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p-ADIC SIEGEL HALFSPACE
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Results about function theory on the Siegel halfspace Hn over an ultrametric

field are given. It is proved that Hn is a Stein domain. Expansions for the analy-
tic functions on Hn are obtained.

(1) Let K be field together with a multiplicative valuation | | . Denote by
: Hn(K) the set of all symmetric n x n matrices x = (xij) whose entries

D

xij € K, := K- {0} and for which the associated real symmetric matrix (- log lxij
is positive definite.

Example. - K = C = field of complex numbers together with the usual absolute
value. Let on be the classical Siegel halfspace of all symmetric n x n matrices
Z = (zij) whose entries Zij € C and for which the associated matrix
Imz := (Im zij) is positive definite where Im 25 5 is the imaginary part of Zij ,
(see for instance [5], chapter I, § 6, p. 24).

Consider the mapping e : o -=> H given by e(zij) := (exp 21 /= 1 Zij)° As

| exp 2 /-1 (Re 255+ /-1 Imz,.)| = exp(- 21 Im Zij)
and

- log |exp 21 /-1 zijl = - log exp(- 27 Im zij) = 2n In 255

we get that a symmetric matrix z = 2 5 is in o if, and only if, e(z) € Hn(E) .

Moreover e(z) = e(z') if, and only if, 2z - 2' has entries € Z.

Thus we see that Hn(_g) =c, ®wdT , where T is the group of all integral

translations z -—> t + z where t = (tij) is symmetrix, and all entries tij €Z.

Remark. - Assume that K is complete. Let x € Hn(K) « The mltiplicative subgroup
of KS = n=-fold product of the multiplicative group K, generated by the colums of
X is denoted by A .

(*) Lothar GERRITZEN, Institut flir Mathematik, Universitit Bochum, Postfach 102143,
D-4630 BOCHUM 1 (Allemagne fédérale).
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Ay is a lattice in K:: , and the quotient K::/An is an analytic torus and an abe-
lien variety over K (see i. e. [2], (VI 1.3) and (VI 6.1)).

x also determines a polarizatinn given by the zeroes of the principal theta func-
tion

2k1 n
0(z;, , eee , 2) = 8(z) := (kl,.z kn)e? k) z, ... z

L)

where

Thus x determines a polarized abelian variety Ax over K .

The canonical projection Hn(K) x (K?/Ax) - Hn(K) zives an analytic family of
polarized abelian varieties.

(2) Let x= (xij) be a mx n matrix with entries X5 €K, , and a= (aij)
be n x r matrix with entries aij €Z.

We define

a . . . .
X 18 a mx r matrix with entries € K, .

If x= (xij) is a n x r matrix with entries X5 € K
mx n matrix with aij € 2, we define

_ A ik
8 = (Zij) by 2 5 ""n'kzl X5 -
® is a mx r matrix with entries e K, .

All formal rules of matrix manipulations hold elso for these products. Especially
the set K:xn of all n x n metrices with entries in K, is a left and a right
module over the ring gnxn of all integral n x n metrices, and these two actions
are compatible which mcans (aX)b = a(xb) .

Denote by Sn(K) the set of all symmetric n x n metrices n = (xij) with

X;5 € Ky o We consider $ (K) as a K-slgebraic torus by identifying as usual s, (K)

with K:(n+l)/2 . For any a €_~ann denote by 0 the mapping Sn(n) _— Sn(K) gi-

t
ven by éa(x) := 2 x® where a® is the transposed matrix of a . We obtain thet

&g is an algebraic finite covering nf degree |det aln+l if det a# O and that

co(H) < H .
Bs g, -2, =¢
I, = {éa; a EGLn(E)} is a transformation group on Sn(K) isomorphic to PGLn(_g)-

ab and Qa = 3y if, and only if, a=+ b, we get that

Remerk. - Let x, x' e Hn(K) and K be ultrametric. Then A is isomorphic to
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Ax, as polarized abelian varieties if, and only if, there exists 3 € Fn such that

g(x) =

This results is not true for the complex field C (see [5], chepter III, 3 6).
It can be proved with the help of the lifting theorem in [ 3].

Thus we see that the orbit space H'n(K)/Fn is a subset of the moduli space of all
polarized abelian varieties. This motivates the following definitions.

Definition. -— Let X be ultrametric and complete. Hn(K) is called the Siegel

halfspace over X, end the transformetion group I on Hn(K) is called the Siegel
modular group.

(3) A K-valued function f(x) on H (K) is called K-analytic if the restric-
tion of f onto any K-affinoid polyhedrnn P of Kn(n+1)/2 which is cnrntained in
Hh(K) is analytic.

It means for K algebraically closed that f can unifrrmly on P be approxima-
ted by rational functinns on Kﬁ(n+l)/2 without poles on P .

In order tn determine the analytic functions on Hh(K) , we introduce

. s . _ _ 1
M= {k= (kij) ; k is n x n matrix ; kij = kji = kji 525 kiy e}
n kij n kii
(x, k) := ni,j:l x5 = ﬂi:l Xy .
ks 3 |
r11<j Xij is a mnomial in the variables Xigs oo s Xy Xos oy eee s X oo

PROPOSITION 1. - The zlgebra of K-analytic functions on Hh(K) cnincides with the
algebra of Laurent series

£(x) —‘;krM e {x, k), ¢ €K,

which converge on all of Hn(K) .

Proof. -~ H is a connected Reinhardt domain (see [4], def. 1.8). For any L e H

one finds p. ij < le (e |K,|) such that the polyhedron

P:={xe Hn(K) PR

5 < 1=

1
ijl < oij}

is contzined in H_(K) and such that XL ecp.

Now P is the product of ring domains. One knows that any enalytic function f(x)
on P has a Laurent expansion ZkEM ¢, x , k) . The onefficients ¢, can not de-
.pend on P which gives the result.
y T - Y . - - . . - - - 1
CCROLLARY. f(x) = Zyaq Cx X » k) is T -invariant if, =nd only if, ¢, = ¢,
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whenever k' = a?’ ka with a € GLn(Z) .

t t
Proof. - f£(% x®) = S ck<a x>, k) . Now
k* k* i
(x, k) = tr(x™ ) = tr(" x) where tr x := o1 54
Thus
ak'a'

(Tx7, k) =tr(T x ):(atx,kat):tr( x):(x,akat).

Thus
t
2 ck(a x* , k) = 2 e (X akat) ,
which proves the corollary.

For m € M, we denote by Om the integral orthogonal group with respect to the
quadratic form m . This means

sz{aer; atma_—.m .

Let
t
em(x) = aeql%r (x , a ma) .

It is a formal Laurent series in the variables x.. . Remark that for any repre-
sentative a' e Q, & one gets al ma = (a‘)t ma' because if a' = b.a, b € %
then

(baL)t mba = a® b’ ma = a® ma .

Also if a° ma = (a')t ma' , then a'e O, because

(a! a-l)t ma' a ! = (at)-l(a')t ma' a ! = (at)-1 a® mae~! = m

This shows that each coefficient of the Laurent series has either the value 1 or

the value O . In the complex case, one part of the following proposition is known
as the theorem of Koecker (see [1], théoréme 1).

PROPOSITION 2. - em(x) is an analytic function on Hn(K) if, and only if, m 1is
- positiv semi-definite.

Proof. -~ Let s={s eM; s positive semi-definite}.

Let x € Hn(K) and v := (- log Ixijl) =: (vij) . 'le will show that, for any gi-
ven p >0, one gets (v, s8) > p5 for almost all s .

There is & real orthogonal matrix b such that b’ vb= A = (. %« . ) is a dia
gonal matrix. As v is positive definite all )\i >0.

Let Xls)\i for all i .
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Now

1 -1 t

(v, s) = tr(v.s) = tr(v"! vob! sb) = tr(b® vbb ! sb) = (A, b L sb)y, as b =b L

Let S' = {b_l sb; s €S}, and S;_ all matrices from S' whose entries have
absolute value < r .

Then S} is finite, and if t = (tij) es', ¢ S). then there is an i with
tii > r . Because if |t12| >r, t11 <r, t22\< r, then t is not positive
semi~definite as

(1,:{:1,0,.-.,0))(1; tll 22t 12

e H

for + or - . This means that

<>\,t)>,r.)\1, for any t € S', teS;‘.

From this one gets that ZaeS (x , a) 1is convergent on Hn(K) as well as that
any es(x) , s €S, is analytic on Hn(K) .

The convers can be proved as in the complex case (see [1], p. 4-04).

Let S := S/T_ - One gets 8_(x) = 8_,(x) if s' is in the T _-orbit of s

which means that we can write eg (x) instead of es(x) .

COROLLARY. - Let f(x) be an analytic modular ( = I -invariant) function on H (K).
Then f(x) has an expansion

f(x) =2 = e eo(x) with c_ € K.

oeS
Example. ~ Let s = (sij) be given by s;; =0 for all (i, j)#(, 1), and
81 < 1 « Then

kikj
= 7 = e .
es(x) Z}E—? x k] where x k] ﬂi, =1 %43
Problems - Determine the coefficients of the powers of the modular function
ZOES eo(x) = ZseS (X, a)y o

(4) For any p > 0, define
2
l

H (o) := {x €8_; [xk)| o™ forall k=2

where ||k! = (z?.—.l ki) 1/2 is the euclidean norm of k .
Then Hn = Up>0 Hn(_o) .

Proof. - Let x e H and v := (- log lxij;) . The function f(y) := yt vy for
y:(zl)egn is positive for y £ O .
In
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As 5, ={ye _I}_n 5 iiyll = 1} is compact, there is a constant p > 0 such that
f(y) >p forall y e Sn-l . But f(y) = Hyilz f(y/lly:j) which shows that s € Hn(p) .

LEMMA. - Given O <e¢ <1, O<p <p' <1. There exists an r which depends on
€y p, p' , such that

<el forall i, j

Ko, ) i= (x e g5 e ingls

~
and

i |2
x k] ngkﬂ for all k= (k; , +.0, k) eg_“ with Ikil < r}

is contained in H (p') ¢ H .
n n

Proof. - Assume the lemma is not true. Then we find for any r a matrix
e € xr(p , €) such that X(r)qé B (p") » Let v, := (- log ngg‘)l) « The entries
- *
of v, are bounded by log ¢ L . We thus get a point of accumulation v of the

sequence (vr) which is again a symmetric n x n matrix which satisfies
K v k2 c|?,

where C= - logp , for all k egn because kt v k is a point of accumilation

of the sequence (kt V. k) , r>1, and for large r we have K v.o k2 C.“k‘!l2 .

Let now p < p" <p' , and let D be the set of all symmetric real n x n matri-

ces v= (vij) which satisfy K vk > cn Hkﬂlz with 0 < C" = - log p" < C for all
n

keR" .

We claim that D is open in the space Bn(n+l)/2 of all symmetric real n x n

matrices. Let v €D and ¢ < 0O be small such that

t
2 inf k™ vk _on
mes (&41‘53“ K2 o)

and, if w= (wij) is a symmetric real matrix with |wij| <e¢ for all ij , we
obtain

I
e
i
—
M
L

i
i [

2
t n n 2 02
K® wk=3 s ky ks Z|wijl |k ks 5621,3’:1 Iyl 151 < 0% e [l

Thus

Ko(v+ w) k= k¥ vk + K° wk > o" |Kk;?

which means that v+ w €e D . This proves D open.

As now v*e D, we get that infinitely many v, are also in D as D is open.
If v, eD then x T e Hn(p') which is a cnontradiction.

Remark. - One can choose

_— 2 2 | B 1 .-
r=[n loge]+ 1 for p' =1t where Hn(l) = H .
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THEOREM. - Hn(K) is a Stein domain on which T ~ acts discontinuously.

Proof., — Let O0< <1, pm:mﬁ’ 9;n=(m+1)\/5, em=6m.

By the lemma, we find ro such that

*— 1
P = er(pm yep) e H () s H .

P is analytic polyhedron in Sn(K) and H = UDm:Z P .
Also Pm is in the interior of Pm+1 « This proves that Hn is a Stein domain

(see [6], § 2).

Let T (m) :={seT 5 @(P) nP #p} . We clain the I (m) is finite. It can
be deduced from the fact that for any given C > 0, there are only finitely many
3 eI’ such that each colum vector of % has euclidean norm < C . Thls proves
that Ty acts discontinuously.

Let me mention a few open questions :

.

1°© Define the analytic quotient HH/Fn , and prove that it is a Stein space.

2° Find the algebraic relations between the eo(x) and its connection with the
Satake compactification.

3° Are the Chow coordinates in the sense of Shimra (see [7]), analytic functions
on Hn ?
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