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ON APERY’S DIFFERENTIAL OPERATOR

Bernard DWORK (*)
[Princeton University]

Groupe d’Analyse ultrametrique
(Ye G. CHRISTOL, P. ROBBL)
60 1980/81, n° 25, 6 p. 19 janvier 1981

Let L be an ordinary linear differential operator of order n with coeffi-

cients in Q(x) ,

where D = a. e Q(x) . For each prime p , we may consider thé generic

point t 9 and ask for thé maximal common radius of convergence , r , of thé

solutions of L at t . We restrict our attention te those primes for whi ch 

Gauss norm of a. is bounded by unity for 1 ~ j ~ n . With this qualification,
thé solutions at t certainly converge in thé disk

The irod p réduction of L is said to be of nilpotent p-curvature if there

exists e &#x3E; 0 such that all the solutions of L at t converge in the disk,

It is known in this case that, in fact, the solutions converge in the disk

This shows that the maximal radius of convergence cennot assume arbitrary values.

It is that nilpetence for an infinite set ni primeo implies that the

singularities of L are all regular. Furthermore nilpotence for aimnst all prime a

implies the exponents of L are rational.

The converse is false. Let f(x) = 4(x - e)(x - e~)(x - e~)

For suitable constant B , the estimate (4) fails (for an infinité set of primer)
to be valid. The équation clearly has regular singular points and rational expo-

nents.

l’~’) Texte reçu le 2 juillet 19~1.
Bernard DWORK, Fine Hall, Princeton University, PRINCETON NJ 08544 (Etats Unis).
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A.t this point, we mention two conjectures.

l (BCMBIERI) : Nilpotence for almost all p implies r 
P 
= 1 for almost ail p o

ô If r p 
== 1 for almost all p, then L "cornes from geometry".

We say that L cornes from geometry if at one regular point it has n indep en-

dent solutions which. lie in the class of functions at that point 

corne from geometry.

The class of functions at zero which come from geometry is defined to -the

set satisfying the following conditions s

(a) It is a vector space over Qalg , the algebraic closure of Q.

(b) It is a ring.

( c) It contains all fonctions algebraic over Q(x) .

(d) It is closed under formal intégration.

(e) It is closed under conposition with elements of Q(x) .

( f) For each F v 1 p ... , v 1 which is a form in the variables

... , v ID’ let

Then WF is a finite dimensional Q(B) s p ace and thé dérivation -d- of Q(x)r ~ c!..B 

is extended to WF by means of

Under becomes a differential module.

insist that the solutions at the origin of the associated differential equa-

tion lie in the class of functions coming from geometry.

The object of this talk is to discuss an example in which this conjecture is cor-

rect.

APERY has discussed the differential operator .

The unique solution regular at the origin is given by y = l b X wheren
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It is not at all obvious that this series gives a solution of (6). I am indebted

to ASKEY for the explanation that

and that the contiguity relations for such a generalized hypergeometric function

( ) gives a linear recursion relation for the séquence which implies that

the series is indeed a solution of (6).

(6) has a solution in Z[[x]] ~ we may conclude that for each prime p

there is at least one bounded solution, u i converging on the generic disk

D(t , 1 ) . The wronskian, w , of (6) is obviously given by l/(x - x3)
and so a second solution at t is given by the formal integral

which again represents a function analytic (but perhaps unbounded) on D(t ’ 1 ) d
The point here is that u is bounded and hence has at most a finite set of zéros.

Thus may be represented as the sum of a function analytic on 1 ) to-

gether with a rational function having pales of order two on D( t , 1"’) . There

can be no residues at there pales as otherwise v would have a singularity in

D(t , 1-) which contradicts the fact that the singularities of L lie among the

zéros of x - 11x2 - x .

This then shows that for (6) , r p = 1 for all p. This is troubling since (6)
is an example of a Halphen transform of the Lamé équation. With f(x) as in (5),
the Laine équation is

with Riemann àata

The halphen transformation is abtained by putting

letting v = u/2 and changing the dépendent variable y by setting

(1) Cf. RAINVILLE (E. ). - Spécial functions. - New York, Macmillan Company, 1960.
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and the independent variable by setting

so that x is a rational function of X.

transformed équation is

Equation (6) is a specialization of (12) with ID = - 1 . We have remarked that

there are examples of type (5) which do not come from geometry, and in général
there are no intégral formulae representing the solutions of thé Lamé équation.
Thus there is no général way by which we may show that (6) commes from geometry.

"lle write (" ~) = F "" 1) ( - l)j and so
J J

By this we mean if we let be circular paths in the u and v planes

respectîvely with centers at infinity such that uv) &#x3E; 1 for all

where

Thusfor x small, i. e. for lx H l  1 for all (u, v) E y x Y2 ’ we 

For fixed u 9 we write the denominator as
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where e 2 are algebraic functions of u and x.

When x ; 4 9 one solution is v = and the other is infinité. From 

may convince ourselves that for x small, Y1 and Y2 being of radii 

greater then for each y. 82 lies outside Y2 (i. e. doser to

and 8 1 lies inside y 2 . This then shows that

Hcnce by a calculation of the discriminant of the denominator in ( 15) , we obtain

where

which identifies (6) with the équation satisfied by periods of the differential of
the first kind of the elliptic curve (18). This implies that (6) is the pull back

of a hypergeometric differential équation by means of a rational map.

This calculation supports our conjecture II, but of course does not confirm it.

We have not carried out a similar calculation for

with unique solution at the origin given by ~ a xn with
n

have carried out a similar calculation for

with unique solution analytic at the origin, 1 c é ;n

(Ail of these examples are due to are indebted to APERY for the obser-

vation that is the symmetric square of
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while we have obtain an intégral formula for the solution of L3 , we do not hâve

an intégral formula for the solution of L..


