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DIFFERENTIAL EQUATIONS WHICH COME FROM GEOMETRY

Bernard DWORK

Groupe d’ étude d’ Analyse 03BB1 tramétrique(y ,-,FI"T.1 G CHRISTOL. :) DOB).c’f’,)
1982/83, n° 9, 6 p. 24 janvier 1983

1. Introduction.

Let k be an algebraic number field, and L a differential operator in k(x)[D] ,

where each k(x) , D = d/dx .. For each valuation ? of k we dofi ne 

to be the radius of the maximal disk of convergence of all the solutions

of L at the generic point t . This means that if b lies in any residue

class (with a finite number of exceptions) the algebraic closure of the p-adic
completion of k then the solutions of L at b converge iii the disk D(b9r(~~ .~
We recall the conjecture of Grothendieck [Ka 2]. For all waluations p we

reduce the coefficients of L modulo and obtain an operator L. with

coefficients in k. (x) y kp being the residue class field of k at p . For

such p we view L as linear operator on kp,(xp) and let Vp denote
I 

. 

í :v 
. 

the kernel.

Conjecture of Grothendieck. - If

vp = n for almost all valuations p of k

r 
/ 

then all the solutions of the differential equation Ly = 0 are algebraic func-

tions.

A weaker forui of Grothendieck’s conjecture, adequate for the present work, may
be stated :

Conjecture G’ . - If for almost all p there exists a residue class C 9 such

that there 
are 

n-solutions y ... y u n of L and are

bounded by unity on C and such that the wronskian, assumes only

unit values on C then all the solutions of L are algebraic functions.

In our application we will take C S to be the generic ladic residue class.

Guided by our own results [Ka 1], and those of Katz [Ka 2J, we say that L is

DFG from geometry") if

( 1) r(;) = 1 for almost all; .

.

( ) Bernard :[1.1. DWORK, Hall, Princeton university,
I~J 08540 
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(2) Grothendieck’s conjecture is known to be true.
In particulary it is known tha,t the hypergeometric differential operator

with a , y b , y c ~Q is DFG . Property 2 being known from [Ka 2] while Property 1

may be deduced for either [Ka 1J or [Dwi or from [D-R 2] (Theorem 8.6).

The object of this note is to present some evidence in support of the following

conjecture :

Conjecture D . - Let L be a DFG differential operator of order n , irredu-- 

( _1)
over k(x) with a solution w such that w’ , ... , w’~ ~ are alge-

braically dependent over k(x) . Then all the solutions of L are algebraic func-

tions.

We prove the conjecture for the case n = 2 .

This work is based upon correspondence with Fritz DEUKERS who considered this

question from a different point of view. The proof of D in 9 3 has been simpli-

fied with the help of N. 

2. 

Let E be a differential field of characteristic zero with D = d/dx as dif-

ferential operator. Let n ~ 2, 1, G 2[D’] .

We generalize a result stated by SIEGEL [3J (page 60 ) for the case n = 2 .

/It.

2.2. Let E bc a differential extension field of E with algebraically
- . 

- 
/It.

of constants G and let K be the kernel of L in E . We assume

. 2.~.1 dime I{ ~ 2 .

2.2.2. -’?here exists a non-trivial w e K such that u, iq’ , ... , 

are algebraically dependent over f..

’:»Te ,assert t»u u existence of non-trivial u E K such that u, u’ , ... , 
---- . &#x3E; ......- 

- ... 

satisfies a non-trivial homogeneous relation over the composition C E in E of

C with E .

@. -- B1e assume that w satisfies no non-trivial homogeneous relation

over E and that w 1 ’ w2 span over C a two subspace, K2’ of K .

vIe ’will find u E K2 satisfying the conclusion of tb.e lemma.

For Q G f, " [;r "’ 0 , ... , Yn-i]’ a polynomial in n variables with coefficients in

f, we de fine
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Thus for 

Let a be the ideal of all PEE [yO’ ... , such that

By hypothesis a~ fo} . Let P be a non trivial element of a which is mini-

iial in the sense that the difference between the degrees of the different homoge-
neous parts is as small as possible. Explicitly if P , is the homogeneous part of

P of degree j then

where P and P are non-trivial with b - a minimal. By hypothesis P cannot’ 

a u 
’ ~ ° 

~ 
" " - ’

bo a form and. so a . Equation 2.4 shows that and hence

Since Q t2014&#x3E; Q is a degree preserving capping of forms y the minimality of b - a
;; ., 

shows that Pa Pi - Pa Pi = 0 for i = a + 1 , ... , b and so in particular

We may assume that Pb(v) ... , 0 for each non-

trivial v E 1(2 and so from 2.5 obtain

Thus for (;B, À2) E C2 - (0 , 0) we conclude that

n

where f(03BB1 , 03BB2) E C . Letting be a basis of  over C , may write1 2 03B1 03B1~I

where (resp. Pb. 03B1) is 11 form in /B2] of degree a, (&#x3E;’«sp. b) it
a,a o,~

being understood -ch.at tho zero has all degrees. 1Je write 2.7 in the form
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for all (f’l’ 1B2) E C - (0 , 0) and so

for aij ( ,j l , x ) 2 E C2 - (0 , 0) . !Ifo choose q such that P 
b,03B1 

is not the tri-

vial form and conclude

for all (B , C2 such that

Under this condition we have

Â

which shows that the left side must be identically zero as element of f’.[:B ’ À.2J .
Dividing Pb and Pa,03B1 by their greatest common divisor we nay assume them, to

,’" a,C! 
v - c-

be relatively prime forms in C[Àl ’ 03BB2] . Since b&#x3E; a , and C is algebraically

closed we may choose y À2) in C such that

Then putting u == "1 w 1 + À2 w 2 E K 2 ’ we see from 2.9 that P b (u) = 0 . This con-
tradiction conpletes the proof.

3. ~o ’

THEOREM. - Let Le k(x)[D] be a second order differential operator irre-

ducible over k(x) with non-trivial solution w such that w , w’ are algebrai-

cally dependent over k(x) . Then all the solutions of L are algebraic functions.

proof. - By ~ 2 there exists a non-trivial solution u of L such that u , y u’ t

satisfy a homogeneous relation over C(x) where C is a constant field extension

of k .

Hence = 11 is an algebraic function. Thus rl is a solution of the Riccati

equation associated with L . Since L is irreducible over k(x) , it is also

irreducible over C(x) and hence T]~ C(x). Thus there exists a distinct conju-

gate 112 of q = Tj over C(x) which is again a solution of the Riccati equa-

tion of r, . We extend each valuation ,. of k to C and by [D-R 1] for almost

all ;fi the branches of Tj at the generic point t. are analytic in D( B. ’ 1-) .
Let u i denote a solution at t of the equation
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, being two distinct branches at t . Since u. is a solution at

t of L , we know (since L is DFG) that (excluding a finite set of p ) u.
converges in D(t ? , 1 ) and by the corresponding property of u’/u. == T[. , we

~ 
" - 

_ 
i .L

conclude that u. 1 is never zero on this disk. and hence for x this disk we

have

On the other hand the u u2 - ul u I 2 = u u (7; - ~ ) assumes only

unit values on this disk for almost all j since f~0 - is a branch at t, of
~ i ~

an algebraic function defined over C(x) . This shows that L satisfies the hypo-

thesis of Conjecture G’ and since L is we conclude that all solutions of

L are algebraic function. This completes the proof.

4. 

In  2 , we showed that under certain conditions we nay be sure that a homoge-

neous relation is satisfied by some solution of 2.1. lle now examine this relation

more closely.

4.1. 1&#x26;.lIIli. - Let L , y E be as in § 2. Let F be a homogeneous irreducible form

in ... , y 1J and w an element in the kernel K of L in a differen-
- 

tial extension field E such that

4.1.2.- (w , ... , w(n-1)) is projectively algebraically independent over , 

fi,

t hen there exists 03B6 in some extension o.f f such that such that

Proof. - vie y 
11- 1 

between F and F’.’ 2.3) obtain

where R y E and are indeed Special izing

we find that R(w, ... , w(n-2») = 0 and so R is identica1l7 zero.

i’i&#x3E;us is polynomial I , y 1 with coefficients I» t3.1e field 2)
the polynomials F , F* have a non-trivial common factor which shows that
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F does not lie Y 1 ’ ... , ’ y n--2) . Since F is in

lYo , ... ,y 1J , it is also irreducible in I (;ro , ... , y 2)[y 1J, and so
h x F . ifre conclude that F’ == TF with T~ f[yo ’ , ... , Yn-l] , but F" , if not

zero, is a, form of the sane degree &#x26;*s F and so TEE. We choose g in a suitable

extension field such t:hat S’ Thus if v E K We have

as asserted.

4.2. Application of Lemma 4.1. - Let now L be DFG with coefficients in k(x) ,
and let E be a constant field extension of k(x) y say it, == C(x) , C &#x3E; k .

Under the hypothesis of Lemma 4.1~ Fe ... , and so e C(x).
If y ... , v~"~~) = 0 for all v eK , then we nay put S = 1 . Otherwise

for each prime ;~ of k, we may choose a power series solution v of = 0

which is analytic at generic point, such that f(v, y ... ,  0.

Hence there exists a branch of § at t , such that ... , is a
’,’;

non-zero constant. This shows that for almost ~ the branch at t ~
(i. e., the solution at t of == T ) converges in D(t, 1-) . This holds

r ~
regardless of how we extend the valuation ~ to C and hence we conclude, since

the Grothendieck’s conjecture is known in the first order case, that § is the

radical of an element of C(x) . Thus replacing F by a power, we obtain

F E ... , such that

for each v e K . believe that it is possible to replace F by a form with

coefficients in k(x) .
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