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RILPOTERT SECOND CRDER LINEAR DIFFERENTIAL EQUATIONS
WITH FUCHSIAN SINGULARITIES

by Bernard DWORK ()

[ Princeton University]

Let K be a field of characteristic p # 2 say algebraically closed. Let [
be a linear differential operator
(0.0) L=D"- aD- be K(x)[D]
with D= d/dx . Let fy, , .., Y, s Y, =« =T be the set of singularities

of L and let

(Go1) £(x) =TI (x = v,) -

e assume
(0.2) All the singularities of L are fuchsian.

(0.3) The exponents of L at each singularity lie in Eb .

(0.4) L is nilpotent but does not have two solutions in X(x) linearly
independent over K(x)

By "™ilpotent", we mean that L has a non-trivial solution in KX(x) , and that

the equation for the wronskian,
(00401) Dw = wa ’
has a non-trivial solution in K(x) . We may assume that the zeros and poles of
w liedin T.
We use the word "exponent" to refer to a root of the indicial polynomial.

For i=1, ., m, =, let e, ei be the exponents at vy .
i

We choose a solution u of L in K[x] , unique up to factor in K , by the

condition that no zero of u is of order greater than p - 1 .

We write

~

(0.5) u=g(x) ML, (x=vy) *

™) Texte regu le 2 juillet 1931.
Bernard DWORK, Fine Hall, Princeton University, PRINCETON, NJ 03544 (Etats~Unis).



where
gekx], (g, =1, &el[0,p-1].
de define B by the condition that & e (0, p - 1,
(0.6) g =-degu mdp .

Clearly the éi represent exponents of L . For all se }:I_ , we write

(0.7) D® = a_ D+ b, mdK(x)[D] T,

with a  , by e K(x) . It is known that

An ad hoc proof is given in § 4.5 below :

Having defined 8,(i=1, ... , m, ©) , we define ei(G Ep) to be the
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class of éi , and we define e'i to be the other exponent at Y3 (of ccourse we

may have e, = e! ). Thus we have uniquely defined the difference, e. - e}
i i s S5 i

exponents at vy, . We define t,e (0O, p - 1)
Yi i ’

(0.8) by mod p = e; - e} (i=1, eee , m, ) .

The object of this section is to prowe the following lemma.
1. LEMIA
(1.1) (p-l)(m-l):Zdegg+(tl+...+tm+ t )+ pt

where te N, t>0.

,%' LEM A,
p-1 2 rm ti &L
(2.1) £ 8, = g(0) T, (x=y) " e(x) ,
where
9 e K[ x]
g e K x]

g is prime to f

g has only simple zeros.

of
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We commence our treatment with an elementary proposition.

3. PRCPOSITION. - For each se N, a :f‘(x)s"l e K x],

-~

(3.1) deg &, £ < (s - 1)(m- 1) .

Proof. - By differentiating (0.7) and using L to reduce the D° on the right
hand side, we obtain the recursion formula

. sy : Nofs N
f’ a \ ’a a N Fa 1,\ ;8 \
5 : ;s .

(3.2) | =

On the other hand,

!/al\’i~ ]‘1\ /az\ /a-\

(3.3) ; = \ 1

b,/ A1/ b/ Yol b,/ b
By hypothesis for 1 ¢ig<m, a, = & (resp. b2 = b) has a pole at Vi of

order not greater than one (resp. two) . By induction on s and the recursion

formla, we show that, for s> 1,

(3.4) a (resp. bs) has a pole at Y3 of order not greater than s - 1
(resp. s) .

This shows that a_ £(x) =1 jsa polynomial.
The condition that L is fuchsian everywhere implies that we may write L in

the form

(3.5) L=D%4+ 20 R ( B, ! )
i=1 x - v, i=1 'x - v, 272
i i (x - yi)

where Ai’ Bi’ CieK for 4a=1, 2, see , m.
The condition at infinity implies that

-l

Thus deg a, (resp. deg b2) <=1 (resps - 2) and by (3.2) and induction
we show that

(3.7) deg a (resp. deg bs) <=-(s=-1) (resp. =-s) .
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This completes the proof of the proposition.
4. = e now commence the proofs of the lemmas. By hypothesis, the K(xP)-space of

solutions of L in X(x) has dimension one but in a suitable differential exten-

sion field F , the P space of solutions of L has dimension two.

More explicitly, we choose F so as to contain, r , a solution of
(4.1) T = w/u2

and then, by a well known calculation using (0.4.1),

2
L(ur) = vL(w) + %(T' % ) =0,

while the wronskian

(4.2) =-w

which shows that u , ur are linearly independent over the kernel of D in F .

We now apply (0.7) and conclude that

(Tu)(s) = a(tu)' + b_ ()

(4.3)
u(s) —a u +b u.
s ]
Eliminating bS , we obtain
(i-1) (3)
o 7! u s

(4.4) s T, Z T u (i) !

i+ j=s

i>1

& formula involving u and 1' but not r . We observe that this formula is in-

dependent of the characteristic.

(4.5) Remarke — Since u and ' lie in K(x) they are annihilated by P .
For s> 2p either 1 -1 or j on the right side of (4.4) exceeds p - 1
which shows again that 8y = O for s> 2p .

In particular, for s =p , the above formula gives

(4.6) a, = (%) DL (/)



19-05

2

Now 8 4 0 as otherwise == would lie in the kernel of Pt in K(x) , i. e.,
u

LAPS (CORS COIF RIS (€5 &2

wnich would show that (4.1) has a solution + in K(x) contrary to hypothesis
concerning the dimensionality of the kernel of L in K(x) (ss K(Xp) space) .

By the szme argument since 1, X, ees , #1 is basis of K(x) as K(x)
space, we conclude that Dp_1 maps K(x) into K(xp) « Hence

2
) u
4, 2 k(D) .
(4.77) 2, € 3 (x7)
Putting
— p~-1
Qp = a f(x) ,
we have
w1 P
(4.3) Qper mK( ) .

We heve defined g as the factor of u prime to f(x) . If X, is a gero of

g then the indicial polynomial of L at x., has 0, 1 (mod p) as zeros and

6]
by definition u has no zero of order greater than p = 1 . This shows that the

zeros of g are simple.

5, = e continue our proof of the lemmas. We will show

/ u2 1 2 rm ti
(5.1) Loy e T (x-vy) 7 KG)

Jith this in mind, we use (3.5) to deduce

ei+e;::l-Ai, i=1, eee , m
(5.2)
o+ e;:-}:lin:i b -1
while
-4,
(5.3) we o, (x=v) T K&,

where Ai is a representative in N of Ai (1L <1i < m) . Thus the order of Yi

~

as zero of the left side of (5.1) is congruent mod p to e, + Ay =l=g -of=t;.
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This together with our discussion of g , the factor of u prime to f , concludes
the demonstration of (5.1).

We now estimate the degree of the left side of ¢5.1). By hypothesis

degu=-8 =-¢e and so
@ ©

-2
U - _ m
deg TIGT = Re_ - m+ Zi.—_l Ai .

By (5.2) this is the same as = m+ 1 = t_ « Thus from (5.1),

i

(5.4) m+2degg+tm+zl.nlt

i 1 mod p .

i
By (4.8), (5.1), we obtain (2.1) with 9 ¢ K(x) . We assert that 6 is a poly-
nomizl. Indeed Q is a polynomial and Qr/e(xp) is, by (2.1), a polynomial with
zeros of order bounded by p -~ 1 « Thus 6 must be a polynomiale This completcs-

the proof of Iemma 2. We continue with the proof of Lemme l. By proposition 3,

(545) (p = 1)(m - 1) > degree Qp = 2 degree g + ::l t, +pdege .
Let

(5.6) p=(p-1)(m-1) = 2 degree g - }:Iinzl ty e
Then

(5.7) p > p degree 6 > O .

On the other hand, by (5.4) and (5.6),

p = tm mod p .
Ind hence, by (5.7),

p = 'l:Oo + pt

for some t > O . Substitution in (5.6) completes the proof of Lemma L.

_é. Remark. - We view the sum of the ti as the analogue of the sum of the angles

of the image of the upper half plane under a ratio of solutions of L if KX were
sey the reals and the y; were all real.

7o = In genersl we are given L but not u and so there are two choices of ti
for each i . Thus in applying Lemma 1 there are 2m+l choices for
(B, 5 ooy b s t) and t is not known.

CCROLLARY., = If m= 2 then under hypotheses (G.2)-(0.4), we have t =0, and

 ————




19=07

there is just one possible choice for t t t_ + Equation (1.1) tekes the

o’ 1°?

form

p—l:Zdegg+t.+tl+tm.

G

Proof. - It is clear from (1.1) that t = C . Since p# 2, it follows that

t.,+t, +t =0 mod 2
(oo}

(7.1)

p—lato+t1+tw.

Now each ti is fixed by L wup to the transformetion

ti--?p—ti.

The cnndition of parity shows that such e transformation, if applied at all,

t and we would then have

mist be applied to two of the ti s Say to to s b

7.2) p—l>/p—t0+p—tl+tm.
This is inconsistent with (7.1) as the sum would give
p-132p+2t 32 .

Remark. - The degree of g 1is at most b ; L and this occurs precisely, when

to = tl = tOO = 0, for example in the case of the differential operatnr associated
to the hypergeometric function F(l/2 R 1/2 s 13 X)




