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HADAMARD OPERATIONS ON RATIONAL FUNCTIONS

by Alfred J. VAN DER POORTEN ()

If Zh50 a Xh 2 bh Xh are rational functions then so is their Hadamard pro-

duct 2 Cy X ah b 0
also 2 f(ah) X is ratlonal. In a talk at Budapest, in july 1981 [13], I announceq,

h 20 and equally sinply if f 1is a polynomial then

and at this séuinaire I presented, purported proofs of best possible converse re-
sults in characteristic zero. Throughout, K denotes a field of characteristic
zero, and R is a finitely generated subring of K . In the algebraic case, when
we suppose K of degree d over Q , the ring R is then a ring of S-integers of
K with S some finite set of valuations of K including all its archimedean va-

luations.

THEOREM A (Hadanerd quotient theorem). - Sunpose 2 ey xP , > b, % are Taylor

expansions of functions rational over K and that there is a sequence (aﬁ) of

elements of R so that aﬁ bh =cy h 20 . Then there is a rational function
h . _
2 ay X7 with ay bh =Cy h>=>0.

THEOREM B. - Suppose b is a possibly degenerate exponential polynomial and (aﬁ)

a sequence of elements of R so that 2 b(aﬁ) Xh is rational. Then there is a ra-

tional function 2 Xh with ble,) = blal!) y h =20 . In particuler, if b is a
0 LEH n n = =2

nondegenerate exponential polynomial and a an arbitrary peruutation of

- h
N={0,1,2,3,. .} then 2y a(h) X rational inplies there is an integer

d >0 so that for each r, O <r <d , the function a(hd + r) is linear in h

for all sufficiently large h .

In 1979, POURCHET [87], outlined a proof of theorew A. It seems fair to remark that
[8] was generally viewed as consisting entirely of wellknown or evident propositions
that did not appear to contribute materially to a proof of theorem A. I shared this
view, Xiﬂ&,[13]’ until the writing of the present report (april 1983). Though it
nay have taken me some years to decipher Pourchet's intent, and though ny proof
arose nore or less independently, the proof below precisely follows the programme
proposed in [8]. Just as it is improper to claim that a sequence of uninterpretable
hints contitutes a proof, so it is imnoral to suggest that a proof acting upon such

hints is independent. I do not sugpest this. The proof below is, d'aprés POURCHET,

S

(*) Alfred J. VAN DER POORTEN, School of Mathematics and Physics, Hacquarie Univer-
sity NORTH RYDE, NSW 2113 (Australie). r
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I do not provide a proof of theorem B but restrict nyself to the improper expedient

of giving some easily understandable hints.

1. Rappels.

h .
If §£>0 ay X" = r(X)/s(X) with r , s polynouials then we nay set over X :

] (')
a - - = i -t D'e n\l "é
s(x) =1 Zgzl 54 X, rTi“___l (1 - %) , 8, #0.

Frown a partial fraction expansion we then obtain
_so Zn(i)A (B+k=1y b 3y () P
fn T Ti=1 Tk=1 ik i i i?

k-1

with the A, in K[X] and deg 4 =mn, -1 .Thus the a are generalised power

sums or equivalently are given by an exponential polynomial a evaluated at the

non-negative integers. The distinct quantities Uy vee “, are the characte-

ristic roots of the exponential polynomial a ; each appears with nultiplicity,

respectively n; We also have a linear homogeneous recurrence relation

~

S0 (ah) is a so-called recuirence sequence of order n . Its initial values

By s By g see g By gy eee are deteriined by the numerator r(X) . If
deg r(X) = r =n then the exponential polynomial and the recurrence relation,

yields ay, only for h>r -n .
To verify the rationality of > ay Xh one studies the Kronecker-Hankel determi-
nants of the sequence (ah) :

K, a= l

CHN PR
h i+ 0, i<

It is imwmediate that with (ah) a recurrence sequence as above one has Kh a=20
for h Z.max(r + 1, n) . The converse is true but soue traditional proofs, for
example [7] (chap. 3, p. 85-99), seem to me to be unnecessarily clever. Certainly a
straight forward induction as given by SALEH [11], suffices and makes it easy to
see wore. For example, if Kh a=0 for HO <h £H then there is a recurrence
Sequence (aﬁ) of order Ha.s HO so that a, = aﬁ for at least Hb-HﬁShEH+HO .

How rmight we go ebout showing that Kh>a =0 ? In the first instance, we will
want to suppose that the field of definition of the roots and coefficients of the
generalised power sun ay is an algebraic number field K of degree d over Q .

Given a sequence (ah) of elements of K , we yrite
d log %, a = 2§ maXy 9 e log l%k‘v

and we then say that the sequence (ah) has size at most p if
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liu sup (oh a)l/h‘s 0.

Here the sum is over the usually normalised valuations v of K : thus for
0 #xe€ K one has the product formula §§ log 'le =0 and i€ y is an integer
of K the constant sequence (y , y , ... ) has size INyll/d , where N is
the noru from K to Q . Since early values do not affect the size of (ah) nor

. . h . .
the rationality of 2 ay X" we may if we wish always suppose a. = 1 . A recurrence

o

. o . ; . 5 h .
sequence certainly has finite size ; conversely a power series z.ah X , with (ah)

of finite size, is called a G-function (see BONBILRI [1]).

How turn to the sequence <Kh) of Kronecker deterninants Kh a of the sequence

(ah) .

Let T be a finite set of valuations of X . By the »nroduct foruula : Kh =0

or Z§ log lKhlv =0 so0

-2 log ‘Khlv RS Z; nax

veT 0ksh IKhlv *

But a siuple estinate yields

h+1
[]
o, K § (h + 1) (uh a) .

Hence if

2
: -1/n a
rheT ]Khlv Zp

for certain sufficiently large h then Kh =0 for such h .

2. p-adification and specialisation

It is wellknown, and elegantly described by CASSELS [4], that any finitely gene-
rated field XK mnay be eubedded in infinitely many fields Qp of p-adic rationals
in such a way that any nominated finite set of nonzero eleunents of K 1is mapped
onto a set of p-adic units. The account in [4] is such that one sees that stopping
partway yields a homomorphisu of a finitely generated subring R of K into an
algebraic number field, say of degree d over Q ; this latter wmapping, which we

call specialisation is such that any noninated Tinite set of nonzero elewnents of

K may be supposed to have been specialised to nonzero elcuents of the algebraic
number field. For some details see the account in [ 147]. Though the point is not
explicitly made in [4] it is clear that the density of the good, or regular primes
that is those primes p for which one obtains an appropriate eubedding of K
into g% , is 1/d ; for example note [5] (p. 78 and p. 163). liore precisely,

=1 1/d i
ﬂP<x pl/p = 0(x / ), x -

where the product is over regular primes only.
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de apply these notions as follows : Given an exponential polvnomial d over X
=21 (n) &
a(n) Di( ) 8

we nay deew d to be defined over Qp , P regular with respect to d , so that
the roots éi be units of QP , so that no nonzero coefficient of the Di vanishes
as element of gp , and so that at most finitely many d(h) not already zero in
K becoue zero as elements of « Only the last condition requires comment ; I
refer the reader to the survey comuencing [ 6] and to renarks of CANTOR [37]. In much
the sane way the exponential polynomial wmay be supposed to be defined over an alge-

braic number field without the sensible speciaiisation introducing any degeneracies,

Now consider the p - 1 p-adic power scries
d(t(p - 1) + r) =2 Di(t(p - 1)+ 1) éi exp(t log 65_1) , 0Lr<p-1.
Because the 61 are units of Q_ we have

- -1
|§1—HP$P

so the naps

11h4>§ﬁpdﬁr, 0gr<p-1

each continue to p-adic power series 6§ exp(t log 6p—l)

Qp , the coupletion of an algebraic closure of Q? , with ordp t>-1+ 1/(p -1) .

converging for t in

To avoid irritating exponents I write

-ord,t
t =P P,
4l
I will refer to the cited series d(t(p - 1) + r) as sensible p-adifications

of the exponential polynomial 4 .

h
He p-adify so as to be able to use the following result : Let g(t) =Z-xh t be

a p-adic power series converging for t with ordp t>- 98+ 1/(p - l) , some

s >0 . To account for the convergence we nust have
lin inf ! ordP X, z8 - 1/(p -1) .

Now denote by A the operator defined by Af(t) = £(t + 1) - £(t) . Then for
.‘5’.'—‘-‘0,1,2,00.,

k k .h k ,h
= : 11 At .
ordp s glt) = ordp §£20 X, O t > nlnhao ordp X, + ordo iy

But uk th is a polynomial in t (* degree h - k and with integer coefficients

k . h ;
each divisible by k ! . Hence if 2 is an integer then 4 ¢ ]t=£ vanishes for

h <k and is always divisible by k! . Thus



k
> mi 3 i
ordp 5 g(t) lt:g > min o ordp Xy + ordp k1

which is to say that

R -1 k
. i > .
lim inf k 01dp A g(t) !tzz > 8

3. Proof of the Hadamard quotient theorew : old ideas.

We now proceed to a proof of theorew A in apparently special circunstances. Thus,
we suppose that bh #0, h=>=0 .Next, we suppose that the guotient sequence
(ah) , Where ay bh =Cp h=>=0 is a sequence of elements of an algebraic num-
ber field K of degree d over Q and that the sequence has finite size at most

p « Je denote by n the order of the exponential polvnonial b .

In the immediate sequel, p denotes one of finitely wany rational primes greater
than n with respect to which we may sensibly p-adify both b and c . We con-

sider a typical quotient

a(t(p - 1) +r) =clt(p-1) +r)/b(s(p-1)+12), 0Lr<p-1

of p~adic exponential polynomials.,

It is known [10] that each b(t(p -~ 1) +r) has at nost n =zeros in the disc
it : ordp t - =1+ n/(p - 1)} . We recall that these zeros lie on the so~-called
critical circles on which at least two terus of the power series b(t(p - 1) + r)
share minimal p-adic order ; these critical terms cannot be of degree greater than
n . Since b(t(p - 1) + r) has coefficients in gp it follows that any of its
zeros t, outside the unit disc must satisfy ordp tcéF-l/n . Hence for each 1p

0

and r, O gr <p-1, therec is a polynonial fp,r

in Z[t] of degree at
~pl] er

most n so that the power series

£ Lt = 1) + ) alslp - 1) + 1)

9

converges for t with ordP t>-1/n . I should remark that nuch sharper facts hold :
but we only neced fp r in gp[t] and convergence beyond the unit disc to an extent

9
independent of p .

Now denote by Fp a polynonial in ZP[t] divisible in that ring by each of the

f s ° Then for each r, 0 £r <p -1, we have
?

— 1 1
lin inf k! ord_ e Fp(t(p - 1) +r)altlp - 1) + ) ]t=o >1/n+ 1/(p-1).

Consider the (h + 1) x (h + 1) determinant

ol (s <\ . .
Kh = l:bp(l + ] 8.(1 + J)Iogl,(]ﬂl ’

noting that sinple row and coluun manipulation yields



b=t

k
P (t(p - 1 tp -1 i< i4d *
p( (p=1)+r)altlp-1)+ r)ltzolosl,ash,l+3=k(p—1)+r

It is not difficult to deduce that as h —=> «©
lim inf h—2 oI'dp Kh > (1/n + 1/(p - 1))/(p -1) .

30 we see that for h sufficiently large :
n? ord K. > 1/n(p - 1)
ph ‘ )

Now if we were lucky enough to have each Fp with rational integer coefficients
then the rewarks above would readily lead to a proof of theoreu A. For we would lose
no generality in supposing FP independent of p , we would have archimedean in-

foruation

lin sup h™° log o, K € d log p

h
on the one hand, whilst on the other hand we could conbine the pieces of p-adic

data. Provided only that

v logp o
2 3 -1 nd log o

h
we would have Kh = 0 for all sufficiently large h , whence 2 FKh) 8y X would
have been proved rational. But then a result of POLYA-CANTOR [2] vields the ra-

tionality of 2 ay Xt
Unfortunately it would beg the question to suppose that Fp belongs to g[t] .

Nevertheless, as we see below, we can arrange a sufficiently good approximation

to this state of affairs.

4. Proof of the Hadamard quotient theorem : new ideas.

To obtain the result that for h sufficiently large, say h B.Hb , we have

2
: h
>
ordp K](Fp a) P <T)

we use only that

ordp Ak Fp(t(p - 1) +r)a(tlp-1) +r) |t=0 2—k(%—+ 5 i l)/(p;- 1)

with k(p - 1) + r £ 2h . Thus if we were to truncate the chefficients of the Fp

modulo

w(p 5 1) = HPE((V/aN(L/(p=1)))?

we would retain the inequalities above for HO £h <H but with the FP now ele-—

ments of Z[X] with cocfficients not exceeding M(p ; H) . By the Chinese remaindr
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theoren, we ray construct a polyncrial £  in giX] with coefficients not exceeding
Moo= N(E) = 1 w(p ; H)

so that f plays the role of fn each p € P, P being the set of primes with

which we are dealing. The degree of f is at nost

maxPEP n(p - 1)

indeed we can avoid the some what clumsy znd naive notion of truncation by describing

f as being so constructed as to satisfy

i -1
e - FpHp gM(p , H) ", peP

here il Hp is the mexiwum of the valuations of the coefficients and for the exis-
tence of f we appeal to the approximation theorenm rather than the equivalent

Chincse remainder theorew.

But ths polynomial f wmay be replaced by any multiple F = fO f , where fb

is snme nonzero element of g[X] . To see this we need only notice that each Fp
nay replaced by a multiple fo Fp since, in the first instance each FP was des-—

cribed as divisible by a piven polynomial. Then we have T such that

; . ) =1
iF - £, FPHP <u(p, 217,

12 (10z 1)"Y2 . Hore and in the iu-

) E
denote positive constants and H is supposed large

we shall choose fo to have degree N =c

C c L
o0’ "1
relative to the parameters n and p e P . liodulo M there are some MN possi-

nediate sequel

bilities for fo

larger in alsolute value than M

and, u81nﬁ fore81ght we wish F = fo f +to have coeff cients no

/N, rodulo M of course. In applylng the box

principle, we see that if each "pigeonhole!" contains polynomials F with coeffi-

co /N then with c|

large (but not depending on H ) there arce fewer than MN pigeonholes required (1).

cients difering modulo M by no:more than M appropriately

Hence our construction succeeds and we have

ord K, (Fa) > n°/n(p - 1) H ShSH, peP
- /
with F of degree cHl/2 (1og H) 1/2 and with coefficients not exceeding uCo /N

in absolute value. A priori Hb needs only be large enough to validate the p-adic
inequalitie%; Since we nay choose H as large as we wish it certainly suffices to
1/2

get HO log 4 .

( ) 3ecause the coefficients of the polynomial uwultipliers are congruent modulo
M(p , H) to fo T, , therefore
l 1 1 k
e ». — - >
(») ordp TAY (. (p 1) + 1) al. (p i) + l) k( p 1) o1 7p = 1)

with L(p - 1) + 1 £20 (and k large gnOJgh) and then

k=
< <
OI‘dp -h<Fd) m for HO h <H
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It now follows that for Hb £&h <H we have the upper bound

log Oh(K(Fa)) <n°4q log p + d c, h H1/2 (log H)1/2 .

Given the p-adic inequalities and our renarks in section 1 we see that
K (Fa) = 0 for H“@Jogﬁsnlgﬂ if

log p

L oL l/2 (log H)1/2

>dlog o+ dec

L]

2

Plainly, if H is large cnough then the second tern on the right is arbitrarily
small. On the other hand, as reuarked in section 2, the sun

< log p

LpeP n(p - 1)

nmay be chosen arbitrarily large whence indeed we obtain Kh(Fa) =0 for

Hl/2 loc H<h <H.

But this implies that there is a recurrence sequence (dh) of order =t most

Hl/2 log H so that

dp = F(n) 8, = F(n) oh/bh for Hl/2 log H<h £H .

Butv then the recurrence sequence (bh dh - F(h) ch) vanishes over a range consi-
derably larger than is its order. Hence the recurrcence vanishes identically and we

have, for all h >0 ,

b, 4, = F(n) ey -

h db
It follows that the polynomial F divides the exponential wnolynomial bd in the

ring of exponential polynonials. But by the Polva-Cantor leuna [3] we nay suppose

b contains no polynomial factor. For such a factor must also divide c¢ and we nay

suppose therefore that this coumon factor of ¢ and b has already been removed.

It follows then that F nust divide d in the ring of exponential polynomials

whence indeed, by [ 3] once again, we see that (ah) is a recurrence seguence,

exactly as we wished so show.

5. Corments.

In atteupting to fill the gags and repair the errors that riddled ny earlier
alleged proofs of theorem A I came to the eventual view that the methods I was
trying to use could not possibly prove the Polya-Cantor lemua. Accordingly, I asked
nyself how I could use that result en route to a proof of theorem A. At this point
I had the idea of appropriately truncating clements of ZP so as to abtain poly-
nonials with integer coefficients. Eventually it became obvious that I had only

uncovered the details of the proof sketched by POURCHET [87.

I want to acknowledge the natience and care of those particularly J.-P. BEZIVIN



and Philippe ROBBA, who prevented me frou perpetuating the errors to which I allude
above.

n

It is quite plain that the ideas in section 4 coincide with those intended in [87.
One sees this wost clearly by noting that the somewhat eccentric detail given in the
otherwise wellknown propositions of [8] is exactly the kind of detail I use above.
For exauple, one does need an estiuate on the order of the exponential polynouial
Fc - bd in order toc then be able to conclude that it vanishes identically. POURCHET,
as I do, glides over the fact that strictly speaking one needs a factorisation
theory in the ring of exponential polynouials in order to deduce that F divides
d ; if required this theory is provided by RITT [9]. See also remarks in my survey
with TIJDEIIAN [12]. It serw.s that wy choice of a veryv large degree for F gaves

ne frow requiring some of the detail considered relevant in [8].

6. Further details of the proof of theorew A,

e have assumed that the sequence (ak). has finite size. In fact, suppose that
Ll
initially we sensibly specialised the expoinential polynonials ¢ and b . Then by
the hypothesis of theorem A the 8, are S-integers of the algebraic number field

X . Hence

d log o, a = %)DEXOSkSh (102 |cklv - log lbklv)
< d log o, ¢+ ;Es maXOSkSh |1og Ibklv] ’

and the latter suwm is bounded by dldl log u,_ b where IS| is the number of va-
luations in 3 . Thus because |S| ig finite it follows that every sensible spe-

v\ N

cialisation of the sequence (ah/ has {inite azize.

de can only have proved that every sensible specialisation of E:ah Xh is a ra-
tional function. Suppose that, in fact, a is an exponential polyno;ial. Thus we
have c(h) = a(n) v(n) in the ring of generaliscd power suus. Then after nulti-
plying by sone appropriate yh ='£h Bh we can suppose the characteristic roots of
each of the suws to have so normalised as to validate the following result of RITT

[9] : there is a positive integer u so that each ﬁ? is a nononial

nu(li) “u(mi)
1 s oeee 9 Y,
in the roots Yj of ¢ , with the uji integers satisfving O < uji Su . The

sane holds for the roots ai of the divisor a .

Since b is given we are given u and thus we have an a priori bound on the
nunber of rocts of the putative divisor a ;3 it is then easv to obtain such a bound
M, say, on the ovder of a . Thus Eiah Xh is rational if, and only if, its
Kronecker deteruinants K, a vanish for h =21l . But we may control our specia-

h
lisation so that a specialisation of Fﬁ vanishes if, and only if, KM =0 .
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Thus if every sensible specialisation of 2 ay Xh is rational then indeed the ori-

ginal Hadamard quotient is rational.

It remains tec deal with the possibility that sone bh vanish by the theorem of

LACH-MAFLER, for references see [ 6], the set of h for which bh = 0 consists of
finitely many isolated points sud finitely many conplete arithnetic progressions
(na + r) some d >0 and certain r y 0 &r <d . If nust needs be replace (bh)
by the sequences (bhd+r) disregarding those that vanish identically. Change nota-
tion so that each surviving sequence is called (bh) . Now by =0 for at most

finitely nany h so after a translation we lose no generality in supposing b #0

h/
for h 20 . Eventually any uissing a, are given by evaluating the discovered
exponential polynomial a(h) at u in Z . As for the missing arithmetic progres-
sions, those 8 gir DY be selected arbitrarily provided only that each

> & dar X" be rational, 0L r <d.

7. Sone rerarks on theorern: B.

The alleged result asserts that given exponential polynonials b , ¢ and a se-
quence (ai) so that the aﬂ might possibly he the values of an exponential poly-
nonial a' evaluated at h , then there is indeed an exponential polynowial a so
that identically b ¢ a = ¢ . Given this viewpoint it seewns rcasonable to make
simple transforuations and translations in order to be able to study p-adic expo-
nential polynomials b and c¢ , thus a sensible p-adification, in the expectation
of being able to demonstrate that the p-adic power series a = b-'1 ° ¢ converge
beyond the unit disc. When b is given as a nondegenerate exponential polynomial
growth considerations [14] iuply that a is piecewise linear. In effect, the only
other case is b a polynonial.

Though theoren B is known in some special cases, ny earlier attenpts to provide
a detailed proof led ne into sinful error. .iccordinglv, I mention the result here
only because it was the belief that I could deal with it that led me to believe
that I could handle theorem A. The reader nay properly heat theorert B as a conjec-
ture. I claiu only that I kind of think that I snrt of know how to perhaps attack

the question with nossible success ;3 I could easily be wrong.
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