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DIFFERENTIAL BQUATIONS WHICH COME FROM GEOMETRY

*
by Bernard DWORK ( )

l. Introduction.
Let k ©be an algebraic number field, and L a differential operztor in k(x)[D],

n n-1 n—-2
L=‘ L [d D = e 00 =
D Bn—l D Bnm2 BO ’
where each Bj e k(x) , D =d/dx . For each valuation 3 of k we define r(p)
to be the radius of the maxiwal disk of j-adic convergence of 2ll the solutions
of L at the ~adic generic point t . This neans that if b 1lies in any residue
class (with a Tinite nuuber of exceptions) in the algcbraic closure of the p-adic

coupletion of k then the @olutions of L at b converge in the disk D(b,r(p)_).

We recall the conjecture of Grothendieck [Ka 2]. For almost all waluations p we
may reduce the coefficients of I wmodulo y and obtain an operator L. with

- - v

coefficients in k, (x) y k) being the residue class field of k at 3 « For

i ¥ -

such  we view L _  as kj(xp) linear operator on kw(x) and let Vj denote
id ¥ 4 ¥

the kernel.

Conjecture of Grothendieck. - If

v of k

)

dlmEp(Xp) V% =n Tfor almost all valuations

then all the solutions of the differential equation Ly = O are algebraic func-

tions.

A weaker forn of Grothendieck's conjecture, adequate for the present work, may
be stated s

Conjecture G' . - If for almost all | there exists a residue class C_ such
Yl
Doy wee s Uy of L which converge and are

that there are n-solutions u o, u
bounded by wnity on C_ and such that the wronskian, det(ugl)) , assumes only

unit values on €  then all the solutions of L are algeby¥mic functions.
‘id

In our application we will take C _ to he the generic p—-adic residue class.
‘J

Guided by our own results [Ka 1], and those of Katz [Ka 2], we say that L is
DF¢ ("derived from geometry") if

(1) r(ﬁ) = 1 for almost all J .

h
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(2) Grothendieck's conjccture is known to be true.

In particular, it is known that the hypergeometric differential operator
L =x(1 - x) »° (¢c -(a+ Db+ 1)x) D= adb

with a, b, ¢ €eQ is DFG, Property 2 being known from [Ka 2] while Property 1

may be deduced for either [Ka 1] or [Dw] or fron [ELR 2] (Theorem 8.6).

The object of this note is to present some evidence in support of the following

conjecture

Conjecture Dl . -~ Let L be a DFG differential operator of oHrder n , irredu-
T (n-1)
\n—-

e
cible over k(x) with a solution w such that w, W' , see , W are alge-

braically dependent over k(x) . Then all the solutions of 1L are algebraic func-
tions.

We prove the conjecture for the case n =2,

This work is based upon correspondcnce with Fritz BEUKERS who considered this
question fron a different point of view. The proof of D2 in ¢ 3 has been simpli-
fied with the help of H. KATZ.

2. Inhouogensous relations.

Let £ be a differential field of characteristic zero with D = d/dx as dif-

ferential operator. Let n 22, Le £[D].

2.1 L=Dn-Z;‘;éBiD1, BeL, 0si<n.

We generalize a result stated by SIEGEL [3] (page 60) for the case n =2 .

"~
2.2, LEMA, - Let £ be a differential extension field of £ with algebraically
: A

closed field of constants € and let K be the kernel of L in £ . We assume

2ad1 dimC Xx=2.
> : : - ' (n-1)
2.2.2¢ —=There exists a non~trivial w € K such that w, w' , oo , W
are algebraically dependent over £ .
- - n-1
e assert the existence of non-trivial u € K -'such that w, u' , ..., u( )

satisfies a non-trivial homogeneous relation over the compogition C £ in £ of
C with £ .

Proof. - We may assurce that w setisfies no non-trivial homogenecous relation

over £ and that w, , w, span over C a two dimensional subspace, K2 , of K.

1 2
We will find w € K2 satisfying the conclusinon of the lerma.
For Q 553[Y0 y oeee s Vo 1] , a polynonial in n variables with ceefficients in

£, we define
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')’: _ . ‘ -1 .
2.3 Q = Q ¢ Qyo O Qynm2 Yy * Qyn-l Ei:O B vy e

Thus for w €K ;

, V! s v(n—l)j .

9 o o0

d - %
2.4 = alv, vt , oo, y(n 1)) =9 (v

Let u be the ideal of all P € E[yo y eee yn_lj such that

(n~1)
P(W,W,,o-u,w )'—:Oo

By hypothesis u i {0} . Let P be a non trivial eleuent of 4 which is mini~
nal in the sense that the difference between the degrees of the different homoge-
neous parts is as small as possible. Dxplicitly if Pj is the honogencous part of

P of degree j then

P=P +P
a

-
ees + _".)

arl T b

whare Pa and Pb are non-trivial with b - a mninimal. By hypothesis P cannot

be a form and so b # a . Fquation 2.4 shows that P € 4 and hence
) ¥ *% & *
WdP P -P P =2, (PP, ~-® P.).
a a i=a+l a i a i

Jince Q +—-> Q is a degree preserving napning of forms, the minimality of b -a

3¢

shows that P_ P; - P; Pi =0 for i=a+1, «e. , b and so in particular
2.5 P P* P* P 0

' a'b “a'b ="

e may assume that Pb(v) <=dof Pb(v y VU, e, v(n"l)) # 0 for each non-

trivial v € K2 and so from 2.5 we obhtain

2.6 = @ G/EE) =0,

2

Thus for (A Xz) € ¢ - (0, 0) we conclude that

1 ?

2.7 Pa()\l W+ A, w2) = f(.’\l , ;«2) Pb('/\l W+ Ay W,

whare f(hl y Xz) € C . Letting {Wwizel be a basis of S; over C , we may write
Pa(hy Wy hywp) =2 er Wy By (B 0 )
Pyl wy w Ay wy) =2 Pb,a(ﬁ » hy)

where Pa,a (resp. %,g) is a form in C[Al , X2] of degree a (resp. ») it

being mnderstood that the zero form has all degrees. We write 2.7 in the form

wel Wa(Pa,a'(Al y Ng) = £y ) Pb,u("l ) hp)) =0
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fOI' all ()\J 9 )\,) (=3 C2

5 - (0, 0) and so

2.8 ' P (A

gty s Ay) - f(A, , A.) P, :(Al , Az) =0

o . 2 i
for all (kl , RZ) € C° - (0, 0) . We choose « such that Py oo is not the tri-
9

vial form and conclude

I 3 ¥ \\ X y

ia(Al Wt )2 WZ) _ Pai;((f\1 , Ag)

(A - ALY - 7
plhy Wy + Ay ) TRy Uy Ay)

for a1l (A k2) e ¢® such that

1 ’
Pb,a(Al , A2) #0
Under this condition we have

. . : s . _
2.9 Pa()\l W+ A, w2) Pb’q(A1 , hz) lb(hl W+ X2 w2) Pa,q(hl , h2) 0

1

which shows that the left side uust be identically zero as element of €[\
Dividing Pb,a and Pa,”
be relatively prime forms in C[A

A .
1°? 2]
by their greatest comnon divisor we nay assume them to
L0 A } .+ Bince b>a , and C 1is algebraically
closed we may choose (hl , A,) in C° such that

P (xl , hz) =0, P

- y
b,o (A5 2 #0.

a,u

Then putting u = Kl w, o+ A2 W, € K2

tradiction coupletes the proof.

, we see frow 2.9 that Pb(u) =0 . This con-

3. Proof of Conjecture D2 .

THEOREM, - Let L e k(x)[D] be a second order DFG differential operator irre-

ducible over k(x) with non-trivial solution w such that w , w' are algebrai-

cally dependent over k(x) . Then all the solutions of 'L are algebraic functions.

Proof. - By 9 2 there exists a non-trivial sslution u of L such that u, u!
satisfy a homogeneous relation over C(x) where C is a constant field extension
of k .

Hence u'/u = T is an algebraic function. Thus 1 is a solution of the Riccati
equation associated with L . Since L is irreduciible. over k(x) , it is also
irreducible over C(x) and hence T]Q’C(x) . Thus there exists a distinct conju-

gate of M = ﬂl over C(X) which is again a solution of the Riccati equa~

T
i
2
tion of £ . We extend each valuation , of k to C and by [D-R 1] for almost

w

all u» the branches of '} at the generic point td are analviic in D(th ’ 1_) .

Let ui denote a solution at t  of the equation

‘J



| I
uio=uony
i=1, 2
u, (t ) =1
S
ﬂl y ﬂz being two distinct branches of 7 at tg . 3ince ui is a solution at
t  of L, we know (since L is DFG) that (excluding a finite set of & ) uy
v

converges in D(t‘ » 17) and by the corresponding property of u}/ui = ﬁi y WE
¥ -
conclude that vy is never zero on this disk, and hence for x 4n this disk we

have
| _ £ - .
g GOl = Joy ()] = 1
5 he: -onski ! - 'o= A, - asgun
On the other hand the wrouskian, uy u2 u1 u 5 ul u2 ly ﬂl) unes only
unit values on thig digk for almost all | since ﬂz - ﬂl is a branch 2t t_ of
".i

an algebraic function defined over C(x) « This shows that L satisfies the hypo-
thesis of Conjecture G' and since L is DFG, we conclude that all aolutions of

L are algebraic function. This completes the proof.

4. Horogeneous solutions.

In ¢ 2, we showed that under certain conditions we may be sure that a honoge~
neous relation is satisfied by some solution of 2.1. We now exanine this relation

more closely.

4.1, LEGA, - Let L, £ be as in § 2. Let F be a homnogencous irreducible fornm

in ﬁ[yb RTINS A l] and w an clement in the kernel K of L in a differen-

tial extension field £ such that

Aelel Flw , w' , eee , w(n—l)) =0,

Lole2e- (w y W' oy eee, w(n'l)) is projectivelz»algebraically independent over_f

then there exists & in some extension of ¢ such that §'/§ € £ _.and such that

{ e
E% (g-l F(v , oo, v l)) =0 for each v €K .

Proof. - We eliminate y _, between F and F (cf. 2.3) and obtain

Rz 2 7y s wee s Ty o) = Ay s eee s v, ) Fly) + Blyy 5 eee s v, ) F ()

where R, A, B €f£[y] , and are indeed homogeneous forus. Specializing

, L)

(yo 9 e Yhﬁl) - (W ’ W’., ese
. (n—2) s s s e
we find that R(w , eee , w ) =0 and so R is identically zero.
Thus as polynomial in Vo with cocfficients in the Tield ﬁ(yo,yl,...,yn_2)

1 :
3* !
the polynomials F , ¥ have a non-trivial common factor h(yn_l) which shows that
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ta

does not lie in E(yb s Yq 9 eee ) . Since F is irreducible in

v Tpoo
[yb y see s yn_1] , it is 2180 irreducible in fj(yO y ees yn—2)[yn-l}%’ and so

h=F . We conclude that F =TF with Te E[yb s ees yh—1] , but F , if not
zero, is a form of the same degree as F and so Te® . Ve choose € in a suitable

extension field such that ;'/g €T , Thus if v €K we have

2
g

le.

(6 5(v)) = &' (v) = ¢ #(v) = 0

o

ax

as asserted.

4.2. Application of Lemma 4.1. ~ Let now L be DFG with coefficients in k(x) ,

and let £ be a constant field extension of k(x) , say £ = C(x) , CDOk .
Under the hypothesis of Lemma 4.1, F € C(x)[yo , eee yn—l] and so E'/¢ e 0(x).
If T(v g eee 4 V n—l)) =0 for all v €X , then we nay put & = 1 . Otherwise
for each prime , of k , we may choose a power series solution v of L =0

which is analytic at t , the , generic point, such that f(v , ... , ver]))% O.
Hence there cxists a branch of € at t  such that &/P(v y eee 5 ¥ n—l))

non-zero constant. This shows that for aimost all 3 , the branch of § at t_
(i. €., the solution at t,  of g'/g = T ) converges in D(% , 1_) . This holds

-

is a

regardless of how we extené the valuation , to C and hence we conclude, since
the Grothendieck's conjecture is known in the first order casc, that & is the
radical of an element of C(x) o Thus replacing I by a power, we obtain

F e C(x)[yo y see yn_1] such that

, A2t

Plv, v', .. = constent
for ecach v €KX . We helieve that it is possible to replace ¥ by a form with

coefficients in k(x) .
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