GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

STEFAAN CAENEPEEL

About p-adic interpolation of continuous and differentiable functions

Groupe de travail d'analyse ultramétrique, tome 9, nº 2 (1981-1982), exp. nº 25, p. 1-8 http://www.numdam.org/item?id=GAU_1981-1982_9_2_A7_0

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ABOUT p-ADIC INTERPOLATION OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS

by Stefaan CAENEPEEL (*)
[University of Brussel]

0. Introduction.

In 1958, MAHLER proved that $\{\binom{x}{n}; n \in \mathbb{N}\}$ form a normal base for $C(Z_p, \mathbb{Q}_p)$. Since then, a number of different proofs of this theorem were given (cf. [1], [2], [4], [5], [8]).

In section 1, we show that the method used by Yvette AMICE [1] can be generalised to prove that $\{\binom{x}{n}^S; n \in \mathbb{N}\}$ form a normal base, for each $s \in \mathbb{N}^*$. This leads to a generalisation of Mahler's formula (1.2). It is a remarkable fact that some polynomials (e. g. x) get an infinite expansion. So the linear space spanned by the $\binom{x}{n}^2$ lays dense in $C(\mathbb{Z}_p,\mathbb{Q}_p)$; however, it does not lay dense in $C^1(\mathbb{Z}_p,\mathbb{Q}_p)$.

In section 2, we prove that there exist polynomials \tilde{R}_n , with $\deg \tilde{R}_n = 2n+1$, such that the polynomials $\tilde{Y}_n \binom{x}{n}^2$ together with the \tilde{R}_n form a normal base of $C^1(Z_p, Q_p)$. A close relation with Van der Put's base, consisting of locally constant and locally linear functions should be noted.

1. Normal bases for $C(Z_p, Q_p)$.

1.1 THEOREM. - For each $s \in \widetilde{\mathbb{N}}^*$, $\{q_n = \binom{x}{n}^s : n \in \widetilde{\mathbb{N}}\}$ form a normal base of $E = C(\underbrace{Z}_p, \underbrace{Q}_p)$.

<u>Proof.</u> - In view of [2] no 3.1.5, or [7] lemme 1, it is sufficient to prove that $\{\overline{q}_n \; ; \; n \in \mathbb{N}\}$ form a vectorial base of $\overline{E} = C(\underline{Z}_p \; , \underline{F}_p)$. Let \overline{E}_h be the space of \underline{F}_p -valued functions constant on each ball

$$B'_{p-h}(a) = \{x \in Z_{p} ; |x - a| \leq p^{-h} \}$$
.

Since $\overline{E}=\cup$ \overline{E}_h , our proof will be finished if we can show that $\{\overline{q}_{\bf i} \ ; \ i < p^h\}$ form a base of \overline{E}_h .

For $i < p^h$ and $|x - y| < p^{-h}$, we have

$$|\binom{x}{i} - \binom{y}{i}| < 1 \quad ([2], 3.2.2.3)$$

^(*) Texte regu le 30 juin 1982. 9tefaan CAENEPEEL, Vrije Universiteit Brussel, 2 Pleinlaan, B-1050 BRUSSEL (Belgique)

hence

$$|\binom{x}{i}^{S} - \binom{y}{i}^{S}| = |\binom{x}{i} - \binom{y}{i}| |\sum_{m=0}^{S-1} \binom{x}{i}^{m} \binom{y}{i}^{S-m-1}| < 1$$
,

so $\overline{q}_{i}(x) = \overline{q}_{i}(y)$. It follows that $\overline{q}_{i} \in \overline{E}_{h}$, and

$$\bar{\mathbf{q}}_{\mathbf{i}} = \sum_{\mathbf{j}=\mathbf{i}}^{\mathbf{h}-1} \bar{\mathbf{q}}_{\mathbf{i}}(\mathbf{j}) \chi_{\mathbf{j}}$$
.

So the transition matrix form $\{\chi_j \ ; \ i < p^h\}$ to $\{\overline{q}_i \ ; \ i < p^h\}$ is triangular ; the desired result follows.

1.2 COROLLARY. - Let $s \in N^*$. Each continuous $f: Z_p \longrightarrow Q_p$ can be written as a uniformily convergent series

$$f(x) = \sum_{n=0}^{\infty} a_n^{(s)} {x \choose n}^{s}$$

where

$$a_{n}^{(s)} = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k}^{s} \beta_{n-k}^{(s)} f(k)$$

and

$$\beta_0^{(s)} = 1$$
, $\beta_m^{(s)} = \sum_{\substack{(\mathcal{L}_1 \cdots \mathcal{L}_r) \\ \sum_{\mathcal{L}_i \leq m}}} (-1)^{r+m} \begin{pmatrix} m \\ \mathcal{L}_1 \cdots \mathcal{L}_r \end{pmatrix}^s$

<u>Proof.</u> - We have to calculate the interpolation coefficients $a_n^{(s)}$. They are determined by the formulas

$$a_n^{(s)} = f(0)$$
, $a_n^{(s)} = f(n) - \sum_{i=0}^{n-1} a_i^{(s)} q_i(n)$.

We prove the formula using induction on $\,n\,$. Suppose true for $\,n\,\leqslant\,\mathbb{N}$, then we have :

$$\mathbf{a}_{N+1}^{(s)} = \mathbf{f}(N+1) - \sum_{n=0}^{N} \mathbf{a}_{n}^{(s)} {n+1 \choose n}^{s}$$

$$= f(N+1) - \sum_{n=0}^{N} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k}^{s} \beta_{n-k}^{(s)} f(k) \binom{N+1}{n}^{s}$$

$$= f(N+1) - \sum_{k=0}^{N} \sum_{n=k}^{N} (-1)^{n-k} f(k) \sum_{i=1}^{r} \sum_{i=n-k}^{\infty} (-1)^{r+n-k} \left(\sum_{k=0}^{n-k} \sum_{i=1}^{n-k} \sum_{i=1}^{\infty} \sum_{k=0}^{\infty} \left(\sum_{k=0}^{n-k} \sum_{i=1}^{n-k} \sum_{k=0}^{\infty} \sum_{i=1}^{\infty} \sum_{k=0}^{\infty} \left(\sum_{i=1}^{n-k} \sum_{k=0}^{\infty} \sum_{i=1}^{\infty} \sum_{$$

$$= f(N + 1) + \sum_{k=0}^{N} f(k) \sum_{n=k}^{N} \sum_{j=1}^{r} z_{j} = n-k \quad (-1)^{r+1} \frac{(N+1)!}{\ell_{1}! \cdot \cdot \cdot \cdot \ell_{r}! \cdot k! \cdot (N+1-n)!} \cdot$$

Putting $\ell_{r+1} = N + 1 - n$, we get

$$\mathbf{a}_{N+1}^{(s)} = \mathbf{f}(N+1) + \sum_{k=0}^{N} \mathbf{f}(k) \sum_{\substack{\underline{1}=1 \\ \underline{1}=1}}^{\sum_{\underline{1}=N+1-k}} (-1)^{r+1} \begin{pmatrix} N+1-k \\ \lambda_1 & \cdots & \lambda_r \end{pmatrix}^{s} \begin{pmatrix} N+1 \\ k \end{pmatrix}^{s}$$

=
$$f(N + 1) + \sum_{k=0}^{N} f(k) (-1)^{N+1-k} \beta_{N+1-k}^{(s)} {N+1 \choose k}^{s}$$
,

this finishes the proof.

1.3 Note. - We can write down explicit formulas for the $\beta_m^{(s)}$:

$$\beta_0^{(s)} = \beta_1^{(s)} = 1$$
,

$$\beta_2^{(s)} = 2^5 - 1$$

$$\beta_3^{(s)} = 6^5 - 2.3^5 + 1$$

$$\beta_4^{(s)} = 24^5 - 3.12^5 + 6^5 + 2.4^5 - 1$$
.

It is easy to tabulate the $\beta_m^{(s)}$:

ms	1	2	3	4	
0	1	1	1	1	
1	1	1	1	1	
2	1	3	7	15	
3	1	19	163	1135	
4	1	211	8 993	27 1 3? 5	

1.4 Note. - Comparing the case s = 1 with Mahler's formula, we get the following arithmetic formula:

$$\beta_{m}^{(1)} = \sum_{\substack{(\mathcal{L}_{1} \subseteq \mathcal{L}_{p}) \\ \sum_{i} = m \\ 1 \leq \mathcal{L}_{i} \leq m}} (-1)^{r+m} \left(\begin{array}{c} m \\ \mathcal{L}_{1} & \cdots & \mathcal{L}_{p} \end{array} \right) = 1 .$$

1.5 Note (due to L. VAN HAMME). - One can determine the $\beta_m^{(s)}$ also, by using generating functions. One has the following identity between formal power series:

$$(\sum_{n=0}^{\infty} (-1)^n \ a_n \ \frac{Z^n}{(n!)^s}) \ (\sum_{n=0}^{\infty} (-1)^n \ b_n \ \frac{Z^n}{(n!)^s}) = \sum_{n=0}^{\infty} (-1)^n \ C_n \ \frac{Z^n}{(n!)^s} ,$$
 if, and only if, $C_n = \sum_{k=0}^n \binom{n}{k}^s \ a_k \ b_{n-k}$. Put $b_n = 1$, $C_n = f(n)$, $a_n = a_n^{(s)}$. Then it follows that

$$f(n) = \sum_{k=0}^{n} {n \choose k}^{s} a_{k}$$

if, and only if,

$$\sum_{n=0}^{\infty} (-1)^n a^{(s)} \frac{z^n}{(n!)^s} = (\sum_{n=0}^{\infty} \frac{\beta_n^{(s)} z^n}{(n!)^s}) (\sum_{n=0}^{\infty} (-1)^n f(n) \frac{z^n}{(n!)^s})$$

if, and only if,

$$a_{n}^{(s)} = \sum_{k=0}^{n} {n \choose k}^{s} (-1)^{n-k} \beta_{n-k}^{(s)} f(k)$$
,

where

$$\sum_{n=0}^{\infty} \frac{\beta_n^{(s)} z^n}{(n!)^s} = \frac{1}{\sum_{n=0}^{\infty} (-1)^n z^n/(n!)^s}$$

this last condition determines the $\beta_n^{(s)}$.

1.6 Note. - Applying corollary 1.2, we can obtain a lot of p-adically convergent series, e. g.

$$x = x^{2} - \frac{1}{2} x^{2} (x - 1)^{2} + \frac{1}{3} x^{2} (x - 1)^{2} (x - 2)^{2} + \dots$$

$$= x^3 - \frac{3}{4} x^3 (x - 1)^3 + \frac{23}{36} x^3 (x - 1)^3 (x - 2)^3 + \dots$$

It is a remarkable fact that these series converge p-adically for each prime number p. Also note that derivation of the series yields an apparent contradiction after putting x=0; this shows that the series do no converge in $C^1(Z_p, Q_p)$ -norm. The same phenomenon happens with Van der Put's base. We return to this problem in section 2.

1.7 Note. - The proof of theorem 1.1 is merely based on the proof of Mahler's theorem as given in [2].

One could try to adapt the proof given by BOJANIC [4], MAHLER [5] or VAN ROOŸ [8] to prove the theorem; however, it seems that these kinds of argument do not work here.

We can generalise theorem 1.1 if we replace Z_p by regular compact part M of a local field K and the interpolation sequence N by a very well distributed sequence u: $N \longrightarrow M$. For more details about very well distributed sequences, we refer to the work of Yvette AMICE [1]. We denote, following the notations in [1],

$$P_{n}(X) = (X - u_{0})(X - u_{1}) \dots (X - u_{n-1}) , Q_{n}(X) = P_{n}(X)/P_{n}(u_{n}) .$$

Given α_1 , α_2 , ... in K, with $|\alpha_i|\leqslant 1$ and $\sum_{i=1}^\infty \alpha_i=1$, we define $q_n=\sum_{i=1}^\infty \alpha_i$ α_i . We omit the proof of the following theorem, since it is merely the same as the proof of theorem 1 in [1], up to one modification as in theorem 1.1.

1.8 PROPOSITION. - If $u: \mathbb{N} \longrightarrow \mathbb{M}$ is a very well distributed sequence in a regular compact part \mathbb{M} of the local field \mathbb{K} , and the q_n are defined as above, then $\{q_n: n \in \mathbb{N}\}$ form a normal base of $\mathbb{C}(\mathbb{M}, \mathbb{K})$.

2. A normal base for $C^1(Z_p, Q_p)$.

For details about p-adic differentiability, we refer to [6]. Recall that a function $f: Z_p \longrightarrow \mathbb{Q}_p$ is called C^1 (or continuously differentiable) it the difference quotient Φ_1 f defined by

$$\Phi_1 f(x, y) = (f(x) - f(y))/(x - y)$$

can be extended to a continuous function Φ_1 f on Z_p^2 . The space of C^1 -functions becomes the Banachspace $C^1=C^1(Z_p,Q_p)$ under the norm

$$\|\mathbf{f}\|_1 = \max\{|\mathbf{f}(0)|, \sup\{|\mathbf{\phi}_1|\mathbf{f}(\mathbf{x}, \mathbf{y})|; \mathbf{x} \neq \mathbf{y}\}$$
.

It is known ([3], [6], [9]) that the following sets form normal bases for C^1 :

$$\{\gamma_n \binom{x}{n} ; n \in \widetilde{\mathbb{N}}\}$$
 (Mahler's base)

$$\{\gamma_n \ \chi_n(x) \ ; \ n \in \mathbb{N}\} \cup \{\chi_n(x)(x-n) \ ; \ n \in \mathbb{N}\}$$
 (Van der Put's bases).

We remind of the fact that Yn is defined by

$$\gamma_0 = 1$$

$$\gamma_n = a_s p^s$$
 if $n = a_s p^s + a_{s-1} p^{s-1} + \cdots + a_0$, $a_s \neq 0$.

So
$$v(\gamma_n) = s$$
, and $|\gamma_n|^{-1} = \max\{|m|^{-1}; 0 < m \le n\}$.

 $\boldsymbol{\chi}_n$ is the characteristic function of $\left\{\boldsymbol{x} \text{ ; } \left| \left. \boldsymbol{x} - \boldsymbol{n} \right| < \left| \boldsymbol{\gamma}_n \right| \right\}$.

Define $R_n = \gamma_n \binom{x}{n}^2$; it will then follow from lemma 2.2 that $\|R_n\|_1 = 1$; however, the R_n do not form a base for C^1 , as we allready know from 1.6. Can we choose polynomials \tilde{R}_n such that $\deg \tilde{R}_n = 2n+1$ and the R_{n-1} \tilde{R}_n form a normal base for C^1 ? Inspired by Van der Put's base, we could try $\tilde{R}_n \sim R_n(x-n)$.

After normalisation, we get $\tilde{R}_n = \gamma_{n+1} \binom{x}{n} \binom{x}{n+1}$. Unfortunately, it turns out that $\{R_n, \tilde{R}_n; n \in \tilde{\mathbb{N}}\}$ are not orthogonal in C^1 . This comes from the fact that

$$\left|\widetilde{R}_{n}^{\prime}(n)\right| = \left|\frac{\gamma_{n+1}}{n+1}\right| < 1$$
 for some n .

An answer to our question is furnished by following theorem.

2.1 THEOREM. - Let

$$R_{n} = \gamma_{n} {\binom{x}{n}}^{2},$$

$$\tilde{R}_{n} = \gamma_{n+1} {x \choose n} {x - (n + 1 - \gamma_{n+1}) \choose \gamma_{n+1}} {x + 1 - \gamma_{n+1} \choose n + 1 - \gamma_{n+1}}$$

then $\{R_n:\widetilde{R}_n:n\in \mathbb{N}\}$ form a normal base for $C^1(\mathbb{Z}_p:n\in \mathbb{N})$.

Note that for $n=a_s$ p^s-1 , $0< a_s < p$, $\tilde{R}_n=\gamma_{n+1}$ $\binom{x}{n}$ $\binom{x}{n+1}$. We need some lemmas.

2.2 LEMMA. -
$$\|R_n\|_1 = \|\tilde{R}_n\|_1 = 1$$
.

Proof. - For all $x \neq y$, we have

$$\left|\frac{R_{n}(x) - R_{n}(y)}{x - y}\right| \leqslant \frac{|\gamma_{n}|}{|x - y|} |\binom{x}{n} - \binom{y}{n}| \max(|\binom{x}{n}|, |\binom{y}{n}|) \leqslant 1$$

because $\|\gamma_n \binom{x}{n}\|_1 = 1$ and $\|\binom{x}{n}\| = 1$.

Furthermore

$$\left|\frac{R_{n}(n) - R_{n}(n - \gamma_{n})}{n - \gamma_{n}}\right| = 1$$

In quite a similar way, we prove that $\|\widetilde{\mathbf{R}}_{\mathbf{n}}\|_1 \leqslant 1$; finally

$$\|\tilde{R}_{n}\|_{1} \ge |R_{n}^{\prime}(n)| = |\frac{Y_{n+1}}{Y_{n+1}}| = 1$$
.

2.3 LEMMA. – If $0 \le m < n$, then $|\tilde{R}_n^{\bullet}(m)| < 1$.

Proof.

$$\widetilde{R}_{n}^{\prime}(m) = \gamma_{n+1} \frac{d}{dx} \binom{x}{n} \Big|_{x=m} \binom{m-(n+1-\gamma_{n+1})}{(n+1)-(n+1-\gamma_{n+1})} \binom{m-(\gamma_{n+1}-1)}{n+1-\gamma_{n+1}}.$$

If $m \geqslant n+1-\gamma_{n+1}$, then $\widetilde{R}_n(m)=0$. Suppose $m < n+1-\gamma_{n+1}$. If $|\gamma_{n+1}|<|\gamma_n|$, the result follows easily from the fact that $\|\binom{x}{n}\|_1=|\gamma_n|^{-1}$. So we can suppose that $\gamma_n=\gamma_{n+1}=a_s^s$.

We introduce the notation

Schiff(
$$a_s p^s + a_{s-1} p^{s-1} + \cdots + a_0$$
) = $a_s + a_{s-1} + \cdots + a_0$.

We remind of the fact that

Schiff m + Schiff(n - m - 1) + 1 - Schiff n \leqslant (p - 1) $v(\gamma_n)$, for 0 \leqslant m < n .

This follows from the fact that $\|\binom{x}{n}\|_1 = 1$, but it can also be proved directly.

Now, let $n = a_s p^s + \cdots + a_0$, then $m < a_{s-1} p^{s-1} + \cdots + a_0$, and $n-m-1 \ge a_s p^s$. We have

$$v(\left|\frac{d}{dx} \left(\frac{x}{n}\right)\right|_{x=m}) = v(\frac{m! (n-m-1)!}{n!})$$

=
$$(p-1)^{-1}$$
 (Schiff(n) - Schiff(m) - Schiff(n - m - 1) + 1)

=
$$(p - 1)^{-1} (a_s + Schiff(n - a_s p^s) - Schiff(m) - Schiff(n - m - 1 - a_s p^s) - a_s + 1)$$

$$> - v(\gamma_n - a_s p^s) > - v(\gamma_n)$$
,

hence

$$\left|\frac{\mathrm{d}}{\mathrm{dx}} \binom{\mathrm{x}}{\mathrm{n}}\right|_{\mathrm{x=m}} < \frac{1}{\left|\gamma_{\mathrm{n}}\right|} = \frac{1}{\left|\gamma_{\mathrm{n+1}}\right|};$$

the result follows.

<u>Proof of theorem 2.1.</u> The polynomials form a dense subspace of C^1 (cf. Mahler's base). Since the R_n and \tilde{R}_n generate the polynomials, it only remains to show that $\{R_n, \tilde{R}_n; n \in N\}$ form an orthogonal system.

Using [8], 5.1.(ϵ), it is sufficient to show that for each $m \in \mathbb{N}$:

$$oldsymbol{ iny R}_{f n}$$
 is orthogonal to the linear hull of $\{ ilde{ ilde{R}}_{f n}$, $oldsymbol{ ilde{R}}_{f n+1}$, $oldsymbol{ ilde{R}}_{f n+1}$, $\cdots\}$

$$\tilde{R}_n$$
 is orthogonal to the linear hull of $\{R_{n+1}$, \tilde{R}_{n+1} , R_{n+2} , ... $\}$.

This follows from the fact that for all α_i $\beta_i \in K$, we have

$$\|\mathbf{R}_{\mathbf{n}} - \mathbf{\Sigma}_{\mathbf{j} > \mathbf{n}}' \boldsymbol{\alpha}_{\mathbf{j}} \mathbf{R}_{\mathbf{j}} - \mathbf{\Sigma}_{\mathbf{j} \geq \mathbf{n}}' \boldsymbol{\beta}_{\mathbf{j}} \tilde{\mathbf{R}}_{\mathbf{j}} \|_{1}$$

$$\geqslant |\Phi_1| (R_n - \sum_{j>n}^l \alpha_j R_j - \sum_{j>n}^l \beta_j \widetilde{R}_j) (n, n - Y_n)| = 1 = ||R_n||_1$$
,

and

$$\|\widetilde{R}_{\mathbf{n}} - \Sigma_{\mathbf{j} > \mathbf{n}}^{\prime} \alpha_{\mathbf{j}} R_{\mathbf{j}} - \Sigma_{\mathbf{j} > \mathbf{n}}^{\prime} \beta_{\mathbf{j}} \widetilde{R}_{\mathbf{j}}^{\prime}\|_{1}$$

$$> |\widetilde{R}_{n}^{!}(n) - \sum_{j>n}^{!} \alpha_{j} R_{j}^{!}(n) - \sum_{j>n}^{!} \beta_{j} \widetilde{R}_{j}^{!}(n)| = |\widetilde{R}_{n}^{!}(n)| = 1 = ||\widetilde{R}_{n}^{!}||_{1},$$

using the fact that $R_{i}(n) = 0$,

$$|R'_{\mathbf{j}}(n)| < 1$$
 for $j > n$.

2.4 Note. - Our proof is merely inspired by Van Rooÿ's proof of Mahler's theorem ([8], 5.27). It is also possible to gime a proof using the residue class space (as in 1.1), which is, however, considerably longer.

REFERENCES

- [1] AMICE (Y.). Interpolation p-adique, Bull. Soc. math. France, t. 92, 1964, p. 119-180.
- [2] AMICE (Y.). Les nombres p-adiques. Paris, Presses universitaires de France, 1975 (Collection SUP, "Te Mathématicien", 14).
- [3] BARSKY (D.). Fonctions k-lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. math. France, t. 101, 1973, p. 397-411.
- [4] BOJANIC (R.). A simple proof of Mahler's theorem on approximation of continuous functions of a p-adic variable by polynomials, J. of Number Theory, t. 6, 1974, p. 412-415.
- [5] MAHLER (K.). An interpolation series for continuous functions of a p-adic variable, J. für reine und angew. Math., t. 199, 1958, p. 23-34.
- [6] SCHIKHOF (W. H.). Non-archimedean calculus. Nijmegen Katholiche Universitet, Mathematisch Institut, 1978 (Lecture Notes Report, 7812).
- [7] SERRE (J.-P.). Endomorphismes complètement continus des espaces de Banach p-adiques. Paris, Presses universitaires de France, 1962 (Institut des hautes Etudes scientifiques. Publications mathématiques, 12, p. 69-85).
- [8] VAN ROOIJ (A. C. M.). Non archimedean functional analysis. New York and Basel, M. Dekker, 1978 (Pure and applied Mathematics, Dekker, 51).
- [9] WEISMAN (C.). On p-adic differentiability, J. of Number Theory, t. 9, 1977, p. 79-86.