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AN APPLICATION OF NEWTON ITERATION PROCEDURE

TO p-ADIC DIFFERENTIAL EQUATIONS

Yasutaka SIBUYA (*)

Groupe d’étude d’Analyse ultramétrique
(Y. G. CHRISTCL, P. ROBBA)
7e année, 1979/80, no 10, 10 p. 1 G mars :~ ~ ~. &#x3E;C~

This report is based on the s lectures at Strasbourg, Padova, Grenoble,
and Paris. The motivations of this research were explained in the papers

to appear ([3]~ [5]) and the lecture-notes [4] (joint with S. Therefore,
in tIns paper, we will report only on the technical part.

1. Preliminaries.

Let K be a field of characteristic zéro complete with respect to an absolute

value ( 1 which is non-trivial and ultrametric. The field of rational number, Q ,
is a subfield of and we require that the restriction t is [1

p-adic absolute value for some prime number p. We normalize | 1 so that

Jpj i = 

If for some positive constant then P is convergent for

1 xl  ra . The following lemma is fundamental throughout this report.

1. - Assume that (P. = I~’ 0 a. K[[xJ], j = 1 , 2, ... ~ with the
- J ’*’"""""

properties :

(i) lim. a. J, ID = a m exists for every m ;

(ii) for 0  r  r0 , j = 1 , 2, ... , where ra is a posi-

tive number, and l"I(r) is a non-négative number which dépends only on r. Then,
(;:) = 03A3~m=0 ., a xm is convergent for Ixl  r and limj~+~ JP. - (Pl (r) = a for

0  r  ra . (Cf. B. DWORK [lJ.)

2. An example (a rough sketch).

Let us consider a non-linear differential équation
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f E ô ~ u~ ~ 9 and f and g are convergent. We

want to find a convergent power series P E K[[x]] which satisfies- the équation

( 20 1) . To do this, we try to construct .’B) in the following form

1. - First of rC is determined by the linnar differential équation

Step 2e - C11ange u by + v . Then (2.1) becomes

where

determine P1 by the linear part of (2.1’)

The other (0 . will be determined successi vely in a similar manner.
J

This is our Newton i teration procedure.

i. closer look at equation (2. 3) . - If f = Ô7 A c m xm (c 
ID 

E 1) , then P0 is

given 1-;y

Assuming that M for O.::S r  rot where and M are some posi-
tive numbers, we want to dérive

for ri a positive number, as large as possible, such that 0  r~ . To do

we introduce two assumptions

where !l’,O is a. positive integer, C is a positive number greater than one.. é

is a, positive number smaller than one, i. e. 0§1.

The assumption (2.8) may be called "non-Liouville property" oi the exponent 03B1 w

The condition (2.7) msy be written
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Note that, if équation (2.l) admits a formal power series solution, then, we can

change ( 2.1 ) so that condition (2. 7) be satisfied for any prescribed 

note that any algebraic number 03B1 satisfies condition (2.8) for cny 8 if TTe

choose C and ma suitably.

Under assumption ( 2. 8) , set

Then 0p~l ~ and

hence, under assumptions (2.7) and (2. 8), we have

and

Equation (2.4) without (p.. G(t) P1 . - To simplify thé explanation, we remove

P0 G(x) P. from thé right-hand member of équation (2.4) ; i. e. w@ consider thé

équation

We know already that

and that °0 satisfies (2.6’). First of all, (2.11) implies that

Rence, if we assume that g satisfies the condition

have

Suppose that, proceeding inductively as above, we have defined for 
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Then h j 1 o(r) ~ M for 0:rr~p ~ and ~. converges i£aY ta

Therefore, by virtue of lemma 1, we conclude that P is convergent for 1 xt  

The argument of this section is not strictly speaking correct, since we removed

G(x) P. from the right-hand member of équation (2.4). A correct treatment of

équation (2.1) is given in SIBUYA-SPERBER ([2], [4]).

3. 

In this section, we shall give a rigorous treatment of a problem which is more

genereJ. than the problem of section 2. assume that K contains an élément rr

such that

We consider the following situation. 

(i) We are given 03B11 , ... , 03B1n ~ K such that

for 2 k and i, j ;::: 1., ... , n , where k is a non-négative integer, and

C ond S are positive numbers such that C &#x3E; 1’ , 06  1 .

(ii) We are also given a1 , ... , an e K[[xJJ such that

for 0  r  r 0 where r0 is a positive number, and where,

for [l = 03A3~m=1 ’B11 f , we have denoted 03A3~m=1 (am/m) xm by "

We défini two séquences of numbers, {03C3n} and (r.) by

1.lote that

In this section, we shcll prove the following two theorems.
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THEOi’JSi 1. - Assume that a différentiel operator K= 03A3n-1j=0 b.(x) ~j (o = 

satisfies thé following conditions s

Then, there exists ... , ~n e K[[xj] such that

that

2. - Assume that

and that

Then there exists a unique (p E K[[x]] such that

and that

Furthermore, this power séries p also satisfies the condition

1. - Thé power séries P is a solution of a non-linear differential équa-

tinn with purely Fuchsian linear This is a prototype of the most difficult

situations in the study of p-adic non-linear proble:ms. The most important part 0Î

theorein 2 is the estimate (3.13) ’ i. fi. the r-interval in which 1°1 0 (r)  1

holds.
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Remark 2. - Theorem 1 is a Hensel-type lemma. The problem of factorization of a

differential operator is naturally reduced to a non-linear prnblem such as

that of theorem 2. For if the order of the operator is two, the 

ding problem is a Riccati In general, if the order of the 
is n , the order of the corresponding non-linear prnblem is n - 1 . 

of this we can prove theorem 1 and 2 simultaneously by an in-

on n . Sirice the case n = 1 was treated in [2]~ 
prove thèse theorems for n  2 . (Cf. also [4].)

4. of 1 for n .

In this assuming theorem 2 for n - 1 , theorem 1 for n = 1 , and theo-

for n - 1 , we shall prove theorem 1 for n . Set

We want to find ~ E K[[xJJ and  = Yj ~j (Yj E K[[xJJ) such tha,t

The relation (4.2) is équivalent to the assertinn that

for all u belonging to a sufficiently large extension of K[[x]] such thot

Therof0re, (4.2) is equivalent to the assertinn that

(4.3) H(u) for all such u satisfying ~(u) = 

Observe that

if Hence

if ,j, (u) =uT, . We can write
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where

On the other l1and, if (u) = u , we have

Hence, H(u) hns the following form

;::nd

Thus, we dérive from (4.3) the équation for Tj :

and

Then the équation fnr w is given by

utilizing theorem 1 for n - 1 , we find K[[x]] such that
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that

applying tn (4. 6) theorem 2 n - 1 , we find a unique solution w(x)

such that

7hus, we constructed ~ so that (4. 3) is satisfied ro1d

To compute L , we derive L(l - ~) = H - Putting

we get

furthermre,

Finally, applying to L - L theorem 1 for n - 1 , and T theorem 1 

1 , and utilizing the inequality  0"1 ’ we complete the 

5. of theorem 2 for n . 

’

In this section, assuming theorem 1 fnr n 9 and theorem 2 for n = 1 , we shall

prove theorem 2 for n . Setting

7ie détermine ~- . e E by
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where G 

vi 
= 5G/?)v.. This means that the Pj 0 are determined by linear differen-

tial equations :

where

where 03C8 l 
= a ii jj,  a .

Îde want to construct the 6ù. so that
J

To do this, set

where by (5.4)

U sing an induction we can achieve a factorization of L. into linear
J

by virtue of theorem 1 for n, for

Then, by using theorem 2 for n = 1 ( we can achieve (506) .



10-10

Thus, we get

and B’;. converges x-adically to (p= 03A3~l=0 P . Hence, by 1 of section 1,
’J ~2014L’ ~

letting j tend to infinity on the bot:h sides of (5. 2) , complete thé

Results for more général cases, applications, snd treatments 0f systems nf diffe-

rc.ritial equations were given in SIBUYA-SPERBER ([3L[4]).
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