = À w , y we reduce the problem to that of finding the fixed point of

This napping is clearly contractive on and so the asserted fixed point
on exists, clearly coinciding on S with the fixed point demonstrated in

[4], Theoreu 9.6. This completes the proof.

1.13. COROLLARY.

Proof. - We know that T{ (resp. 11) satisfies the condition that 1: ul)
(resp. (~u2’ u2)) is a solution of (1.1) for suitable u (resp. u2) (cf.
[.4]y Theorem 9.6). Hence are solutions of a Riccati equation. Our

formula for U gives us two solutions for this Riccati equation. To make sure that

we have the correct solution it is enough to check the initial value. This completes
the proof.

2. 

Let D(0 y 1 ) be ordinary for (1.1). To fix ideas, let be of type 1.

We know that (U1’ u1) is a solution of (1.1) with À.c u ~ Q[[]]. In fac t ,

and by hypothesis e 4 is a unit. If follows from (1.12.2) and (2.1) that ÀC u
i s bounded on 1 ) .

We now define the normalized solution matrix

o f ( 1 . 1 ) ~~r the condition that V have coef in bl[ [ A-l ] , where K is an

infinite unramified extension of Qp , 9 and that

and that
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v being the first coefficient of the first row of V . Here v denotes the

Frobenius antomorphism of K over Q and (2.2.1) is equivalent to

As in [4~ Chapter 9, we write

so that

where k , kl ’ k e K . More explicitly,

Following the proof of [4], Theorem 9.6, we deduce :

2.3. THEOREM.

Using ( 1.. 22.2 ~ and putting

we obtain
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This congruence is the generalization of (.1). There is a similar formula for the

type 2 situation.

Note. - The evaluation at À = 1 of the right side of (2.3.3) has been studied

by KOBLITZ [6] and DIAMOND [1 ] .

3. Relation between tv’ e 1 and type 3.

It follows fron the symplectic relation (L4J (2.5.2»), that if Y is a solution

uatrix of (1.1)( b ) then
/’

is a solution matrix of (1.1) (i-a, 1-b, 1-c) . Here Y* 
is th.e transpose of the in-

verse. It follows from [4 ], Theorem 4.7, that if we use B to denote the matrix of

9 1 with ( a, b , c ) replaced by y and if

then

Thus if

If is of type 1 then is of type 2 and this shows how

we may pass fron one situation at the other.

4.S~~~~~~~~gr-. 

We justify our definition of ordinary.

LENNA.. - If 0153:-l is a split step but D(a ,1-) is not ordinary, then

(1.1) (!) b ) has no solution bounded on D( 0 , y 1-) .
~a~b~c)2014201420142014201420142014201420142014201420142014201420142014201420142014

Proof. - By hypothesis c / 1 . It is enough to show that each row of the matrix

U is unbounded on DBO , 1 ) . We use Lemma 1.6 and, to fix ideas, we let 03B1l-1
be of type 1, and let u2) be the first row. We assume u1 , u2 bounded.
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We have

The important point is th,at |p| , while K (03BB) takes on unit values.
Thus for |03BB| very close to 1 y e u is dominated by 03BBc(pl " ’ and hence

we must have

for such values of X . This shows that, in the boundary norm,

Putting ~ = y we obtain a solution of the Riccati equation.

where ~ is meromorphic, bounded on D(0 , y 1 ) with boundary norm greater than

1/Jp) . Clearly the term a + b - c 1 - 03BB ~2 dominates all the other terms and this

contradicts the assertion.

The same argument is valid for the second row of U as e4 is not a unit.

5. Canonical lifting.

again assume that D(a , 1 ) is ordinary and that (1.1)( type 1. We
a, ,c

then know [4J, Chapter 13, y that there exists a canonical lifting of Frobenius,

such that equation (2.3 .4) takes the form

The important point here is that we know that 03C6l is defined on an annulus

e  IAI  1 y but do not know if 9n extends to the disk 1 ) .

Our basic relation [4J, does not help here as the matrices

have poles at 03BB = 0 . life may eliminate this pole by a change in variable. If

c = n) == 1 y and put 03BB = z
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takes the form

which shows that the pole at z m 0 has been removed. The Frobenius matrix for

(5.3) is given by

and using equation (1.12.2) we obtain

A

canonical lifting for z is then given b~,

where

i s defined starting with (5.3) by the equation

We see no reason to believe is defined by (5. 6) on the punctured disk.

If however :~ = 1 , c = 1 then equation (2.3 .4) takes the form

OK = ring of integers of K .

deduce that
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and that e1(0) ~ 1 + P 0 . This shows 

where 03C10 is a unit and each p . J 
e 0-, K .

Letting = À + + ... the condition for the canonical lifting 1p~
now take the foru

It is clear that this relation defines (;)1 on the disk D( 0 , 1 ) .
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