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p-ADIC SIEGEL HALFSPACE

by Lothar GERRITZEN

Groupe d’ étude d’ Analyse ultramétrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
9e année, 1981/82, nO J9, 7 p.
Journée d’Analyse p-adique
[ 1982. Marseille-Luminy]

septembre 1982

[Universität Bochum]

Results about function theory on thé Siegel halfspace Hn over an ultrametric

field are given. It is proved that H is a Stein demain. Expansions for thé analy-
tic functions on M are obtained.

n

(jL) Let K be field together with a multiplicative valuation | | . Dénote by

H(K) thé set of ail symmetric n x n matrices x = (x..) whose entries

xij ~ K := K - (0) and for which thé associated real symmetric matrix (- log |xij|). ~ " 
’ ’ ~ ’ 

3-J
is positive definite.

K = jC == field of complex numbers together with thé usual absolute
value. Let 03C3n be thé classical Siegel halfspace of all symmetric n x n matrices

z = (z ) whose entries z.. e C and for which thé associated matrix
J ~.~ 2014

Im z :== (Im zl.) is positive definite where Im z.. is thé imaginary part of zij ,
(see for instance ~ [5]~ chapter ][~ § 6, p. 24). 

*"J ~LJ

Consider thé mapping e : j 2014&#x3E; H given by e ( z1. ) : = 2f7 -1 z..). As
" *- J ~Lj

and

we get that a symmetric matrix z == z.. is in j if, and only if, e(z) ~ H (C) .
Lj n n -~~

Moreover e(z) = e(z’ ) if, and only if, z - z’ has entries ~ Z .

Thus we see that H (C) = o mod T . where T is thé group of ail integraln2014n n n o~. &#x26;

translations z 2014&#x3E; t + z where t = (t..) is symmetrix, and ail entries t.. = Z .

Remark. - Assume that K is complète. Let x ~ H (K) . Thé multiplicative subgroup
of Kn* = n-fold product of thé miltiplicative group K,, generated by thé columns of
x is denoted by 

( ) Lothar GERRITZEN, Institut fUr Mathematik, Uhiversität Bochum, Postfach 102148,
D-4630 BOCHUM 1 (Allemagne fédérale) .
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A 
x 

is a lattice and the quotient 
n 

is an analytic torus and an abe-

lian variety over K (see i. e. [2], (VI 1.3) and (VI 6.1)).

x also determines a polarization given by the zeroes of the principal thêta func-

tion

where

Thus x détermines a polarized abelian variety A 
x 

over K.

The canonical projection H (K) x 2014&#x3E; H (K) gives an analytic family ofn .’ x n

polarized abelian varieties.

(2) Let x = (x..) be a m x n matrix with entries x.. e K* , and a = (a..)
-- lJ 1J’ ’ j

be il x r matrix with entries a.. E Z .
ij -

We define

xa is a m x r matrix with entries E K.,...
;.

If x = (x..) is a n x r matrix with entries x.. e K* , and a = (aij) is a
1J l.J "K J

m x n matrix with a.. E Z f deiine

a x is a m x r matrix with entries E K* .
All formal rules of matrix manipulations hold elso for these products. Especially

the set ~"n of all n x n matrices with entries in K is a left and a right
module over the ring of all intégral n x n matrices, and these two actions

are compatible which means ( ~x) ~ = 
Dénote by $n (K) the set of ail (30..) with

xij ~ K* . We consider S (K) as a K-algebraic torus by identifying as usual 

any a ’7 dénote by § the --&#x3E; S (K) gi...
ven := 

a ’ xa where a t is the transposed matrix of a. obtain that

§ is an algebraic finite covering of degree det a) if det a ~ 0 and that

~~n) = H .
As i a 0 $ "b = ç a b ~b if, ’ and only a = ± b . ~ we get that

r := {03A6a ; a ~ GLn(Z)} is a transformation group on $ (K) isomrphic to PGL (Z)

Remark. - Let x, x’ e H (K) and K be ultrametric. Then A is isomorohic to
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A , as polarized abelian varieties if, and only if, there exists 03A6 ~ pn such that

;(x) = x’ .

This results is not true for the complex field C (see [ 5], chapter III, 9 6).
It can be proved with the help of the lifting theorem in [~ 3].

Thus we see that the orbit space is a subset nf the maduli space of all

polarized abelian varieties. This motivates the following definitions.

Définition. - Let K be ultrametric and complète. H (K) is called the Siegel

halfspace over K, and the transformation group r 
n 

on H n (K) is called the Siegel
modular group.

( 3) A K-valued function f(x) on H (K) is called K-analytic if the restric-

tion of f onto any K-affinoid polyhedron P of which is contained in

H 
n 
(K) is analytic.

It means for K algebraically closed that f can unifnrmly on P be approxima-
ted by rational fonctions without poles on P .

In order to determine the analytic functions on H n (K) , we introduce

M :== (k = (le..) 3 k is n x n matrix ; k - k = le.. = -x Z ; k c Z~
3-J J~J ji J 2 - 11 2014

is a monomial in the variables ... , %22’ ... , xnn .

PROPOSITION 1. - The algebra of K-analytic functions on coincides with the
algebra of Laurent series

which converge on ail of Hn (K) .

Proof. - Rn is a connected Reinhardt demain (see [4], def. 1.3). For any xO E Hn
one finds p . j 

 p! . (E t K.:(.I ) such that thé polyhedron

is contained in and such that x E P .

Now P is the product nf ring domains. One knovs that any analytic fonction f(x)
on P has a Laurent expansion k) . The coefficients ck can not de-

. pend on P which gives the result.

0153ROiJLARY. - f(x) = 03A3k~M ck (x , k) jjs 0393n-invariant if, and only if, ’it = c’k
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whenever le’ = a. ka with a e 

Proof. - f("x~) = ~~ c~( ~x~ , k&#x3E; . New

Thus

Thus

which proves the corollary.

For m E M , we denote by Om the intégral orthogonal group with respect to the

quadratic form m . This means

Let

It is a formal Laurent series in the variables x... Remark that for any repre-
sentative a’ E 0 a one gets a ma = (a’ ) t ma’ because if a’ = b.a, b E 

then

Also if a ma = (a’) ma’ , then aIE 0 
~ 

because

This shows that each coefficient of the Laurent séries has either the value 1 or

the value 0 . In the complex case, one part of the following proposition is known

as the theorem of Koecker théorème 1).

PROPOSITION 2. - 8m{X) is an analytic function on if, and only if, m is

positiv semi-definite.

Proof. - Let s = {s E M 3 s positive semi-definite}.

Let x e H (K) and v :== (- log t x..1) =: (17..) . Ne will show that, for any gi-
n J 1J

ven p &#x3E; O , one gets  v, s)  03C1 for almost all s.

. . t A ~1 0 
.

There J.5 a real orthogonal matrix b such that b vb = A = () is a 
n

gonal matrix. As v is positive definite au X. &#x3E; 0 .

Let À.1  X. for i .
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l~ov

Let S’ = (b" sb ; s E S} , and ail matrices from S’ whose entries hâve

absolute value  r .

Then Sr is finite, and if t = (t..) = S’ , ~ Sr then there is an i with

1... &#x3E; r . Because if |t12| &#x3E; r : t11  r , t22  r , then t is not positive

semi-definite as

for + or - . This means that

From this one gets a) is convergent on H ~ ( K) as well as that

, any is analytic on H n (K) .
The convers can be proved as in the complex case ( see [ 1], p. 4201404).

Let S :== S%rn . One gets e (x) = 03B8s’ (x) if s’ is in the rn-orbit of s

which means that we can write 0- (x) instead of e (x) .
COROLLARY. - Let f ( x) be an analytic modular ( = fonction on H (K).

Then f ( x) has an expansion

Example. - Let s = (s..) be given by s.. = 0 for all (i, j) S (1 , 1) , and
i j 1J

sll = 1 . 
m (...... B - V S 1, 1 or .~ - -- -f 1, 1 - n n "" kikj

Problème - Détermine thé coefficients of thé powers of thé modular function

~S ~~~ == ~S ~ ~ ~ -

(4) For any p &#x3E; 0 ~ define

where B
Then

Proof. - Let x E Hn and v := (- log |x.. ( ) . The function f(y) := yt vy for

y = (Ôl ) E!f is positive for y # 0 . 
 

’~ 
..,

§ 
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As S = ly é = 1 J is compacta there is a constant p &#x3E; 0 such that

p for all y ~ But f(y) = which shows that s e Hn(p) .
I~~ÎA. - Given 0el~ 0  p  p ’  1 . There exists an r which dépends on

e , p , such that

and

is contained in H (p t) cH.- n n

Proof. - Assume the lemma is not true. Then wa find for any r a matrix

x(r) E x (p , e) such that X(r) ~~ H (p ’ ) . Let v := (- log |x(r)ij|) . The entriesr 
-1 

n r 1J *
of v are bounded by log e . thus get a point of accumulation v of the

r

sequence (v_) which is again a symmetric n x n matrix which satisfies

where (3 = - log p , for ail le e Zn because kt v :- k is a point of accumul.ation

of thé séquence (le v 
r k) , r &#x3E; 1 and for large r we have kt v 

r 
k &#x3E; 

Let now p  p"  p’ r j, and let D be thé set. of ail sy:metric real n x n 

ces v = (v..) which satisfy kt vk &#x3E; C" ’ with 0  Ci’ = - log rr  C for ail

R" ,

claim that D is open in thé space R 
n (n+ 1 )/;Z of symmetric real n x n

matrices. Let v e D and e  0 be small such that

and, ii v = (w..) is a symmetric real matrix with Iw..1  e for all ij, we
ij 1J

obtain

Thus

which means that v + W E D . This proves D open.

Às nov v E D , we get that infini tely many v are also in D as D is open.

If v r E D then x(r) E H n (p ’) which i3 a contradiction.
Remark. - 0ne can choose
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H (K) i s a St ein demain on which r acts discontinuously.

Proof.

By the lemma, we find r such that
m

P i s analytic and H = if 2 P .
Also Pm is in the interior of P In+ 1. This proves that Hn is a Stein demain

(see [6], § 2).

Let rn (m) :== f~ E 1" 3 ~(P ) ri ~~ . rie clain the r (m) is finite. It can

be deduced from the fact that for any given C &#x3E; 0 , there are only finitely many
03A6 e r such that each column vector of 03A6 has euclidean This proves

that rn acts discontinuously.

Let me mention a few open questions :

1° Define the analytic quotient H_j/I" ~ and prove that it is a Stein space.

2° Find the algebraic relations between the 6 (x) and ils connection with the

Satake compactification.

3° Are the Chow coordinates in the sériée of Shimura (see [7~] )~ analytic functions

on H ?
n
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