GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

YASUTAKA SIBUYA

An application of newton iteration procedure to p-adic differential equations

Groupe de travail d'analyse ultramétrique, tome 7-8 (1979-1981), exp. nº 10, p. 1-10 http://www.numdam.org/item?id=GAU 1979-1981 7-8 A6 0>

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1979-1981, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

AN APPLICATION OF NEWTON ITERATION PROCEDURE TO p-ADIC DIFFERENTIAL EQUATIONS

by Yasutaka SIBUYA (*)
[University of Minnesota]

This report is based on the author's lectures at Strasbourg, Padova, Grenoble, Groningen and Paris. The motivations of this research were explained in the papers to appear ([3],[5]) and the lecture-notes [4] (joint with S. SPERBER). Therefore, in this paper, we will report only on the technical part.

1. Preliminaries.

Let K be a field of characteristic zero complete with respect to an absolute value $| \ |$ which is non-trivial and ultrametric. The field of rational number, $\ Q$, is a subfield of K, and we require that the restriction of $| \ |$ to $\ Q$ is a p-adic absolute value for some prime number p. We normalize $| \ |$ so that $| \ p | = 1/p$.

For
$$P = \sum_{m=0}^{\infty} a_m x^m \in K[[x]]$$
, we set

$$|e|_{O}(\mathbf{r}) = \sup_{m \geq 0} |a_{m}| \mathbf{r}^{m}$$
.

If $|c|_0(r_0) < +\infty$ for some positive constant r_0 , then c is convergent for $|x| < r_0$. The following lemma is fundamental throughout this report.

LEMMA 1. - Assume that $P_j = \sum_{m=0}^{\infty} a_{j,m} x^m \in K[[x]]$, j = 1, 2, ..., with the properties:

- (i) $\lim_{j\to+\infty} a_{j,m} = a_m$ exists for every m;
- (ii) $|\mathcal{P}_{j}|_{0}(r) < M(r)$ for $0 < r < r_{0}$, j = 1, 2, ..., where r_{0} is a positive number, and M(r) is a non-negative number which depends only on r. Then, $\mathcal{P} = \sum_{m=0}^{\infty} a_{m} x^{m}$ is convergent for $|x| < r_{0}$, and $\lim_{j \to \infty} |\mathcal{P}_{j} \mathcal{P}|_{0}(r) = 0$ for $0 < r < r_{0}$. (Cf. B. DWORK [1].)
 - 2. An example (a rough sketch).

Let us consider a non-linear differential equation

^(*) Texte reçu le 10 juillet 1980.

Partially supported by N. S. F. Grants MCS 79-01998.

Yasutaka SIBUYA, School of Mathematics, University of Minnesota, MINNEAPOLIS, MN 55455 (Etats-Unis).

(2.1)
$$x du/dx + \alpha u = f(x) + u^2 g(x, u)$$

where $\alpha \in K$, $f \in K[[x]]$, $g \in K[[x]]$, and f and g are convergent. We want to find a convergent power series $C \in K[[x]]$ which satisfies the equation (2.1). To do this, we try to construct C in the following form

(2.2)
$$u = \rho = \sum_{j=0}^{c} \rho_j, \quad \rho_j \in K[[x]].$$

Step 1. - First of all, $\rho_{\mathbb{C}}$ is determined by the linear differential equation

$$(2.3) x dP_0/dx + \alpha P_0 = f.$$

Step 2. - Change u by $u = P_C + v$. Then (2.1) becomes

(2.1')
$$x \frac{dv}{dx} + \alpha v = \Gamma_0(x)^2 g(x, \Gamma_0(x)) + \Gamma_0(x) G(x) v + v^2 g_1(x, v),$$
where

$$G(x) = 2g(x, \rho_0(x)) + \rho_0(x) g_u(x, \rho_0(x)) (g_u = \partial g/\partial u)$$

$$\begin{aligned} v^2 \ g_1(x \ , \ v) &= \ {}^{\circ}_{O}(x)^2 \{ g(x \ , \ {}^{\circ}_{O}(x) \ + \ v) \ - \ g(x \ , \ {}^{\circ}_{O}(x)) \ - \ g_1(x \ , \ {}^{\circ}_{O}(x)) \ v \} \\ &+ \ 2 \ {}^{\circ}_{O}(x) \ v \{ g(x \ , \ {}^{\circ}_{O}(x) \ + \ v) \ - \ g(x \ , \ {}^{\circ}_{O}(x)) \} \ + \ v^2 \ g(x \ , \ {}^{\circ}_{O}(x) \ + \ v) \ . \end{aligned}$$

We determine θ_1 by the linear part of (2.1')

$$(2.4) x d\theta_1/dx + \alpha\theta_1 = \theta_0^2 g(x, \theta_0) + \theta_0 G(x) \theta_1.$$

The other $\,\mathbb{P}_{\mathbf{i}}\,$ will be determined successively in a similar manner.

This is our Newton iteration procedure.

<u>A closer look at equation</u> (2.3). - If $f = \sum_{m=0}^{\infty} c_m x^m$ ($c_m \in K$), then c_0 is given by

(2.5)
$$\mathbb{P}_{O} = \sum_{m=0}^{\infty} \frac{c_{m}}{m+\alpha} \bar{x}^{m}.$$

Assuming that $|f|_0(r) \le M$ for $0 \le r < r_0$, where r_0 and M are some positive numbers, we want to derive

$$|\mathcal{P}_0|_0(\mathbf{r}) \leq \mathbf{M} \quad \text{for } 0 \leq \mathbf{r} < \mathbf{r}_0^t,$$

for $r_0^{\bm t}$ a positive number, as large as possible, such that $0 < r_0^{\bm t} \leqslant r_0$. To do this, we introduce two assumptions

$$c_{m} = 0 \quad \text{for} \quad m < m_{0},$$

(2.8)
$$|m + \alpha|^{-1} \leq C^{m^{1-\delta}} \quad (m \geq m_0),$$

where m is a positive integer, C is a positive number greater than one, and δ is a positive number smaller than one, i. e. C>1 , $0<\delta<1$.

The assumption (2.8) may be called "non-Liouville property" of the exponent o. The condition (2.7) may be written

$$f \equiv 0 \pmod{x}^{m_0}.$$

Note that, if equation (2.1) admits a formal power series solution, then, we can change (2.1) so that condition (2.7) may be satisfied for any prescribed m_0 . Also note that any algebraic number α satisfies condition (2.8) for any δ if we choose C and m_0 suitably.

Under assumption (2.8), set

(2.9)
$$\rho_{O} = (1/C)^{m_{O}^{-\delta}}$$

Then $0 < \rho_0 < 1$, and

$$\rho_{O}^{m} = (\rho_{O}^{m\delta})^{m^{1-\delta}} = (C^{m/m_{O}})^{\delta})^{m^{1-\delta}} \leq (1/C)^{m^{1-\delta}} \leq |m + \alpha| \quad \text{if} \quad m \geq m_{O} \leq m_{O}^{m^{1-\delta}}$$

Hence, under assumptions (2.7) and (2.8), we have

$$|\mathcal{C}_{0}|_{0}(\mathbf{r}\rho_{0}) = \sup_{m \geqslant m_{0}} |\mathbf{m} + \alpha|^{-1} |\mathbf{c}_{m}|(\mathbf{r}\rho_{0})^{m} \leq \sup_{m \geqslant m_{0}} |\mathbf{c}_{m}| |\mathbf{r}^{m} = |\mathbf{f}|_{0}(\mathbf{r}),$$

and

(2.6')
$$|\rho_0|_0(\mathbf{r}) \leq M \text{ for } 0 \leq \mathbf{r} < \mathbf{r}_0 \rho_0$$

Equation (2.4) without $_0$ G(t) $_1$ - To simplify the explanation, we remove $_0$ G(x) $_1$ from the right-hand member of equation (2.4); i. e. we consider the equation

$$(2.10) x dP_1/dx + \alpha P_1 = P_0^2 g(x, P_0).$$

We know already that

$$(2.11) \qquad \qquad e_0 \equiv 0 \pmod{x}^{\text{In}_0},$$

and that Po satisfies (2.6'). First of all, (2.11) implies that

(2.12)
$$\rho_0^2 g(\cdot, \rho_0) \equiv 0 \pmod{x}^{2m_0}$$
.

Hence, if we assume that g satisfies the condition

(2.13)
$$|\mathcal{P}_{0}^{2}|_{0}^{2} = (\mathbf{r}_{0}, \mathcal{P}_{0})|_{0}^{2} = (\mathbf{r}_{0}, \mathcal{P}_{0}, \mathbf{r}_{0})|_{0}^{2} = (\mathbf{r}_{0}, \mathbf{r}_{0}, \mathbf{r}_{0}, \mathbf{r}_{0})|_{0}^{2} = (\mathbf{r}_{0}, \mathbf{r}_{0}, \mathbf{r}_$$

we have

(2.14)
$$\begin{cases} e_1 \equiv 0 \pmod{x}^{2m_0}, \\ |e_1|_0(r) \leq M \text{ for } 0 \leq r < r_0 \rho_0 \rho_1, \end{cases}$$

where
$$\rho_1 = (1/C)^{(2m_0)^{-\delta}} = \rho_0^{2-\delta}$$
.

Suppose that, proceeding inductively as above, we have defined for all $j \geqslant 0$,

$$\begin{cases} \mathcal{P}_j \equiv 0 \pmod{x}^{2^j H_0} , \\ \left| \mathcal{P}_j \right|_0 (\mathbf{r}) \leqslant \mathbb{M} \text{ for } 0 \leqslant \mathbf{r} < \mathbf{r}_0 \, \rho_0 \, \rho_1 , \cdots, \rho_j . \end{cases}$$

where
$$\rho_{\mathbf{j}} = \rho_{\mathbf{j}-\mathbf{k}}^{\mathbf{2}-\delta} = \rho_{0}^{\mathbf{2}-\mathbf{j}\delta}$$
; set
$$\psi_{\mathbf{j}} = \Sigma_{\mathcal{L}=0}^{\mathbf{j}} \; \rho_{\mathcal{L}} \; , \quad \rho_{\infty} = \Pi_{\ell=0}^{\infty} \; \rho_{\mathcal{L}} = \rho_{0}^{(1-2^{-\delta})^{-1}} > 0 \; .$$

Then $|\psi_{\bf j}|_0({\bf r}) < M$ for $0 < {\bf r} < {\bf r}_0 \; \rho_\infty$, and $\psi_{\bf j}$ converges x-adically to ${\it P} = \sum_{j=0}^\infty \; {\it P}_{\it j} \; .$

Therefore, by virtue of lemma 1, we conclude that $\mathscr P$ is convergent for $|x| < r_0 \varrho$. The argument of this section is not strictly speaking correct, since we removed $\mathscr P_0 = G(x) = 0$ from the right-hand member of equation (2.4). A correct treatment of equation (2.1) is given in SIBUYA-SPERBER ([2],[4]).

3. Typical results.

In this section, we shall give a rigorous treatment of a problem which is more general than the problem of section 2. We assume that K contains an element π such that

(3.1)
$$|\pi| = (\frac{1}{p})^{(p-1)^{-1}}$$

We consider the following situation.

(i) We are given α_1 , ... , α_n \in K such that

(3.2)
$$|\alpha_{j}| \leq 1$$
, $|m + \alpha_{j}|^{-1} \leq C^{m^{1-\delta}}$, $|m + \alpha_{j} - \alpha_{j}|^{-1} \leq C^{m^{1-\delta}}$.

for $m\geqslant 2^{\frac{k}{k}}$ and i, j=1, ..., n , where k is a non-negative integer, and 0 and 8 are positive numbers such that 0>1 , $0<\delta<1$.

(ii) We are also given $\ a_1$, ... , $a_n \in \ \mathtt{K}[[\,x\,]]$ such that

(3.3)
$$a_{j} \equiv 0 \pmod{x}, |\int_{0}^{\bullet} t^{-1} a_{j}(t) dt|_{0}(r) < |\pi|,$$

for $0 \leqslant r < r_0$ and j = 1, ..., n, where r_0 is a positive number, and where, for $a = \sum_{m=1}^{\infty} a_m \ x^m$, we have denoted $\sum_{m=1}^{\infty} (a_m/m) \ x^m$ by $\int_0^{x} t^{-1} \ a(t) \ dt$.

We define two sequences of numbers, $\{\sigma_h\}$ and $\{\tau_h\}$ by

(3.4)
$$\sigma_{1} = 1/0, \quad \tau_{1} = (1/0)^{2(1-2^{-\delta})^{-1}}$$

$$\sigma_{h} = \sigma_{h-1}^{2} \tau_{h-1}, \quad \tau_{h} = (\sigma_{1}^{h} \sigma_{h})^{(1-2^{-\delta})^{-1}}.$$

Note that

$$(3.5) 0 < \tau_{h} < \sigma_{h} < \tau_{h-1} < 1 .$$

In this section, we shall prove the following two theorems.

THEOREM 1. - Assume that a differential operator $H = \sum_{j=0}^{n-1} b_j(x) \partial^j$ ($\delta = xd/dx$) satisfies the following conditions:

(3.6)
$$\begin{cases} b_{j} \in K[[x]] & \text{and} \quad b_{j} \equiv 0 \pmod{x^{2^{k}}}, \\ |b_{j}|_{0}(r) < |\pi| & \text{for} \quad 0 \leqslant r < r_{0}. \end{cases}$$

Then, there exists η_1 , ... , $\eta_n \in \mathtt{K}[[\mathtt{x}]]$ such that

$$\begin{cases} \eta_{j} \equiv 0 \pmod{x^{2^{k}}} \text{,} \\ \left| \int_{0}^{\infty} t^{-1} \eta_{j}(t) \ dt \right|_{0}(r) < |\pi| \quad \text{for } 0 \leqslant r < r_{0} \sigma_{n}^{2^{-k}\delta} \text{,} \quad j = 1 \text{, ..., n,} \\ \text{and that}$$

and that

(3.3)
$$(\partial + \alpha_1 + a_1) \cdots (\partial + \alpha_n + a_n) - H$$

= $(\partial + \alpha_1 + a_1 - \eta_1) \cdots (\partial + \alpha_n + a_n - \eta_1) \cdot \cdots$

THEOREM 2. - Assume that

(3.9)
$$f \in K[[x]]$$
, $f \equiv 0 \pmod{x^{2^k}}$, $|f|_0(r) < 1$ for $0 \le r < r_0$, and that

$$\begin{cases} G = \sum_{\substack{\mu_0 + \cdots + \mu_{n-1} \geq 2 \\ \mu_j \geqslant 0}} g_{\mu_0 \cdots \mu_{n-1}}(x) \ v_0^{\mu_0} \cdots v_{n-1}^{\mu_{n-1}} \in \mathbb{K}[[x \ , \ v_0 \ , \ \cdots \ , \ v_{n-1}]] \ , \\ & \text{avec} \ g_{\mu_0 \cdots \mu_{n-1}}(x) \in \mathbb{K}[[x]] \ , \\ & |g_{\mu_0 \cdots \mu_{n-1}}|_0(r) \leq |\pi| \quad \text{for} \ 0 \leq r < r_0 \ . \end{cases}$$

Then, there exists a unique $P \in K[[x]]$ such that

$$(3.11) \qquad \qquad e \equiv 0 \pmod{x^{2^k}},$$

and that

$$(3.12) \quad (3 + \alpha_1 + \alpha_1) \dots (3 + \alpha_n + \alpha_n)(P) = f + G(x, P, 3P, \dots, 3^{n-1}P).$$

Furthermore, this power series @ also satisfies the condition

(3.13)
$$|\varphi|_0(\mathbf{r}) < 1 \text{ for } 0 \leqslant \mathbf{r} < \mathbf{r}_0 \tau_n^{2^{-k\delta}}$$

Remark 1. - The power series @ is a solution of a non-linear differential equation with purely Fuchsian linear part. This is a prototype of the most difficult situations in the study of p-adic non-linear problems. The most important part of theorem 2 is the estimate (3.13), i. s. the r-interval in which $|\mathcal{P}|_{G}(\mathbf{r}) < 1$ holds.

Remark 2. - Theorem 1 is a Hensel-type lemma. The problem of factorization of a linear differential operator is naturally reduced to a non-linear problem such as that of theorem 2. For example, if the order of the operator is two, the corresponding non-linear problem is a Riccati equation. In general, if the order of the operator is n, the order of the corresponding non-linear problem is n-1. Taking advantage of this situation, we can prove theorem 1 and 2 simultaneously by an induction on n. Since the case n=1 was treated in SIBUYA-SPERBER [2], we shall prove these theorems for $n \ge 2$. (Cf. also SIBUYA-SPERBER [4])

4. Proof of theorem 1 for n .

In this section, assuming theorem 2 for n-1, theorem 1 for n=1, and theorem 1 for n-1, we shall prove theorem 1 for n. Set

(4.1)
$$\begin{cases} L = (\partial + \alpha_1 + a_1) & \dots & (\partial + \alpha_{n-1} + a_{n-1}) \\ \ell = \partial + \alpha_n + a_n \end{cases} ,$$

We want to find $\eta \in \text{K}[[x]]$ and $\widetilde{L} = \sum_{j=0}^{n-2} \text{Y}_j \ \delta^j$ ($\text{Y}_j \in \text{K}[[x]]$) such that

The relation (4.2) is equivalent to the assertion that

$$(4.2')$$
 $L_{\ell}(u) - H(u) = 0$

for all u belonging to a sufficiently large extension of $\mathtt{K}[[\mathtt{x}]]$ such that

$$(\ell - \eta)(u) = 0$$
.

Therefore, (4.2) is equivalent to the assertion that

(4.3) $L(u\eta) = H(u)$ for all such u satisfying $g(u) = u\eta$.

Observe that

$$(\partial + \alpha_j + a_j)(uv) = u(\partial + (\alpha_j - \alpha_n) + (a_j - a_n) + \eta)(v)$$

if $\ell(u) = u\eta$. Hence

(4.4)
$$L(u\eta) = u(\partial + (\alpha_1 - \alpha_n^2) + (\epsilon_1 - a_n^2) + \eta)$$

$$\cdots (\partial + (\alpha_{n-1} - \alpha_n^2) + (\epsilon_{n-1} - a_n^2) + \eta)(\eta),$$

if $g(u) = u\eta$. We can write

$$(4.4') \quad (3 + (\alpha_1 - \alpha_n) + (a_1 - a_n) + \eta) \dots (3 + (\alpha_{n-1} - \alpha_n) + (a_{n-1} - a_n) + \eta) (\eta)$$

$$= (3 + (\alpha_1 - \alpha_n) + (a_1 - a_n)) \dots (3 + (\alpha_{n-1} - \alpha_n) + (a_{n-1} - a_n)) (\eta)$$

$$- \tilde{F}(x, \eta, \dots, \delta^{n-2} \eta)$$

where

$$\widetilde{F} = \sum_{\substack{\mu_0 + \dots + \mu_{n-2} \ge 2 \\ \mu_j \geqslant 0}} \widetilde{F}_{\mu_0 \dots \mu_{n-2}}(x) v_0^{\mu_0} \dots v_{n-2}^{\mu_{n-2}} \in \mathbb{K}[[x]][v_0, \dots, v_{n-2}],$$

$$\widetilde{F}_{\mu_0 \bullet \bullet \mu_{n-2}} \in \mathbb{K}[[x]] \quad \text{and} \quad |\widetilde{F}_{\mu_0 \bullet \bullet \mu_{n-2}}|_0(r) \leqslant 1 \quad \text{for} \quad 0 \leqslant r < r_0 \bullet r_0 = 0$$

On the other hand, if $\ell(u) = u \eta$, we have

$$\partial u = u(-\alpha_n - a_n + \eta) , \quad \partial^2 u = u \{(-\alpha_n - a_n + \eta)^2 + \partial(-\alpha_n - a_n + \eta)\} , \text{ etc.}$$

Hence, H(u) has the following form

(4.5)
$$H(u) = uF(x, \eta, ..., \partial^{n-2} \eta)$$

where

$$F = \sum_{\substack{\mu_0 + \dots + \mu_{n-2} \ge 0 \\ \mu_j \ge C}} F_{\mu_0 - \mu_{n-2}}(x) v_0^{\mu_0} \dots v_{n-2}^{\mu_{n-2}} \in K[[x]][v_0, \dots, v_{n-2}],$$

$$F_{\mu_0 \cdots \mu_{n-2}} \in K[[x]]$$
, $F_{\mu_0 \cdots \mu_{n-2}} \equiv 0 \pmod{x^{2^k}}$,

end

$$|F_{\mu_0 \bullet \bullet \mu_{n-2}}|_0(r) < |\pi|$$
 for $0 \leqslant r < r_0$ •

Thus, we derive from (4.3) the equation for η :

$$(\partial + (\alpha_1 - \alpha_n) + (\alpha_1 - \alpha_n)) \dots (\partial + (\alpha_{n-1} - \alpha_n) + (\alpha_{n-1} - \alpha_n))(\eta) = \mathbb{F} + \widetilde{\mathbb{F}}$$

Set $\eta = \pi w$, end $\tilde{f}(x) = F_{0 \le 0}(x)$, $\tilde{H} = \sum_{j=0}^{n-2} \tilde{b}_j(x) \delta^j$, where

and

$$\widetilde{G}(x, v_0, \dots, v_{n-2}) = \sum_{\substack{\mu_0 + \dots + \mu_{n-2} \ge 2 \\ \mu_j \ge 0}} \{F_{\mu_0 \dots \mu_{n-2}}(x) + \widetilde{F}_{\mu_0 \dots \mu_{n-2}}(x)\} v_0^{\mu_0} \dots v_{n-2}^{\mu_{n-2}}.$$

Then the equation for w is given by

$$(4.6) \quad (3 + (\alpha_1 - \alpha_n) + (\alpha_1 - \alpha_n)) \cdots (3 + (\alpha_{n-1} - \alpha_n) + (\alpha_{n-1} - \alpha_n))(w)$$

$$= (1/\pi) \tilde{f} + \tilde{H}(w) + (1/\pi) \tilde{G}(x, \pi w, \pi \partial w, \dots, \pi \partial^{n-2} w)$$
Utilizing theorem 1 for $n-1$, we find $\tilde{\eta}_1, \dots, \tilde{\eta}_{n-1} \in K[[x]]$ such that

$$\tilde{\eta}_{j} \equiv 0 \pmod{x^{2^{k}}}$$
, $|\hat{J}_{0}^{\bullet}|^{t-1} \tilde{\eta}_{j}(t) |dt|_{0}(r) < |\pi| \text{ for } 0 \leq r < r_{0} \sigma_{n-1}^{2^{-k\delta}}$,

and that

$$(\partial_{1} + (\alpha_{1} - \alpha_{n}) + (a_{1} - a_{n})) \dots (\partial_{n} + (\alpha_{n-1} - \alpha_{n}) + (a_{n-1} - a_{n})) - \widetilde{H}$$

$$= (\partial_{1} + (\alpha_{1} - \alpha_{n}) + (a_{1} - a_{n}) - \widetilde{\eta}_{1}) \dots (\partial_{n} + (\alpha_{n-1} - \alpha_{n}) + (a_{n-1} - a_{n}) - \widetilde{\eta}_{n-1}) .$$

Then, applying to (4.6) theorem 2 for n-1, we find a unique solution $\dot{w}(x)$ such that

$$\begin{cases} w \equiv 0 \pmod{x^{2^k}}, \\ |w|_0(r) < 1 \text{ for } 0 \leqslant r < r_0(\sigma_{n-1} \tau_{n-1})^{2^{-k\delta}}. \end{cases}$$

Thus, we constructed η so that (4.3) is satisfied and

$$\begin{cases}
\eta \equiv 0 \pmod{x^{2^{k}}}, \\
|\eta|_{0}(r) < |\eta| \quad \text{for } 0 \leqslant r < r_{0}(\sigma_{n-1} \tau_{n-1})^{2^{-k\delta}}.
\end{cases}$$

To compute \tilde{L} , we derive $\tilde{L}(\ell - \eta) = H - L\eta$. Putting

$$\text{H} - \text{L} \boldsymbol{\eta} = \boldsymbol{\Sigma}_{j=0}^{n-1} \; \hat{\boldsymbol{b}}_{j}(\mathbf{x}) \; \boldsymbol{\vartheta}^{j} \; , \quad \hat{\boldsymbol{b}}_{j} \in \; \mathbb{K}[[\mathbf{x}]] \; ,$$

we get

$$\begin{cases} \hat{b}_j \equiv 0 \pmod{x^{2^k}} \text{,} \\ \left| \hat{b}_j \right|_0(\mathbf{r}) < |\pi| \quad \text{for } 0 \leq \mathbf{r} < \mathbf{r}_0(\sigma_{n-1}, \tau_{n-1})^{2^{-k\delta}} \text{;} \end{cases}$$

furthermore,

(4.3)
$$Y_{n-2} = \hat{b}_{n-1}$$
, $Y_{\mu} = \hat{b}_{\mu+1} - \sum_{j=\mu+1}^{n-2} f_{j,\mu+1} Y_j$, $\mu = 0$, ..., $n-2$,

where
$$f_{j,\mu} \in K[[x]]$$
, and $|f_{j,\mu}|_0(r) \le 1$ for $0 \le r < r_0(\sigma_{n-1} \tau_{n-1})^{2^{-k\delta}}$.

Finally, applying to $L-\widetilde{L}$ theorem 1 for n-1, and to $\ell-\tau$ theorem 1 for n=1, and utilizing the inequality $\sigma_{n-1}<\sigma_1$, we complete the proof.

5. Proof of theorem 2 for n.

In this section, assuming theorem 1 for $\,n$, and theorem 2 for $\,n=1$, we shall prove theorem 2 for $\,n$. Setting

(5.1)
$$\psi_{\mathbf{j}} = \sum_{\ell=0}^{\mathbf{j}} \mathbb{P}_{\ell} = \psi_{\mathbf{j-1}} + \mathbb{P}_{\mathbf{j}},$$

we determine $\psi_{j} \in K[[x]]$ by

$$(5.2) \quad (\partial + \alpha_1 + \alpha_1) \cdots (\partial + \alpha_n + \alpha_n)(\psi_j)$$

$$= f + G(x, \psi_{j-1}, \partial \psi_{j-1}, \cdots, \partial^{n-1} \psi_{j-1})$$

$$+ \sum_{i=0}^{n-1} G_{v_i}(x, \psi_{j-1}, \cdots, \partial^{n-1} \psi_{j-1}) \partial^i G_j,$$

where $G_{v_i} = \partial G/\partial v_i$. This means that the ρ_j are determined by linear differential equations:

(5.3)
$$L_{j}(\rho_{j}) = f_{j} \quad (j = 0, 1, ...),$$

whore

(5.4)
$$\begin{pmatrix} L_0 = (\partial + \alpha_1 + a_1) & \dots & (\partial + \alpha_n + a_n) \\ L_j = L_0 - \sum_{i=0}^{n-1} G_{v_i}(x, \psi_{j-1}, \dots, \partial^{n-1} \psi_{j-1}) & \partial^i & (j \geq 1) \end{cases}$$

(5.5)
$$\begin{cases} f_{0} = f \\ f_{j} = G(x, \psi_{j-1}, \dots, \delta^{n-1}, \psi_{j-1}) - G(x, \psi_{j-2}, \dots, \delta^{n-1}, \psi_{j-2}) \\ - \sum_{i=0}^{n-1} G_{v_{i}}(x, \psi_{j-2}, \dots, \delta^{n-1}, \psi_{j-2}) \delta^{i} \mathcal{P}_{j-1}, \quad (j \geq 1) \end{cases}$$

where $\psi_{\mathcal{L}} = 0$ if $\mathcal{L} < 0$.

We want to construct the P; so that

$$\begin{cases}
\varphi_{\mathbf{j}} \equiv 0 \pmod{x^{2^{k+j}}}, \\
|\varphi_{\mathbf{j}}|_{0}(\mathbf{r}) < 1 \quad \text{for} \quad 0 \leq \mathbf{r} < \mathbf{r}_{0} \quad \sigma_{1}^{n2^{-(k+j)}\delta} \quad |\varphi_{\mathbf{j}}|_{2=0}^{j-1} \left(\sigma_{1}^{n} \sigma_{n}\right)^{2^{-(k+\ell)}\delta}.
\end{cases}$$

To do this, set

(5.7)
$$L_{j} = L_{j-1} - H_{j} \quad (j \ge 1)$$

where by (5.4)

(5.3)
$$H_{j} = \sum_{i=0}^{n-1} \{G_{v_{i}}(x, \psi_{j-1}, \dots, \partial^{n-1} \psi_{j-1}) - G_{v_{i}}(x, \psi_{j-2}, \dots, \partial^{n-1} \psi_{j-2})\} \partial^{i}.$$

Using an induction on $\,j\,$, we can achieve a factorization of $\,L_{j}\,$ into linear factors, by virtue of theorem 1 for $\,n\,$, for

$$|x| < r_0 \prod_{k=0}^{j-1} (\sigma_1^n \sigma_n)^{2^{-(k+l)\delta}}.$$

Then, by using theorem 2 for n = 1 (n-times), we can achieve (5.6).

Thus, we get

$$|\psi_{j}|_{0}(\mathbf{r}) < 1$$
 for $0 \le \mathbf{r} < r_{0} \tau_{n}^{2^{-k\delta}}$, $j = 0$, 1, ...,

and ψ_j converges x-adically to $\mathcal{P} = \sum_{k=0}^{\infty} \mathcal{P}_k$. Hence, by lemma 1 of section 1,

$$|\rho|_0(\mathbf{r}) < 1$$
 for $0 < \mathbf{r} < r_0 \tau_n^{2^{-k\delta}}$.

Finally, letting j tend to infinity on the both sides of (5.2), we complete the proof.

Results for more general cases, applications, and treatments of systems of differential equations were given in SIBUYA-SPERBER ([3],[4]).

REFERENCES

- [1] DWORK (B.). On the zeta function of a hypersurface. Paris, Presses universitaires de France, 1962 (Institut des Hautes Etudes Scientifiques, Publications mathématiques, 12, p. 5-68).
- [2] SIBUYA (Y.) and SPERBER (S.). Convergence of power series solutions of p-adic non-linear differential equations, "Proceedings of the conference on recent advances in differential equations" [1978. Triestre] (to appear).
- [3] SIBUYA (Y.) and SPERBER (S.). Arithmetic properties of power series solutions of algebraic differential equations, Annals of Math. (to appear).
- [4] SIBUYA (Y.) and SPERBER (S.). Arithmetic properties of power series solutions of algebraic differential equations, Publications de l'IRMA de l'université de Strasbourg (in preparation).
- [5] SIBUYA (Y.) and SPERBER (S.). Arithmetic properties of power series solutions of algebraic differential equations, "Proceedings of an advanced seminar on singular perturbations and asymptotics" [1930. Madison] (to appear).