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PUISEUX EXPANSIIONS

%
by Bernard M. DWORK ( )

The object of this note is to discuss p-adic convergence of Puiseux expansions
of algebraic functions. We shall review joint work [D-R] with ROBBA on this ques-—
tion and shall discuss the problem of lifting Puiseux expansions in characteristic

P .

Notation.

K = field of characteristic zero complete under a discrete nonarchimedean va-

luation with residue class field of characteristic p .

k regsidue class field of K .

1l

O = ring of integers of X .

R=0[x], R=1xx].

E = completion of K(x) under the Gauss norn.
R=0[[x]], R=2x[x]].
E = quotient field of completion of R under the sup norm on D(0 , 1) .

An element § € K((xl/m)) will be\said to "converge" in D(x ’ r ) if for sui-

table N e N, XN §(xm) is a power series converging in D(O ’ (rm)_) .

A series §(X) = z?__m Aj XJ/m will be said to be a Puiseux Laurent series

"convergent au bord" if &£(x") converges in an annulus By = {x 5 r<|x| <1}.
?
Let f eRy], f its inage in R[y] under the natural mapping. We say that
g e x((x™) (resp. e ((xt ™))) is a Puiseux expansion for f (resp. FT) , if

£f(x , §) (resp. f(x, €)) =0 .

We refer to the union of the zeros of the discrininant and the zeros of the lead-

ing coefficient as the singular locus of f .

We consider two questions :

Question I : Let & be a Puiseux expansion for f . Does & converge in D(O , 17)e

Question II : Let € be a Puiseux expansion for f . Can € be lifted to a Pui-

seux expansion for f ?

(w) Bernard M. DWORK, Mathematical Departuent, Fine Hall, Princeton University,
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dc observe that liftability inplies not only convergence on D(0 ’ 17) of the

lifted expansion but also boundedness by unity.

It is clear that if deg f =n = deg, f and if T has n distinet Puiseux
expansions, and if the answer to I is affirmative, then the answer to I is also

affirmnative,
We shall have occasion to consider various conditions :

(Hl): The valugtion induced on K(x) by the Gauss norn is at worst temely rami-

fied in the splitting field of T .

(HZ): The singular locus of f has no elewent in the punctured disk D(O,l—)—{O}.

(H3): f and ?y (=-§§) have no comcon factor in Rly] .

(H4). degy f = degy T .

THEOREM [ D-R}. - Assune (Hl), (H2), then Question I has an affirmative response.

For proof sece [D;R]. The condition (H2) is clearly necessary.

3

Example. - f =y - x(x + p) .

5/
A Puiseux expansion xl/B Z? A, XJ’3 satisfying I would inply

J=0 7J

2 Ay = (22 4 p)l/3 ,

o/ -
and differentiating shows theat x2/(x3 + p)"/3 is analytic in p(o s 1 ) , which

is impossible.
Remark., — We attributed to HIROWAKA [Dw] the statement (for fe Zx, y] ).

(F ﬂ'iﬁ_ f is irreducible over .g(x) , arg if the discrininant of f and of f

have the same degrees as polynomials in x , then the Puiseux expansions of f 1ift

to Puiseux expansions of f .

This example demonstrates the inaccuracy of (¥ 1).

—

LEMMA. - Asaune (HB). We conclude that each Puiseux expansion "} of F has a

lifting to a Puiseux Laurent series for f ‘'convergent au bord'.

Note. — We do not assuue (H2). We do not affirm a positive response to Question

II.

Proof. — We may assume that 7 € K[[x]] . Let 1 be a lifting of T in O[[x]l.
Hence letting (®) be the prime ideal of X ,

e(x, e u0[x]] wnite (e, ) =F(x, D40,
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i. e. fy(x ’ 7)) is an element of ©O[[x]] with at least one unit coefficient.

Choose a positive real © , 1> ¢ > |Hl , then there exists r <1 such that

2 G, D> /Y2, vxen
r,l

while
le(x, M <|ul, vxedo, 17).

A

We nowput y =T+ w, so

A

tx, y) = £, M o+wt (x, M T w0k £ (%)
and then put w = zf(x , ﬂ)/fy(x , 1) , so that
fx ) : J f(j)(%) £(x u)J -1 2
(1) =22 fl -1 +2+ zf;2 z 3 . L— T = L+z+ 4,2 + oce
£(x , 1) J S M C I )
where
£DE) 2, B
Aj= ,]° J,J=Z,3,ooa
S M C m)
Thus on A . , A, is bounded by o <1 and hence z p=> -1 - 2. _ A, 29 is
r,1 J Jj=2 7J

a contractive map on the space of functions analvtic and bounded by unity on

o, , + It is clear that the unique fixed point z; then gives a solution of (1) by
, "~

setting T} = T|+ %, fx , ”)/f (x , ]) , that 1) converges on A )1 and that the
Laurent series 2. . B. X representing Z f(x , ﬂ)/f (x , h) is bounded by

J==< ]
(IHI/U)l/Z <1, and hence

IBJ. | <1 3<0
which shows that Bj has zero image in K , i. e. Tf is a lifting of ﬁ as asserid.

COROLLARY 1. — Assume (Hl), (H2)’ (HB)’ then question II has an affirmative res-
ponse.

CORVLLARY 2. - Assune (H2), (H3)’ (H4), then question II has an affirnative res-
ponse.

Proof. - Assumptions (H3)’ (H4) inply (Hl) and hence the first corollary iuplies
the second. The theorern: shows that f has a full set of Puiseux expansions con-
verging in p(0 y 1—) . If € 1is a Puiseux expansion of T +then by the lemma E
has a Laurent series lifting, & , "convergent au bord". This § must coincide

with one of the previously mentioned solutions and so converges in p(o , 1) .
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We now disprove :

<F2) assunptions (H2), (HB> inply question II has an affirmative solution.

To construct a counter-exauple, it sesms useful to consider a polynomial not
satisfying (Hl)' For this reason, we consider yp+l + Xy + p which over E has

factors f, E'yP + xmod p , and f2 of degree 1 in y . It is more convenient

to write y = pz and so consider

P pt+l

P Z +xz + 1 =1(z) .

Mod p , we have the solution z = - x—l which clearly cannot 1ift to a Puiseux
expansion at x =0 in characteristic zero since in that characteristic x = 0 is
not a singularity. Trivially (HB) is satisfied. To check (HQ), we nust compute the

discriminant. We recell that for yN + Ay + B = g(y) , the discriminant is
N4l - _
(-1)(2)[(—1)NNNBNl-(N-1)NlAN].

Thus, for zp+l + (x/pp) zZ + (1/pp) , the discriuinant is

2
+ [(- 1)P+l (p + 1)P+1 C_%)P - ppc_%)p+1] _* p—p [(- 1)p+l (p + 1)p+l _ Xp+1] ,
1Y D

i. e. the zeros are outside of D(O s 1—) .

e now discuss in detail & well known exauple.

(E) £y) =y" -y -=.

" Here the discriminant is given by our previous formula to be

(- PR/ [ (L L (o Ry

Hence the singular locus consists of

a set of p points.

(E 1) There are no Puiseux expansions at x = 0 in characteristic p .

Proof., — If p is the prime above x =0 , then ord.:J y = - 1/p .

Hence a Puiseux expansion, if it exists, nust be of the form

-1 1 i .
(1.1) y=4, 2z +AO+Alz+...,z=x/p,w1tha11 Aj in gp,

but then

_JP_ 1 _ P pj_1
y =3 X—Zj=r-1 Aj Z Xek((x))
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a contradiction as is well known [Ch], (p. 64).

(E 2) No Puiseux expansion at zero in characteristic zero converges for

x| 2 [p|”P =z,

Proof. - 4 Puiseux expansion convergent for z € D(O , r ) - {0} means that we
obtain an eleuent of K((z)) with 2z = xl b which converges for 0 < |x| <r.

For r <1, we then have point wise

1P -yl = Ixl™t > 1, and so [¥P] > |y > 1.
Thus |y| = }x]-l/p point wise, and so if r > r, , then yp_l will assume the
value 1/p at suitable values of x such that le =r

O L]
Since dy/dx(pyp—l -1) = - 1/X2 , and since

dy/dx = (ay/dz)/(ax/dz) = (1/pz""1) ay/az

is analytic as function of 2z for x € (0 s r ) - {0} , we obtain a contradiction

if r > r, . The same analysis shows that convergence for |x| =r, 1is also in-

0 0
possible.

(E 3) There are p distinct Puiseux expansions at infinity in characteristic p .

2
- 1 1 1 - -
Proof. - Let Vo == %~ (E)p - CE)P - +es , then yg - ¥ = l/z .

The p solutions arc {}b + a}o<a<p .

(B 4) The p distincts Puiseux expansions af infinitv (in characteristic zero)

converge and are bounded by unity for ]zl > 1, but do not converge for 12[ =1 .

Proof. - At x = « condition (H2) is satisfied. The global conditions (Hs), (Hﬁ)
are also satisfied. Hence by the corollary the Puiseux expansions in characteristic

p may be lifted. These then are {y }

alaz0,1, .. 0t where y_ (nod p) = a + Yo

This shows that y_ € zp[[l/z]] , but if we write
L
a =0 7§ 3’

lle = 1 for an infinite set of J . This shows that the domain of convergence is

precisely lzl > 1.

This concludes our discussion of the exanple.

Generalizations.

1°e Let f €R[y] . The thcoren and the lemna generalize replacing (H2) by Hé ,
(HB) by (Hé) as indicated below.

(Hé) : The valuation induced on the quotient field of O[[x]] by the Gauss norm

is at worst tauely ramified in the splitting field of f
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(Hé) : T and Ey have no common factor in R[y] .

2°¢ Let G be an n x n natrix with coefficients in the quotient field of § .
We assunie that the differential equation dy/dx = Gy has no singularity in
(0 , 17) except for a reguler singularity at x = 0 with rational exponents. We
assunie that at the generic point t (in the sense of ROBBA [Ro 1])the equation
has n independent solutions bounded and analytic on D(t . 17) . We conclude that

the solution matrizx at the origin is of the form D XH wvhere I is a constant

diagonal matrix and D is a bounded matrix converging on (o , 1) .

The proof is omitted since it is so close to that of [ D-R]. The key point is that
the argument of ROBBA [Ro 2] shows that the hypothesis of boundedness on the gene-

ric disk implies the semi-simplicity of H .
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