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HARMONIC ANALYSIS ON p-TORSIONAL GROUPS

(after A. M. M, Gommers)

Marius van der PUT

Groupe d’étude d’Analyse ultrametrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
6e annee, 1978/79, no 14, 6 p. 12 mars 1979

[Rijksuniversiteit, Utrecht]

The following is a presentation of results obtained by A. M. M. GOMMERS. Full

details will appear in his forthcoming thesis prepared under the guidance of A. C.

M. vanROOIJ.

l. The groups G that we consider are torsional, i. e. G satisfies the equiva-
lent conditions :

(a) G is a commutative topological group, and G has a zero-dimensional open

compact subgroup H such that G/H is a torsion group.

(b) G is a commutative, locally compact, zero-dimensional group such that every
finite subset of G lies in a compact subgroup.

Let p be a prime number ; then G is called p-torsional (resp. p-free) when
for any open compact subgroup H of G the group G/H is a p-torsion group

(resp. has no p2014torsion).

The field k is supposed to be a non-archimedean valued complete field with

residue field k of characteristic p .

(1.1) LEMMA. - G has a unique decomposition as a topological product 
where Gl is p-torsonial and G2 p-free.

Proof. - For a compact zero-dimensional group G this decomposition is well

known. In the general case, each open compact subgroup H of G has an unique de-

composition H x Then G. = H open compact subgroup of G) ~i= L, 2)
provides the unique decomposition of G.

~ 1.2 ~ Remarks. - On the part G2 of G there exists a ( k-valued) Haar measure
)J . Let denote the Banach space of the continuous functions G 2014~ k

which are "zero at ~ ", provided with the supremum norm. On we have a

convolution

(*) Texte reçu le 12 mars 1979.
Marius Van der PUT, Mathematisch Instituut der Ri jksuniversiteit, UTRECHT (Pays-

Bas).
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and 1(G2) denotes with the algebra structure given by the convolution.

Let us suppose, for convenience, that k is algebraically closed. Then the dual
of G 2 is G _ 2 = the continuous homomorphisms G 2 2014) k’ , provided with the compact
open topology. The Fourier theory ([2J~ [3]) states :

is an isometric isomorphism of Banach algebra’s where the Fourier transform F is

defined by :

On the part G1 of G there is (in general) no Haar-measure. So L(G1) is

meaningless. One studies instead M(G1) . In general, M(G) = the Banach space of
tight measures on G = inj H compact in G) . In particular, if G

is compact then M(G) = the topological dual of the Banach space 
On M(G) the convolution is defined by

If G is p-free then M(G) -~ BUC(8) = the bounded uniformly continuous func-
tions on G. This isomorphism is given by :

In general, the algebra M(G) is (morally speaking) determined by M(G ) and

M(G2) . Since the part M(G2) is well known as an algebra, the remaining part

M(G1) will have most of our attention.

We can formulate the connection between l~~(G~ i M(G ~ ~ as follows :

~1..3~ PROPOSITION. -..!! G~ is compact then ~I(G)"’" M(G1) 0 M(G2) (as Banach
algebra1s) .

Proof. - The operati on 0 is a variant of the tens or pro duct of Banach spaces.
We define 0 only f or pairs ( E , F’ ) , where Ft is the dual of some Banach

space F .

Definition. - E 0 F = proj lim(E ~ F~ finite dimensional subspace of F).
In our case, M(G2) is naturally given as the dual of One easily veri-

fies the formula when G 2 is finite (then 0 and 0 agree). From this the general
case follows.

(1.4) Remarks.
1° If G~ is not compact then lim 0 M(H2) , where H runs in

the set of all open compact subgroups of G2 , The isomorphism is again an isonor-
phisn of Banach algebras.

2° If G~ is compact, and k is algebraically closed, then M(G2) = B(ð2) =
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the bounded functions Proposition (l.3) yields

~(~) "~e$ ~~1~ ~X and every M(G~) ~x~M(G~) .
3° In many cases, one can show that there is a (l - l)-correspondance between

the homomorphisms (p : M(&#x26;) ~ k and the pairs of homomorphisms

This holds for instance if k is not locally compact.

~ In this section, we assume that G is a p-torsional group.

Let T denote the discrete p-torsion group Qp/Zp . If the field k has charac-

teristic 0 and is algebraically closed then we can identify T with the subgroup
of k~ i~ consisting of the elements of order p (n ~ 0) .

For a p-torsional group G we define a dual = the continuous homomorphisms
G -e T , provided with the compact open topology.

G* is again p-torsional ; G’~ ~ G is compact if, and only if, G* is

discrete.

There are two extreme cases for p-torsional groups :

G has no elements (~ 0) of finite order.

Type (2) : The elements of finite order are dense in G.

For compact G one has : G is of type (1) if, and only if, is a p-

divisible group ; G is of type (2) if, and only if, G" has no p-di visi ble sub-

groups 1 0 . Further~ if 
* 

G is compact then G = x G2 where G. 1 is of type

(i). This follows from G’ == H2 where Hi maximal p-divisible subgroup

of G and so G = Hi ,r x H2 . ~
The compact groups G of type (1) are easily determined : G is p-divisible

and (as is well known) it follows that G = for some index set I. Then

since T~= Z .
T T

The compact groups G of type (2) (or their duals G*) are very complicated in
general. One can however prove the following :

(2.l) PROPOSITION. - Let G be compact y then there exists an exact sequence of

topological groups

If sup(x.)  co then the sequence splits topologically.

Next, we have the following : o
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(2.2) PROPOSITION. - The following properties of the p-torsional group G are

equivalent :

(a) G has no elements (~ 0 ) of f inite order ( i. e. G of type (1)),

(b) a where ZIp, with the product topology, is an open com-
pact subgroup of G ,

(c) the norm on 11(G) is multiplicative,

(d) f o r y o ne has :

~ is invertible in M(G) ~ ~ ~ ’~(G) I .

Proof. - Since M(G) = proj H open compact subgroup of G) , it suf-
fices to consider compact groups G . In this case, (b) can be replaced by (b~ ) :
G ~ ZIp .

Another argument shows that the general case will follows from the case where G

is topologically finitely generated. Such a group has the form

In (2.3) and (2.4) , is explicitely given and one can verify (2.2).

(2.3) 4 then M(G) ~ kX1 ’ ... , Xn~ = the Banach

algebra of all power a ... with a03B1|  ~ .

Proof. - has the orthonormal bas e

(X 03B1) = ... 

considered as a function : ZT -e k . The isomorphism of (2.3) is given by the map
-p 

-- er

(2.4) COROLLARY. - 03A0ni=1 Zp/pi Z then M(G) = kX1 , ... , Xn~/I ,
where I is the ideal generated by (Xi +1)p -1 (all i with 

(2.5) Remark.- If G is compact then there exists a surjective map Z ~ G . Hence
M(G) is a quotient of M(z ) = e I) . If I is infinite then it is not

clear what the kernel M(z ) -~ N(G) should be.

3. We suppose in this section that G is a compact p-torsional group.

(3.1) PROPOSITION. - Suppose that k has characteristic p . Then

(a) M(G) has no idempotents ~ 0 , 1 ,

(b) any character B : with open kernel is trivial,

(c) if  ~ M(G) satisfies ~ ~ = | (G)| ~ 0 , then  is invertible and

!)~tj= t~)r’.
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Proof. - Let  = )JL ~ H be an open compact subgroup of G, and let

~~ M(G/H) be the image of ~. Then ~ =~ and v = 0 or 1 since ?4(G/E) is

a local ring. It follows easily that  = 0 or 1 . Statement (b) follows since k

contains no p-th roots of unity. Statement (c) is easily seen for finite groups
and follows from that special case.

Suppose now that k has characteristic zero (hence k ~ 0 ). If k is alge-

braically closed then we can identify with the characters x : G 2014~ with

open kernel. Further M(G) can contain idempotents ~ 0 , 1 . Namely, let H be a

finite subgroup of G y and let X: H 2014~ be a character then

where pn is the order of H , is clearly an idempotent. For any finite set
~

one c an form

In this way we have described all idempotents, with support in H . Now A. M. M.

conjectures that there are no other idempotent elements in M(c) . We can
state this as follows :

(3.2) CONJECTURE. - Every idempotent in M(G) has finite support,

One has to work with G~ the characters of G to find a proof. The elements in

G* are linearly independent functions on G , but they are by no means orthogonal.

This is the main difficulty in the verification of (3.2).

A. M. M. GOMMERS gives a proof of a special case :

(3.3) PROPOSITION. - For G = every element ~ e M(G) with has’
finite support. 

~ - -

We give some comment on the conjecture. Let G be a group of order pn . Let
E c be given, then

is an idempotent.

It has the property E(~) = 1 or 0 according to or ~ ~ E . One sees
that in general = pn . If E has support in a subgroup H of G with

order then pk . This yields the following.
(3.4) CONJECTURE. - Let G be a group of order pn , let ~ E be an idem-

potent with norm  pk . If n is "large with respect to k " then p has support

in a proper subgroup of G .

We note that (3.4) implies (3.2). A first step towards (3.4) is estimating the



14-06

absolute value of sums of p -th roots of unity. This is done in :

(3.5) Let be a primitive d-th root of unity and let ~n. E Z ;

2 ) 1 . Then equivalent are :

d d-1

Proof. - (b) ~ (a) follows easily from the minimal equation (XP --1 )
satisfied by c~ .

Further, we note that it suffices to show (a) ~ (b) for 2 = 1 ; 2 &#x3E; 1 follows

easily by induction.

We consider = Z [0161J where w = 1 + ~ . This is a subring of k . Since

=1 it follows that the elements in Z [s] with absolute value  1 p

form the ideal I = pZ [~] . Dividing by this ideal dne finds :
--p r!-1 I . r!20141

~b + " 
1 

’ 

1 2014 i -

where T has image ~. Hence n- ~t ~~ t =0 (where n~
is the image of n. in F ).

This means

for certain ... , E F . This is equivalent with statement (b) for

l = 1 .
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