
Groupe de travail
d’analyse ultramétrique

BERNARD DWORK
Nilpotent second order linear differential equations
with fuchsian singularities
Groupe de travail d’analyse ultramétrique, tome 7-8 (1979-1981), exp. no 19, p. 1-7
<http://www.numdam.org/item?id=GAU_1979-1981__7-8__A10_0>

© Groupe de travail d’analyse ultramétrique
(Secrétariat mathématique, Paris), 1979-1981, tous droits réservés.

L’accès aux archives de la collection « Groupe de travail d’analyse ultramétrique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=GAU_1979-1981__7-8__A10_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


19-01

NILPOTENT SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

WITH FUCHSIAN SINGULARITIES

Bernard DWORK

Groupe d’étude d’Analyse ultramétrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
3e aimée~ 1980/81~ no 19, 7 p. 27 octobre 1980

[Princeton University]

Let K be a field of characteristic p S 2 say algebraically closed. Let 1.,

be a linear differential operator

( O. 0) L = D2 - aD - b eK (x)[ D]

with D = Let iY j ’ . ° . ’ Ym, 03B3~ = co} = T be the set of 

o£ L and let

We assume

(0.2) All the singularities of L are fuchsian.

(0.3) The exponents of L at each singularity lie in F .

(0.4) L is nilpotent but does not have two solutions in linearly

independent over K(x") .

"nilpotent", we mean that L has a non-trivial solution in K(x) , and that

the équation for the wronskian,

(0.4.1) Dw = wa ,

has a non-trivial solution in K(x) . 1Je may assume that the zeros and poles of

w lie in T .

use the word "exponent" to refer to a root of the indicial polynomial.

For i = 1 , ... , ID, 00 , let e., e! be the exponents at y . ,

choose a solution u of L in K[x] , unique up to iactor in K , by thé

condition that no zero of u is of order greater than p - 1 . «

We write

( ) Texte reçu le 2 juillet 1931.

Bernard Fine Hall, Princeton University, PRINCETON, NJ û3544 (Etats-Unis) Q
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where

define e by the condition that é E (0 , p - 1) ,

Clearly the ëi represent exponents of L . For all se ~3 ~ we write

with a , b It is known that
s s

An ad proof is given in § 4.5 below :

Having defined é . ( i = 1 , ... , m , ~) , we define e . ( ~ F~p) to be the
l 1 .

class of é. , end we define e! to be the other exponent at °y . (of course we
1 1

may have e. - e’. ) . Thus we have uniquely defined the difference, e. - e! , of
1 l 

‘ 

1 l

exponents at Yi 1 .. we define t . F ( C , p - 1]

The object of this section is to prove the following lemma.

~. 

where t ~ 0 .

where

e e K[x]

g E K[x]

g is prime to f

g has only simple zéros.
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We commence our treatment with an elementary proposition.

3..PROPOSITION. - For each se N, a 

(3.1) deg as f(x)s-1 ~ (s - l)(m- l) .

Froof. - By differentiating (0.7) and using L to reduce thé D2 on thé right

hand side, we obtain thé recursion formula

On the other 

By hypothesis for 1 ~ i ~ ID, a~ = a ( resp. b2 = b) has a pole at of

order not greater than one ( resp. two) . By induction on s and the recursion

formula, we show that, for s ~ 1 ,

(3.4) a (resp. b ) has a pole at ~.~ 9 of order not greater than s - 1
s s l

( resp. s).

This shows that a f(x) 
s-l 

is a polynomial.
s

The condition that L is fuchsian everywhere implies that we may write L in

form

where B. , C. E K for i = 1 , 2 , ... , m .

The condition at infinity implies that

Thus deg a~ (resp. deg b )  - 1 (resp. - 2) and by (3. 2) and induction

we show that
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This complètes the proof of the proposition.

4. - now commence the proofs of the lemmas. By hypothesis, the of

solutions of L in K(x) has dimension one but in a suitable differential exten-

sion field F ~ the # space of solutions of L has dimension two.

More explicitly, we choose F so as to contain, T , a solution of

and then, by a well known calculation using (0.4. 1) ,

while the wronskian

which shows that u, uT are linearly independent over the kernel of D in F .

We now apply (0.7) and conclude that

Eliminating bs , we obtain

a formula involving u and T’ but not T . observe that this formula is in-

dépendent o f the characteristic.

(4, 5) Rsmark. - Since u and T’ 1 lie in K(x) theyare annihilated by Dp .
For s &#x3E; 2p either i - 1 or j on the right side of (4.4) exceeds p - 1

which shows again that a. s =0 for s~ 2p.

In particular, for s = p , the above formula gives
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New a - 0 as other wise W would lie in the kernel of Dp-1 in K(x) , i. e. ,
~ u

which would show that (4. 1) has a solution T in K(x) contray to hypothesis

c oncernin g the dimensionality of the kernel of L in K(x) (as space)

By the same argument since 1 , x ~ ... xp~~ is basis of K(x) as 

conclude that maps K(x) into K(x") . Hence

Putting

we have

Me have defined g as the factor of u prime to f(x) . If x0 is a zero of

g then the indicial polynomial of L at Xo has 0, 1 (mod p) as zéros and

by définition u has no zero of order greater than p - 1 . This shows that the

zéros of g are simple.

5. - We continue our proof of the lemmas. We will show

With this in mind, we use (3.5) to deduce

while

where Ãe is a representati ve in N of A. (1 ~ 1  m) . Thus the order of y.l..... 1. ’"" l

as zero of the left side of (5. 1) is congruent mod p to 280 + Ao - 1 = a - el z to.
1. 1 1.], l
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This together with our discussion of g , the factor of u prime ta f 9 concludes

the démonstration of (5~l)*

We now estimate the degree of the left side of ~5.1). By hypothesis

deg u = - e co =~ - e and so

By (5.2) this is the same as - m + 1 - t . Thus from (5.1),

By (4. 8) , ( 5. 1) , we obtain (2. 1) with e E K(x) . assert that 8 is a poly.~

nomial. Indeed Qp is a polynomial and %/o (À) is, (2. 1), a polynomial with

zéros of order bounded by p - 1 . Thus e must be a polynomial. This completes
the proof of lemma 2. We continue with the proof of Lemma 1. By proposition 3,

Let

Then

On the other hand, by (5.4) and (5. 6) ,

hence, by ( 5 . 7) ,

for some t &#x3E; 0 . Substitution in (5.6) completes the proof of Lemma 1.

6. o Remark. - We vi ew t he sum of t he t. as t he analogue of t he sum of t he ongle s

of the image of the upper half plane under a ratio of solutions of L if K were

the reals and the ~y1 were all real.

7. - In général we are given L but not u and so there are two choices of tl
for each i. Thus in applying Lemma 1 there are 2 choices for

( tl , ... , t ,  t) and t is not known.

If m= 2 then under hypothèses (0.2)-(0.4), we have t = 0 , and
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there is just one possible choice for ta’ B ’ B,’ . Equation (1.1) takes the
form

Proof. - It is clear from (1.1) that t = 0 . Since p f 2 , it follows that

New each t. l is fixed by L up te the transformation

The condition of parity shows that such a transformation, if applied at all,
must be applied to two of the say to t , t 1 and we would then have

This is inconsistent with (7.1) as the sum would give

The degree of g is at most p-1 and this occurs precisely, when

t U = = t~ = 0 , for example in the case of the differential operatnr associated

to the hypergeometric function F(1/2 , 1/2 , 1 ; x) .


