LOTHAR GERRITZEN
p-adic Teichmiiller space and Siegel halfspace

Groupe de travail d’analyse ultramétrique, tome 9, n°2 (1981-1982), exp. n° 26, p. 1-15
<http://www.numdam.org/item?id=GAU_1981-1982_ 9 2 A8 0>

© Groupe de travail d’analyse ultramétrique
(Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.

L’acces aux archives de la collection « Groupe de travail d’analyse ultramétrique » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=GAU_1981-1982__9_2_A8_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Groupe d'étude d'Analyse ultramétrique 26-01
(Y. AMICE, G. CHRISTOL, P. ROBBA)
9e annde, 1981/82, n° 26, 15 p. 24 mai 1982

p—~-ADIC TEICHMULLER SPACE AND SIEGEL HALFSPACE

by Lothar GERRITZEN (')
[Ruhe-Universitdt Bochum]

In order to study the space J!Zn of Mumford curves of genus n and the space ﬂ.n
of principally polarized abelisn varieties which can be represented as analytic
tori we introduce the p-adic Teichmiller space & and the Teichmiller modular
group ‘l’n as well the p-adic Siegel halfspace Ry and the Siegel modular group
Fn e PGLn(E) o One will arrive at the result that the orbit space Sn mod ‘i’n is
the space mn of Mumford curves and that the orbit space Rn mod Fn is the space
a'n of polarized abelian varieties.

In this paper, we will only describe the main points of the construction of the
analytic space Gn and the transformation group Yn as well as the construction
of the analytic space }(’.n and the transformation group I‘n o A great deal of ques—

tions remain open.

1. Conjugacy classes of homomorphisms.

(1.1) Homomorphism classes. — Let X, Y be groups, let A be a subgroup of the

group Aut X of automorphisms of X and B a subgroup of Lut Y.
Denote by (X, Y) the set of all group homomorphisms ( : X =-> Y . A acts on
(X, ¥) by composition of mappings from right :
x> x-ts5 7.
If «elh, (e(X, Y, then oo € (X, Y) . The set of equivalence classes

CA will be denoted by A[Y , X) .

The group B acts on (X, Y, by composition of mappings from left
x-tsv-Bsy,

If BeB, Ce(X, YY), then B o ¢ e (X, ¥) . The set of equivalence classes
8¢ will be denoted by (X, Y]p -

For « e A, BpeB, e (X, Y , we have

Boeg eca=pgc (o)

because composition of mappings is associative. Therefore A (respe B ) acts ca-
nonically on (X, Y]B (resp. [X, Y)B) .

(*) Texte regu le 18 octobre 1982.
Lothar GERRITZEN, Postfach 2148, 150 Universit@étsstrasse D-463 BOCHUM (Allemagne
fédérale).
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Obviously, (X, Y], mod &= ﬁ[X , Y mod B.

We denote this set by [‘[X , Y]B . Its elements are the double cosets BCA

X

One gets a canonical commutative diagram
(x, 1)

(x, Y]B A[x , Y)

where each arrow denotes the canonical equivalence class mapping.

(1.2) Isotropy groups. — We consider the following isotropy groups :

4
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3 g(0):={BeBs Be°C=7(]
3A(BC) := {u e A3 Bgoa= B

5 g(ch) :=1{BeBs Boch=h}.

PROPOSITION L. - & ,(¢) 1is a normal subgroup of 3 (B . & 5(0) is a mormal
subgroup of 3 B( ) and

s ,(B0)/s ,(c) =5 fci)/s (o) -

Proof.

1° Let aye€ 3 D)y @€ A(Bi;f) . Then there is a 38 € B such that (oa=Be(

Now goa/o-':( and

-1 -1 -1 -1
goqoaooa =B°C,°ao°a’ :B°€°Q :goaoa :g

which shows that oo e le s (0) « Thus 3 ,(g) is = normal subgroup of ¥ (8O-

“h

20 Let BO € d B(C) y BET B(QA) . Then there is a « € L such that Be{=Cx .
Now ﬁo o (= and
-1 - - -
e =8 By w =BT m=8T BC=C

which shows that B-l By Bed B(g) . Thus 3 B(g) is a normal subgroup of B(QA).

3¢ It is an easy exercice to show that the maepping which associates to wed p(B;)
the residue class B in & B((;A)/S B(g) of a B e B which satisfies (o = Bo(
induces an isomorphism & !‘(Bg)/a f(g) on to 3 B(QA)/EJ B(g) .
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(1.3) Schottky groups. = Let now K be an algebraically closed field together

with a non-trivial complete ultrametric valuation. Let E be a non-abelian free

group of rank n > 2 together with a fixed basis e, , «ee , €

We consider PSLZ(K) = {= <2b> ; a,b,c,dekK; ad=-be=1} asa K-
algebraic group. Denote by tr2 the regular function on PSLZ(K) which has the
value (a + d)2 at the polnt I (2 b) . An element * (a b) of PSL (K) is called
hyperbolic if [tr% (2 § | = |a+ d| > 1 . The set (En , BSL,(K)) “of all group
homomorphisms C: E ——> PSL (K) will be identified with the n=-fold product
ps? S(K) = PSL(K) x «.o x PSL (K) of PSLy(K) : any w= () , ev ) e PSLn(K)
determ:u.nes a unique homomorphlsm c, * E -—> PSL (K) wh:Lch satlsfles gw(e )—w
for all i .

The action of fut E on (En , PSLQ(K)) when it is identified with PSLg(K)
can be described as follows : let « € fut E , a/(ei) is a reduced word in the
letter O s eee 5 € T WE substitute wj for ej and obtain an element w:!L for

each 1 . Then
(Wl, see o Wn)XC(= (Wi, see o wl'l) .

This explicit description shows that « is a biregular transformation of the
K~-algebraic space PSLI;(K) .

Definition. = 4 homomorphism ( En -—> PSL2(K) is called Schottky homomorphism,
if ¢(e) 1is hyperbolic for any e €E , e# 1.

Denote by '8  the set of Schottky homomorphisms. .'s a subset of PSLZ(K) it is
given by infinitely meny inequalities. More precisely : we fix e € En , and consi=-
der the mepping ¢ —> ¢(e) . It is a regular mapping ¢ PSLg(K) _— PSLI;(K)
and f_= tr° &, is a regular function on PSLIZI(K) . Then

n
gnz{wePSL2(K); £, ()] >1 forall ecB , e#1}.

One can give explicit expressions for the mapping 8, and the function fe « €
is determined by the finite sequence ¢(1) , ees , c(r) with e(i)e{Z1,...,%n}
and e(i + 1) # - ¢(i) such that

r . _ -1
e —ﬂi=l ee(i) with e_i = e .

Let

b
%1 12
§(+( )’ooo,+( ):i( )’
e cld cd X51 X5

we will give expression for X, 8 polynomials in 8y 5 see dn .

NM := set of all sequences s = ((J.1 ’ Jl) s (12 ’ 32) 9 e (lr

that i\)+l = j\) for all v and i\) s j\) e {1, 2} . For any such s , we consider

, jr)) such

the product
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X(S) He= ng-l)- eoe Xgr)
1']1 1r‘]r
with
e (1) 3 (1\) ’ Jv) = (1, 1)
(v) be(i) H (1\) ’ J\)) = (1 ’ 2)
Xi\)j =
AVARY} ce(i) H (l\) ’ J\)) = (2 ’ l)
de(i) H (i\) ’ j\)) = (2 ) 2)
with a_i=+di, b—-i:—bi’ 4= C d_izai.Then

X = ZSEN X(ﬂ)

11
127 Zsele x(s)
*o1 = ZseN21 x(s)
Xpy = Zsele x(s) .

The proof readily follows by induction on r .

We consider homomorphism classes as in §(l.1) for A = lut E , B= group of
inner automorphisms of PSLZ(K) = PSLz(K) . The set S, = juth [8n) of classes’
C o fwt En with ¢ e Sn is just simply the set of Schottky su%groups of PSLZ(K)
of rank n (see [1], chapter I, (1.6)). Because if [ e 8, s @ € fut En , then

the image Im(({ o o) does not depend on « .

If, on the other hand, I is a Schottky subgroup of PSLZ(K) of rank n , then
by definition therc is a ( € §, such that Imc=T.If (' e S, also satisfies
Im¢' =I', then we note that (:;II")-l : [ =>E is a group homomorphism end
o = (gir)"l eg'€lut B and goa=(' .

2e Hzgerbolic fractional linear transformations.

(2.1 Let P =K u {=} Dbe the projective line over K and
PxP-P={(x,y) €ePxP: x#y] be the complement of the diagonal in the
product P x P.

In order to determine the regular functions on P x P - P, we introduce the
following affine charts :
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U,=1(x,y) ePxP-P; x#=, y#o}
Ulzz{(x,y)efxf—f, xZw, y+0}
U21={(X,.V)€E><f-£a x#0, y# e}
U22:{(x,y)e£x£-—£; x40, y#0}.

The algebras o(Uij) of regular functions on U,, are the following

o(u, ) = Kx, v, ';;—:'5,]&
1 1
o) = x5 5 —]
Y
1 1
X
1 1 1
o = - - .
X J
PROPOSITION 2. = O(P x P = P) = Kmmim , —— , =3 ,
~ ~ -~ X=-y " X=-y7~ xX=7
Proofs - The functions
1 1 1 1
— — — x —
1y __x _xX 3
X-y X_ 1—1_2—.1._2
Y x y =
X L
x __y___L __¥
x-y x_, 4.y 1.1
y X ¥y X
Xy _x oy ___1
x=-y xX_, 4_¥ L_1
Yy x ¥y X
are clearly regular on each Uij and are thus regular on P x P - P . Therefore
the K-algebra K[ L .., X7 generated by L X s is a

X-y’x-y’x~-Y% X-y '  x=-y?x-y
subalgebra of o(fx_lj-_lj) . Let now f be a regular functionon Px P« P,

Let f he¥ea representation f = g(x, y)/(x - y)n with a polynomial
gx, y) ekx, y] in the variables x, y . Let
_ \Y
glx, v) =2, & * ¥
Then

Vo Vv _p=n
S T Ly EX

g
VWo(x -yt e (? - )°

1l
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which shows that f e @(Ulz) =Kx, !/y, /(1 - %/y)] if, and only if, g\)p, =0

whenever > n .

In the same way, one proves that f e O(U?l) if, and only if, g\)u = 0 whenever

v>n. Bt if n>v >y, then

X P (b BV ()P
x’ y* 1 X Xy

which shows that 3 — € K[—-=— , , y_‘] .
(x ~ " X-y o x=myoox-

If n>p=2v, then
S A A A
(X_y)n X -y X -y X -

J - X __1 , we obtain also

X=-y XxXx-=7

\Y) ~
XY et , X, .
(x - y) v y v

L ., ], it is

As g is a linear combination of functions in K[X A AT

elso in this algebra, which proves

1 X
ofxP-Bckris, t25, 7]

a

(2.20 Let  SL,(K) = {(]

We consider the mapping

g); a,b,c,dekK; ad=-be=1} ad XK =K~ {0}.

™ e K* x (E x z —E) - SLZ(K)
given by

a(‘T s Xy Y) ) b('r s Xy .V)
Tf(’r s Xy Y) 211 }
\C(‘T s Xy y) P d(’T sy X y)

X—
a(T,X,Y)=~T-—;('—_—37T'Z
-1
- T
b(T 9 X, y) :(I—-_')-(—-——-y_)}-c.z
'r_l T
olr, x, ¥ =53
X - T
d(T9X,Y)=T L
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2 2 -2 2
4y - (1% )xy

(x - y)°

I

a(TyX, y) d('T’Xy )

(x-9°- (1% -3+ Dxy

(x - y)°
I G -
(x - 9%

1+ blr, x, ¥ et , x, ¥
which shows that indeed w(r , x, y) € SLZ(K) .

Properties of 1 :

TT("'T,X3 .V):"'TT(T,X’ .V)
-1
m(r  , 5y, x)=+n(r, x, ¥

-1
Tf('r

X

10
ﬂ(""x;y) ’X’y):(g]_>

m(r, x, 3) xnlry, x, y) =nlr) 75, x, ¥)

n1, x, )= ()

TT(—J.,X,y):

If 7, #%1, then m(r, x, y) =n(r', x', y') if, and only if, either
sty =x,x =y .

a. b -a. X+ b
Let o= ( 0 O) €SL.(K) « o acktson P by o(x) S

codo 2 ~ c:Ox+c1O

T=q',x'=x, y' =y orif 1

Then

m(r, o(x) , cr(y))‘z on(r, x, ¥ ot

Tr(T,X,Y)(X)':X: Tr(T,X,Y)(Y)=Y

(K, x ff*f"f))={(2g) e SL,(K) ; a+d#%2) uiE (é?)}

-1
The trace trn(r, x, y) =T+ T

m is a morphism of K-algebraic spaces,
1 induce a 2-sheeted unramified covering,

from (K= {0, 1, =1}) x (P x P~ P) onto the affine subdomain
SL'Z(K) = {(i1 2) € SLZ(K) ;3 (a+ d)2 # 41 of non-parabolic matrices.
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Let

1 1 1 X XYA

- 1
0, =0(K=~{C, 1, ~-1}x (BExP-P) =K, P T AT Ty ! Ry ? xeye
and

1 1
a+d-27a+ d+

0, =6(SLy(K)) = Kla, b, c, d, 51/ (ad - be - 1) .

The mapping 1 induces a K-algebra homomorphism

My 3 = Ol

92
which is injective.

PROPOSITION 3. -~ @l is a free Oz—module, generated by 1 and T .

Proof, - Let M be the oj-module, generated by 1 and r . One has 7 ¢ 0, »
as for any polynomial f(t , x, ¥) e 0, » we have the condition f(T,x,y):f(+_l,-y,x).

Now T + 'r-l = a+ d and 'r2- (a+d) 7+ L =0 which shows that T is qua~
dratic over @2 « Thus 72 e M and more generally all powers 'rl of 7, 1€ g_ R

are in M.

Thus M is a "O,-algebra.

2
-1 -1
) T =T _ 1_1&,M

(v -7 _
(a+d=2){a+ d+ 2) ~

('r+'r-1)-4 T =T

(1 - 'r—l) 1

-1
T =T L+ 7

(1 + 'r_l) 1

"r--"r“l l-'r_l

1
m
=

X__2a~T ey
x-y =1 ’

Th's shows that M

)
&)

(2.3) Let SL2°(K) = {(? g) € SL2(K) ;5 |a+ d > 1} be the subdomain of SLZ(K)
[¢]
of hyperbolic matrices and

hb
5 (

Ho(K) = {(t, x, ¥) €K, x QD'XE)-E){ O<|Tl <1} «
Then m induces an analytic mapping

nt 3 Hb(K) -——> SLgb(K) .
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PROPCSITION 4. - m' is bianalytic.

LEMMA, - There exists a puwer series +(s) e Z[[s]] stch that 7(8) "T'l('é) =-é- .

Proof. - Define =0, 7, =1 and;, for k> 1,

€ Z .

ske1 i
Tt == 5oy G DT TT

k-1

-1

i 1
Then (s) := T atiuf? 3 - .
(s) % . s° satisflies the equation rt(s) + TG) < S

i=1

One gets T, = O if 1 1is even and s >0 if i is @id and

“7(8)

S + 33 + 235 + 537 + 14s9 + 42311 + 132313 + 429315 + eve

H

Another way to prove this lemma : you remark that tv(s) satisfies a quadratic
equation :

T(s>2-§T(s> +1=0.

Thus if char K # 2 :

(1(s) = 52)% = =5 = 1

4s2
1+ 1
T e wn ——— 1—4
(e) =5 = 55 S

1
w(s) =g bt 30 (D DT (@D

+

If you choose the right sign for the square root, you get
1

_ 1w 2y, yi+l o 41 2i-1
'T(S) - —2' Lj.:l (j.) ('- l) x 4 S
now

1 -% (- 1)9 (25 - 1)1

1 L1

2 1,2 2 2

D=z (I = (7= = :
J §1ox 237H(F - 1)

Thus
1 { -
e l)l 1 (2i -~ 3)¢
. . i-1
_{ (- l)1+l 41_1_ 2
2 i

TAe = qQ
2i-1 2t (i- 1) ¥R (1 -2
_ (21 = 3)¢ _ 4Rl -2 11 2i =2y 1 ¢2i =2
T T2 s A G L) et (o2 =1 (D -

The proof of proposition 4 is immediate with the help of the lemma and of propo-

sition 3. The inverse of m' can be given explicitly, namely :
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ab 1
T (c-d) T(a+d =T
1 ab _ c
X -y (c d) ! _:
Xy (ab)_ b
X -y cd*'r—l__fr
_X (ab)__a-'r
X -y Cd—fr_l-'r

(2.4)s Let PSLQ(K) = (< (: P) ; (2 s) = SL2(K)} be the projective special linear

group and
hb _ ¢+ ¢a by, ab hb
Neow
-a = Dby _ 1 _ ab
T(—c-d)—T(-a+d)—-T<cd)
and

m=1,x,y =-nlr, x, 7 .
COROLLARY, - The mapping

+ ¢ab 2, 1 a =T b
= = TgTa) s =5 7T

gives a bianalytic mapping

PSLgb(K) —> b(K) .

3., Teichmiiller space.

(3.1) The set 8 of Schottky homomorphisms ¢ : & ——> PSLZ(K) will be iden~-
tified with a subset of an(K) = {w= (w1 y eve wn) 5w, € Ho(K)} . We identify
Hb(K) through the inverse of mapping * m with PSLgb(K) . 4s c(e;) 1s hyperbo-
lie, we get (g(el) y ses s g(en)) c Hb (K) .

We study the actions of Aut B and of Autt PSLz(K) on § . Let

1
Beo
11

AutEn{S o)
= <Sn]PSL2(K)
"o % auts Bnlpst (k) ¢

Then we have a commutative diagram
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S’Il
én/ \‘zn
N

n
and group actions of PSL2(K) on én and of Mt E on o .
While §n corresponds biuniquely with the set of Schottky subgroups of PSLZ(K)

of rank n (see (1.3)), the set () consists of normed Schottky homomorphisms.

PROPOSITION 5. - Gn can be identified with

n
{w:(wl,...,wn)EHb(K); Wegn;

wiz(ti,xi,yi)eHb(K); xl=O; Y, =®3 Y,

I

1}.

Provfe = Let of(z) = (‘3"4 - yL)/(Yz - Xl) x (z = xl)'/(z - yl,) be the fractional-
linear transformation which maps x, to 0, ¥, to « and Yy to 1.

Now

1

oty 5 % 5 ¥;) o =m(t, , 0,

l 5
-1
crrr(t2 s Xy y2) o = n(tz , cr(xz) , 1)

(see properties of m in (2.2)).

If wegn with x,

=0, y =, yp,=1 and o€ PSL2(K) such that

GowWoo :(wi,...,w;l),w:!L:(t:!L,x:!L,y:!L),xi:O,yi:oo,y'z.:l,

then o(0) =0, o(») =, o(l) =1 for which ane concludes ¢ = id .
3n-3

We consider Gn now as a subset of K : apoint we G_ 1is given by the

=3 | The kernel of
ineffectivity of the action of Aut En on Gn contains the inner automorphisms.

coordinates (tl 9 see tn ’ X2 9 X3 9 Y3 s *°* Xn ’ yn) e K

Let ‘i’n ¢= Aut E n/ Aut” En be the group of outer automorphismse.

Then the action of Aut En induces an action of “{n on Z;n .

(320 Let w= (w 4, «eu, wn) y Wy = (1:i . yi) , be a variable point of

an(K) . In order to get shorter formulas we also write x_; for v - Let

X, - X,
I
LS ey - w)
ijk (Xk - xi) Gj -y - xif
K T

for ie{l,...,n},j,ke{il,...,in} and - j#i, =k#i.
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We can consider u. i3k to be a meromorphic function on an(K) . It is an analytic
function without zeroes on the subdomain Hbm(K) = {w e Hb™(K) ; x; # x4 for all
i#33 1,3e{f1l, eee, )} as

" 7§ L
= ’ = ’ -y
X o n E R E R

are snalytic on Hbg(K) . This can be seen as in the proof of proposition 2.

Now

x5 % X Y3 _ X5 9y _ 5 %
(X - :\_;Lﬂxk—X7 ch-yi)(xk—xif (xj -y) (% - %) (Xj-yi)(xk - X;)

and each term is clearly analytic on Hbg(K) « As = U, ., it has no zeroes on

ijk
Hb,(K)
n -1 R + +
Let @ := {we Hby(K) i |tl| luy k(w)| |ti] for all i j ke{=l,ese,=n} ;
ie{l,-n,n};i#-j;l#-k}

PROPOSITION 6. - (Bn c8

Proofs - Let vy, = iTT(A/ti s Xg 9 Yy ) and vy (z) = (2 - xi)/(z - yi) + Then

— — |
vi(Yi z)'_ b vi(z) - If now p, = ,]tfll\) (x )| and p} = lnfjgéi‘vi(xj)l , then
[t <pi/py St

Let pl! > p, such that |t pl < p} . Fix x; with o; = |vi(xj)| , and let

F,={zeP; "ltl |\)(z)| el

and

It is easy to see now that Yy s *ee s Yp generates a Schottky group of rank n ,
and that F is a fundamental domain for this group (see [1], chapter I, (4.1.3)).

PROPOSITION 7. = The action of Aut En on (Bn satisfies :

(1) 8 o« =8 if o« is an inner automorphism of E

(ii) There A8 only a finite number of classes € Aut E n/ Autt En
o € Aut En such that

of automorphisms

(6, -a)n 6 #5.

(lll) UCKEAu'tEn (Bn o ¥ = gn .

Proofs - The proof of (i) relies on the fact that the cross ratios U 8re
invariant with respect to fractional linear transformations. The proof of (iii) is

a corollary to [1] (chapter I, (4.3)).
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In order to prove (ii) one has to introduce the canonical tree T for a Schottky
group I . One has to use the fact that the geometric base systems and the fundamen-
tal domains < T (see [2], p. 263, bottom), for this action correspond to the sys-

tems in (Bn .

If F is a fundamental domain ( = maximal subtree) < T for the action of T,
there are only a finite number of other fundamental domains F' such that FAF'£0.

From this one can conclnde (ii).

- - . . 3n~3
(3.3)e Let now & = @ n G, - Because @ is an analytic polyhedron ¢ K ,

it has a canonical analytic structure as subdomain of K3n"3

also 4(@) is an analytic polyhedron < k=3,

« For any '¢e’&'n,

We consider the covering {\p(?én) 5 ¢ €Y} andputon G the analytie struc-

ture which is isomorphic on q;('a'sn) to the canonical one given there.

We call Gn Teichmiller space and ‘:‘{n Teichmiller modular group.

THEOREM 1. - ‘f‘n acts discontinuously on Gn .

One has to prove that the covering w(-én) 5 U e¥l is admissible (see [4], pe
194, botton), which means the following holds : if § § X —> KBI\"3 is an analytic
mapping of an affinoid space X into kP35 given with &(X) ¢ G , then there
is a finite set {y,  ++» , y,} of elements of ¥  such that 8(X) < UE:I $(8).
It follows from the method given in [2], [3] and in the proof of the proposition in

[l] (Chapter I, (4‘.103))-
That the action of \i’n is discontinuous follows from proposition 2, (ii).

I will not work out the details as it seems to make more sense to prove the

stronger statement that Gn is a Stein manifold.

Remark. - One should construct analytic structures on 'én and on J  such that

the mappings of the diagram
S}
l/ n\'
$h &
\"m /
n

are analytic quotient maps. It seems likely that the spaces sn R Gn ’ -Sn may be

even mn abe Stein spaces.

4. Siegel halfspaces

(4.1) Let % Dbe the set of all symmetric n x n matrices x = (xij) with

X., = X,
ij ji
finite. %, 1is a subset of the space Sn(K*) of all symmetric n x n matrices

e X, = K=~ {0} for which the real matrix (- log Ixijl) is positiv de-
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x = (x4) with entries X;5 e K, . We identify Sn(K*) with the algebraic torus
Kn(n+l,, 2 by identifying the matrix x = (xij) with the (n(n + 1)/2=tupel

(ll’x12’""X21’X22""’Xnn)°

Let a=(a,.) bea nxr matx%k with entries a.,, e Z . For xe S_(X,) , we
i j i) -~ n--
define x%*= (3..) , 7., :=1L

ij ij k=1 ik
Then x> is n x r matrix with entries in X, . Similarly, one defines ax::(zij)
. . ‘ . . . >
if a is a r xn matrix with entries e % by Zy5 3= l_%;{;l xkj
This matrix operations satisfy the usual rules of matrix calculations.
If a isa nxn matrix and if at denotes the transpose of a , then & x*

is a symmetrix n x n matrix e Sn(K*) whenever x e Sn(K*) .

Moreover if x e R s then % x% e %y if det a # O . The mapping 3, which

sends
at a
x =—> > x% of Sn(K*) — Sn(?
is a morphism of algebraic spaces as the entries of & x* are monomials in the va-
%, = &, one gets that I := {a,5 ac GLn(Z)}
is a group of automorphisms of the K-algebraic space Sn(K*) . It is easy to see
that T = PGL (z) .

riables x.. « Because of & o
ij a

t
(402)e If k = (f ) is a column vector with k € 2 and x eS (K ) , then k' k

is an element ef n'K « It is the value of the mltlphcatlve quadratlc form asso-
ciated to x at the point k . We write x[k] = :r » Lenote by Mn the set of
ell matrices x e Sn(K*) which satisfy the following conditions ¢

X
For each i and all k = (kl) e Z° for which the grestest common divisor of the

n

numbers k. k., oo k is 1 we have
1?2 T+l 0 "2 Ty ’

1>|x‘ |

We call Mn Minkowski domain. It consists of those matrice x for which the

associated real matrices (- log |x I) are half-reduced in the sense of Minkowski.

For any xe€ M_, we have | k]| < |x;;| <1 . This allows to conclude that ek .

sl 3(M ) =%,

Thus Mn SEIN It is a simple consequence of the definition that U
n

(see for example [6], chapter II, § 3).

M important theorem of classical reduction theory says, that Mn is actually
defined by a finite number of inequalities (see [6], chapter II, & 5, theorem 10).
This means, there are finite sets Fl g sec Fn < En such that

= {xe 8 (K,) ; 1> [x,| || > |dK]| forell ke F, , all i} .
2 ~1
Example.:- M, = {x¢ S,(K) 5 1> lell |x22| |X22’ < |x121 < IXZZI
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(4.3). The Minkowski domains are analytic polyhedra in Sn(K*) .

They are therefore quasi-Stein subdomains of Kflz(n+l)/2 in the sense of [5],,% 2.

Thus there is a canonical analytic structure on Mn .

Each 3% ¢ Fn is an automorphism of the K-algebraic space Sn(K*) and thus also
an analytic automorphism of Sn(K*) . Thus @(Mn) is also a quasi-Stein subdomain
of Sn(K*) and we have a canonical analytic structure on @(Mh) . Thus we have de-
fined an eanalytic atlas {@(Mn) 3 ¢el} on K, + Weputon g the analytic
structure given by this atlas. We call }ﬁn together with this analytic structure
the Siegel halfspace and I‘n the Siegel modular group.

THEOREM 2. - %  is an analytic manifold on which I~ acts discontinuously.

The pronf of the fact that Fn acts discontinunusly is left to the reader. It can
be deduced from results in [6] (chapter II, § 5, especielly statement 4 on page 67).

It means that for any affinnid polyhedron P of Sn(K*) which lies in %, the
set {3 e T, s (P) n P# g} is finite.

Remark. = It is very likely that the set # n/rn of Fn—orbits in Zﬁn can be gi-
ven a canonical analytic structure such that the quotient mapping is locally biana-
lytic outside the ramification set. One can prove that #, is a Stein manifnld. It

seems possible that even ?}ﬁn/I"n is a Stein space.

(4.4) One nf the more interesting points in the study »f these tnpics is the pe-
rind mapping q which is an analytic mapping Gn — i@n compatible with the ac-~
tions of the Teichmi{ller and of the Siegel modular group (see [3], 8). Thus q in-
duces a mapping q @ Z;n/q;n - Kh/l“n . Local properties of q have been studied
in [3] (see for example Batz 7).
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