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HADAMARD OPERATIONS ON RATIONAL FUNCTIONS

Alfred J. VAN DER POORTEN (*)

Groupe d’étudc d’imalyse ultraoétrique
(Y. MICE, G. CIIRISTOL, P. ROBBA)
10e année , 1982/83 y no 4 , 1 1 p. 15 novembre 1982

2 bh Xh are rational functions then so is their Hadamard pro-

duct 03A3 b. == 

ch’ h ~ 0 and equally simply if f is a polynomial then

also I X is rational. In a talk at Budapest , in july 1981 [l3~ I announcer
and at this seminaire I presented, purported proofs of best possible converse re-

sults in characteristic zero. Throughout,  denotes a field of characteristic

zero, and R is a finitely generated subring of K . In the algebraic case, when

we suppose K of decree d over ~ , the ring R is then a ring of S-integers of

K~ with S some finite set of valuations of K including all its archimedean va-

luations.

THEOREM A (Hadamard quotient theorem). - Suppose 03A3 c h Xh, I b h Xh are Taylor

expansions of functions rational over K and that there is a sequence (a’h of

elements of R so that ah ch’ h ~0 . Then there is a rational function

Xh with a- b- == c. y h $. 0 .

THEOREM B. - Suppose b is a possibly degenerate exponential polynomial and 

a sequence of elements of R so that I is rational. Then there is a ra-

tional function I a X with b a = h ~ 0 . In particular, if b is a

nondegenerate exponential polynomial and a an arbitrary peruutation of

N = (0 y 1 , 2 , 3 , ... ) X rational implies there is an integer
d &#x3E; 0 so that for each r, 0 ~ r  d , y the function a(hd + r) is linear in h

f or all sufficiently large h.

In 1979, POURCHET [8], outlined a proof of theoreu A. It seems fair to remark that
[8] was generally viewed as consisting entirely of wellknown or evident propositions
that did not appear to contribute materially to a proof of theoren A. I shared this

vi ew, vide until the writing of the present report (april 1983). Though it
may have taken me some years ’ to decipher Pourchet’s intent, and though my proof

arose more or less independently, the proof below precisely follows the programme

proposed in [8]. Just as it is improper to claim that a sequence of uninterpretable
hints contitutes a proof, y so it is imrioral to suggest that a proof acting upon such

hints is independent. I do not suggest this. The proof below is, d’après POURCHET, y

( ) Alfred J. VAN DER School of Mathematics and Physics, y Macquarie Univer-
sity NORTH RYDE, 211:3 (Australie). 
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I do not provide a proof of theorem B but restrict myself to the improper expedient

of giving some easily understandable hints.

If 7 a. Xh = r(x)/s(x) with r, s polynomials then we nay set over K o

From a partial fraction expansion we then obtain

with the A. in K[X] and deg A. ==n. -1 .Thus the ah are generalised power

sums or equivalently are given by an exponential polynomial 
a evaluated at the

non-negative integers. The distinct quantities 03B11, ... , "Ll are the characte-

ristic roots of the exponential polynomial a ; each appears with multiplicity y

respectively n.. Ue also have a linear homogeneous 
recurrence relation

is a so-called recurrence sequence of order n . Its initial values

.a 1 ~ .....a , n-1 ~ i ... are determined by the numerator r(x) . If

deg r(X) = r r n then the exponential polynomial and the recurrence relation,

yields ah only f or h &#x3E; r - n .

To verify the rationality of 03A3 ah X one studies the Kronecker-Hankel determi-

nants of the sequence 1

It is immediate that with (ah) a recurrence sequence as above one has Kh a = 0

for + 1 , n). The converse is true but some traditional proofs, for

example [.7] (chap. 3, p. 85-99), seem to ne to be unnecessarily clever. Certainly a

straight forward induction as given by SALEM [ll], suffices and nakes it easy to

see For example, if for then there recurrence

sequence of order HO so that a~ = a~ for at "

How right we go about showing that Kh a = 0 ? In the first instance, we will

want to suppose that the field of definition of the roots and 
coefficients of the

generalised power sun ah is an algebraic number field K of degree d over Q .
° i 

-... 
’""’-

Given a sequence (ah) of elements of K , we write

and we then say that the sequence (a~) has size at most p if
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Here the sum is over the usually normalised valuations ~ of K : thus for

0 ~ x E K one has the product formula I log |x| =0 and if y is an integer
of K the constant sequence (y, y , ... ) has size / , where N is

the norm from ~ to Q . Since early values do not affect the size of nor

the rationality of X we may if we wish always suppose aO = 1 . A recurrence
sequence certainly has finite size ; conversely a power series X , y with (a.)
of finite size, is called a G-function (see BOMBIERI [1 J) .

Now turn to the sequence (K ) of Kronecker determinants K a of the sequence

(a,) .
Let T be a finite set of valuations of K . By the product formula : K, = 0

log tKj~ = 0 so

But a simple estimate yields

Hence if

for certain sufficiently large h then K h = 0 for such h .

2. p-adification and s ecialisation

It is wellknown, and elegantly described by CASSELS [4~ that any finitely gene-
rated field K nay be embedded in infinitely many fields Q of p-adic rationals

in such a way that any nominated finite set of nonzero elements of K is mapped
onto a set of p-adic units. The account in [41 is such that one sees that stopping
partway yields a homomorphism of a finitely generated subring R of K into an

algebraic number field, say of degree d over ; this latter mapping, which we

call specialisation is such that any nominated finite set of nonzoro elements of

K may be supposed to have been specialised to nonzero eleuents of the algebraic
number field. For some details see the account Though the point is not

explicitly made in [4J it is clear that the density of the good, or regular primes
that is those primes p for which one obtains an appropriate embedding of K

into , is 9 for example note [ 5] (p. 78 and p. 163). Nore precisely,

where the product is over regular primes only.
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"Ie apply these notions as follows : i Given an. exponential polynomial d over K

we may deem d to be defined over Q , p regular with respect to d, so that

the roots 6. be units of Q , so that no nonzero coefficient of the D. vanishes
i -p 3L

as element of and so that at most finitely many d(h) not already zero in

K become zero as elements of Q. Only the last condition requires coiument ; I

refer the reader to the survey commencing [6] and to remarks of CANTOR [3]. In much
the same way the exponential polynomial may be supposed to be defined over an alge-

braic number field without the sensible specialisation introducing any degeneracies.

. 

Now consider the p - 1 p-adic power series

Because the c. are units of Q we have
1. -p

so the naps

each continue to p-adic power series 65 exp( t log 03B4p-1) converging for t in

C , the coupletion of an algebraic closure with ord 
p 

t &#x3E; - 1 + 1/(p- 1).
P

To avoid irritating exp one nt s I write

I will ref er to the cited series d(t(p - 1) + r) as sensible p-adifications

of the exponential polynomial d .

lie p-adify so as to be able to use the following result : o Let g(t) 
a p-adic power series converging for t with ord 

p 
t &#x3E; - s + l/(p - 1~ 9 some

account for the convergence we must have

Now denote by A the operator defined by /Bf(t) = f(t + l) - f(t) . Then for

~=0 , 1 , 2 , ... ,

But ~k th is a polynomial in t cf degree h - k and with integer coefficients

each divisible by k ! . Hence if e is an integer then 0394k th vanishes for

h  k and is always divisible by k !. Thus
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which is to say that

3. proof of the Hadamard quotient theorem : old ideas.

now proceed to a proof of theorem A in apparently special circunstances. Thus,
we suppose that 0 , h ~ 0 . Next, we suppose that the quotient sequence 

It

(a ) y where ~ h 5.0 is a sequence of elements of an algebraic num-

ber field K of degree d over Q and that the sequence has finite size at most

p . denote by n the order of the exponential polynonial b.

In the immediate sequel, p denotes one of finitely many rational primes greater
than n with respect to which we may sensibly p-adify both band c . We con-

sider a typical quotient

a(t(p - 1) + r) = c(t(p - l) + r)/b(t(p - 1) + r), 0 ~ r  p - 1

of p-adic exponential polynomials.

It is known that each b(t(p - l) + r) has at most n zeros in the disc

(t : ord 
p 

t..;&#x3E; - 1 + n/(p - l)) .Wo recall that these zeros lie on the so-called
critical circles on which at least two terms of the power series b(t(p - 1) + r)
share minimal p-adic order ; these critical terms cannot be of degree greater than

n . Since b(t(p - 1) + r) has coefficients in p it follows that any of its

zeros to outside the unit disc must satisfy ord Hence for each p

and r, there is a polynomial f 
P,r 

in Z [t] of degree at
p, r -p

most n so that the power series

converges for t with ord 
p 

t &#x3E; - 1 /n, . 41 I should remark that much sharper facts hold :

but we only need f in Z and convergence beyond the unit disc to an extent
p,r ""p

independent of p.

Now denote by F a polynomial in Z [t] divisible in that ring by each of the
p --p

f . Then for each r, have
p,r

lim ôk F (t(p - 1) + r) 1) + r) t=0 ~ l/n + l/(p - 1) .P P t=0

Consider the (h+ 1) x (h+ l) determinant

noting that sinple row and column manipulation yields



4-06

It is not difficult to deduce that as h 2014&#x3E; ~

30 see that for h sufficiently large : o

Now if we were lucky enough to have each F with rational integer coefficients
p

then tIle remarks above would readily lead to a proof of theoren A. For we would lose

no generality in supposing F independent of p , we would have archimedean in-

fornation

on the one hand, whilst on the other hand we could conbine the pieces of p-adic

data. Provided only that

we would have K = 0 for all sufficiently large h, y whcnce 03A3 F(h) ah Xh would

have been proved rational. But then a result of POLYA-CANTOR [2] yields the ra-

tionali ty of 03A3

Unfortunately it would beg the question to suppose that F belongs to 
P ""-

Nevertheless, as we see below, we can arrange a sufficiently good approximation
to this state of affairs.

5~L~~~~~

To obtain the result that for h sufficiently large, say h~H, we have

we use only that

with k(p - 1) + r § 2h . Thus if we were to truncate the coefficients of the F
’ 

’. P

modulo

we would retain the inequalities above for h f H but with the F p now ele-

ments of with coefficients not exceeding M(p ; H) . By the Chinese remainder
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theorem, we may construct a polynomial f in with coefficients not exceeding

so that f plays the role of f each pEP, P being the set of primes withp
which are deal ing. The degree of f is at most

indeed we can avoid the some what clumsy and naive notion of truncation by describing
f as being so constructed as to satisfy

here II 1B is the maximum of the valuations of the coefficients and for the exis-
p

tence of f we appeal to the approximation theorem rather than the equivalent
Chinese 

But the polynomial f may be replaced by any multiple F = f 0 f, where f 0
is some nonzero element of Z[X] . To see this need only notice that each F

’°°-’ 

P
may replaced by a multiple fa F P since, in the first instance each F 

p 
was des-

cribed as divisible by a eiven polynomial. Then we have F such that

we shall choose fO to have degree N = c ~ (log H)-1/2 . Here and in the im-
mediate sequel cO’ y c y ... denote positive constants and H is supposed large
relative to the parameters n and p e P . Modulo M there are some ~ possi-
bilities for f and, using foresight y we wish F = f f to have coefficients no

r* .....

larger in alsolute value than ’ modulo M of course. In applying the box

principle, we see that if each "pigeonhole" contains polynomials F with coeffi-

cients difering modulo M by no: more than then with Co appropriately
large (but not depending on H ) there are fewer than MN pigeonholes required (1).
Hence our construction succeeds and we have

with F of degree (log H)-~ and with coefficients not exceeding 
in absolute value. A priori needs only be large enough to validate the p-adic

inequalities. Since we nay choose H as large as we wish it certainly suffices to

set EO = log 11 .

(1) Because the coefficients of polynomial multipliers are congruent modulo
~’i(p , ~~ to ~’~ F~ 9 thereforo

(;i) F( , ( ~. 1 + 1 a( . (p -~ 1 ~ + 1 ~ r &#x3E; + -1-- -- ~ - &#x3E; w 
k

p 
’ 

n 1’ - ~ n~~
with h( p -. 1) + 1 ~ 2H ( and k large and then
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It now follows that for h ~ H we have the upper bound

Given the p-adic inequali ties and our remarks in section I we see that

= 0 for log H s h  ii 11

Plainly, if II is large enough then the second tern on the right is arbitrarily
small. On the other hand, as renarked in section 2, the sun

may be chosen arbi trarily large whence indeed we obtain K, (Fa) = 0 for

log H / h ( H .

But this implies that there is a recurrence sequence (d) of order 2.t most

log H so that

But then the recurrence sequence (bh dh- F(h) ch) vanishes over a range consi-h h h

derably larger than is its order. Hence the recurrence vanishes identically and we

have, 9 for al l h ~ 0 , y

It follows that the polynomial F divides the exponential polynomial bd in the

ring of exponential polynomials. But by the Polya-Cantor we may suppose

b contains n.o polynomial factor. For such a factor must also divide c and we may

suppose ti;erefore that this common factor of c and b has already been removed.

It follows then that F must divide d in the ring of exponential polynomials

whence indeed, by once again, we see that (a. ) is a recurrence sequence,h

exactly as we wished so show.

5. Comments.

In attempting to fill the gags and repair the errors that riddled my earlier

alleged proofs of theorem A I came to the eventual view that the methods I was

trying to use could not possibly prove the Polya-Cantor lemma. Accordingly, I asked

myself how I could use that result en route to a proof of theoren A. At this point
I had the idea of appropriately truncating elements of Z so as to abtain poly-

nonials with integer coefficients. Eventually it became obvious that I had only

uncovered the details of the proof sketched by POURCHET [8].

I want to acknowledge the patience and care of those particularly J.-P. BEZIVIN
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and Fhilippe ROBBA. who prevented ne from perpetuating the errors to which I allude

above.

It is quite plain that the ideas in section 4 coincide with those intended in [8J.
One sees this clearly by noting that the somewhat eccentric detail given in the

otherwise wellknown propositions is exactly the kind of detail I use above.

For one does need an estimate on the order of the exponential polynomial
Fc - bd in order to then be able to conclude that it vanishes identically. POURCHET,
as I do, glides over the fact that strictly speaking one needs a factorisation

theory in the ring of exponential polynomials in order to deduce that F divides

d ; 9 if required this theory i3 provided by See also remarks in my survey

with It that my choice of a very large degree for F saves

me from roquiring some of the detail considered relevant in [sl.

6. proof ov’ theorem ito

We have assumed that the sequence (a"h) has finite size. In fact, suppose that

initiallyr we sensibly specialised the exponential polynomials c and b . Then by

tho hypothesis of theorem A the a, are S-integers of the algebraic number field

K . Hence 
-

and the latter Sum is bounded by d.1.:31 log CYh b where I S| is the number of va-

luations in S . Thus because ) S| 5-* finite it follows that every sensible spe-
. 

1. t . f t’- ( ’B... ,......L..cialisation of the sequence (ab) has finite ai,ze.

We can only have proved that every sensible specialisation of Xh is a ra-

tional function. Suppose that, in fact, a ix an exponential polynowial. Thus we

have c(h) = a(h) b(h) in the ring ?f generalised power sums. Then after multi-

plying by some appropriate = (;:’h ph we can suppose the characteristic roots of

each of the sums to have so normalised as to validate the following result ?f RITT

[9] 1 there is a positive integer u so that each ii a monomial
...L.

in the roots y. of c , with the u.. integers satisfying 0 ~ uji f u . " The
sane holds for the roots of the divisor a .

3.

Since b is givon are given u and thus we have an a priori bound on the

number of roots of the putative divisor a ; it is then easy to obtain such a bound

, say, on the order of 1z . Thus I ah Xh is rational iff and only if, its

Kronecker deteruinants K a vanish for h -$. H . But we may control our specia-

lisation so that a specialisation of vanishes and only if, = 0 0
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Thus if every sensible specialisation of I a Xh is rational then indeed the ori-

ginal Hadamard quotient is rational.

It regains to deal with the possibility that some b vanish by the theorem of

for references see [6]~ the set of h for which b h = 0 consists of

finitely many isolated points finitely many complete arithmetic progressions

(hd + r) some d &#x3E; 0 and certain r, y 0 ~ r  d . If must needs be replace 

by the sequences (b~ , 1+r ) disregarding those that vanish identically. Change nota-

tion so that each surviving sequence is called (b.) . Now b. = 0 for at most

finitely many h so after a translation we lose no generality in supposing bh~0
Eventually any missing a h are given by evaluating the discovered

exponential polynomial a(h) at 11 in Z . As for the missing arithmetic progres-

sions, y those ahd +r may be selected arbitrarily provided. only that each

Z ahd X be 

7. Some remarks on theorem B.

The alleged result asserts that given exponential polynomials b , c and a se-

quence (a~) so that the might possibly be tho values of an exponential poly-
nonial a’ I evaluated at h , then there is indeed an exponential polynomial a so

that identically b o a = c . Given this viewpoint it seems reasonable to make

simple transformations and translations in order to be able to study p-adic expo-

nential polynomials b and c, thus a sensible p-adification, in the expectation

of being able to demonstrate that the p-adic power series a == b 0 c converge

beyond the unit disc. b is given as a nondegener,ate exponential polynomial

growth considerations [4] imply that a is piecewise linear. In effect, the only

other case is b a polynomial.

Though theoren B is known in some special cases, my earlier attempts to provide
a detailed proof led me into sinful error. Accordingly I mention the result here

only because it was the belief that T could deal with it that led me to believe

that I could handle theorem The reader iay properly heat theorem B as a conjec-

ture. I clailm only that I kind of think that I sort of know how to perhaps attack

the question with possible success ; I could easily be wrong.
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