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RIGID ANALYTIC SPACES (*)

by Marius VAN DER PUT

1e Tate—~algebrase
P a e e ara oV oV o ma o e e d
(1e1) Notationse = k is a complete non-archimedean valued field. For a Banach~
algebra A over k (always commutative and with 1 ) and indeterminates
IJL 9 L N ] ] Tn ,
we define
ATy 5 oo 9 T ) = {2 a, ™ ; a,€h and lima =0} .

This is a new Banach~algebraover k with respect to (we Te te) the nosm
”Z a 1““ = max“aau o A free Tate—algebra is a ring of the type K(T; , eee » T ) «

(1e2) PROPOSITION (Weierstrass preparation and division)e — lLet f € k<ﬂﬂ o g Tg

be_non-zeroe. There exists an automorphism: g of k<11 9 eecs o Tn) (of the form.

e’
i .

Xy > X + X (ei >%, i<n); X > xn) guch that o(£f)(0 4 -0, rn),. has

order d

Moreover Kk(T, s eeo Hn)/b(ﬁ), is a free finitely generated k(T s = , Th_m)-
module of rank d «

Proofe - See [77] GRAUERT-REMMERT.

(1.3) Consequences.

(1+341) Bvery k(T; s = » T ) is noetherean.

(1.3.2) k(T4 s = o T ) 1is a unique factorisation domain.

Proofe = Induction on n and (1.2)e

(1.4) LEMMA, — Let M be a Banach-module over A , (i. es A Banach-algebra and
M is a complete normed A-module se te |lam| <|[af| ||| » T a €A, Vv mEM),

The following are equivalent

(a) M is noetherean.

(b) Every A-submodule of M is closed.

(*),Survey of the works done by J« TATE, He GRAUERT, R. REMMERT,, Le GERRITZEN,
Re KIEHL, L. GRUSON, Me RAYNAUD and ale
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Proof. - (b) == (a) 3 Let M, g M, g by G e be an infinite chain of submodules

of A « Then one can easily see that Ui>1 Mi is not closeds Contradictione
>

(a) = (b) 2+ Let N be a maximal non closed submodule of M o Then N < N has
no intermediate A-modules. Hence ﬁyN =~ A/-- for some maximal ideal p o Since

is closed in A it follows that N is also closed. Contradictione

(1e5) Every ideal I in k(T4 » = 5 T} 1s closed according to (1.4) and (1.3.1)e
A. Tate—algebra is an algebra of the type k(IT 9 0y Tn)/I. provided with the quo-

tient norme
Easy eonsequences ere 3
(14541) Any k~homomorphism of Tate-algebra is continuouse

(1.542) Any finitely generated module over a Tate~algebra A has a unique struc-
ture as Bandch-modulee A linear map between those modules is automatically con-
tinuouse

(146) From. (1.2), it follows

: o
For every Tate-algebra A , there exists a map K(Tm 9 w9 Td) ->» A with ¢

injective and finite. Moreover d = Krull-dim A

In particular, for every maximal ideal y of A , we have [(A/m) : k] <= « On

Afwm , we put the unique valuation extending the valuation of k

(1+7) Some notationse

X = Sp A = the set of maximal ideals of A

For x e X , we put k(x) =A/x « For f € A 4, we denote by £(x) the image of

f into A/x .« The spectral semi-norm “f“sp is defined by “f”sp =supx€x|f(x)| .

For A =k(T, 5 = , T ) one easily checls Hﬁ”sp_=:“|| and the norm is multi-

plicativee

(1.8) Properties of the spectral norm.

(1.8.1) [£(x)| < for all x e X <=== lim ||| =0,
(1.8:2) |1, = 2n 577,
(1.8.3) [£(x)| ¢ 1 for all x e X === sup{[|f| 5 n>0} <=,

(1.8.4) A k-algebra homomorphism ¢ 2 A(T; y = o T ) = B i8 uniquely deter—

@/h and £ (1gign) exists if, and only If, ‘fi(\x)l <1 for all x € Sp(B)

andi-"—"',ooo,no

(1.8.5) If A 1is reduced (i. ee has no nilpotents elements) then. I usp is

equivalent with H “ .
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(148.6) There is x; e X =Sp A with [£(x,)] = maxxdlf(x)l .

Proofe~ (1.8.1) : The ideal (1 - Tf) A(T) in A(T) must be improper because
of (1.6) and |f{x)|<1 for all x e X « Hence (1 = Tf). has an inverse in A(T) .
That inverse must be 2 0 £ 1", sa lim‘“fW, =0,

On the other hand, if lim.“fﬂ' = Q0 , then lf(x)l.g ufn“1Mn is < 1 for all
x and n> 0,

(14862) ¢ "g" is triviale If “f“s < lim ”fn”1/n s then. we can arrange things
such that “fusp < 1< lim ”fn“1Vn « But this contradicts (1.8.1)s

(14843) : The implication M===" follows from (1.8.2)e The implication "==m"

is more complicated s

Suppose that k<Tﬂ g w9 Ia)c—>—AA is injective and finite. If we can show that
f € A is integral over V(T y = 5 T,) ( V the valuation-ring of k ), then
clearly {”fn“/nlg 0} is a bounded sete For show the integral dependence of A ,

it suffices to consider the case where A has no zero—divisors.

Let L be the least narmal field extension of K = QE(k(Im PR Td)) contai=-
ning A , and let G = Au%L/K) . Then B =Z[A® 5 5 € G] is also integral over
k(ﬂﬁ g g Td) and the mimimum polynomial of f over K divides

P =1TJ€G(X -~ )% (g = some power of the characteristic) e

Since k(Tﬁ 9 = 9 ﬁd) is normaly, P has coefficients in k(ﬂH 9 g Td) e Since
|9 (x) | < 1 for all maximal ideal of B 4 the coefficients of P have spectral
norms < 1l « So P e V(T1 oo d)LX] .

(14844) & Easy consequence of (1.8.3).

(14845) & This is more complicated (proved by L. GERRITZEN). We only sketch a
proof. As in (1.8.3), we may suppose that A has no zero-divisors. Let £ € A
have minimum polynomial Xd + ay Xd"m + e +ay (= 0) over k(Tm . g Id .

WA : ) : . . .
Then uf”sp = maxKiss ”aﬂ[ « The hard part is to show with the aid of this
formula that A is complete we Ts teo || Hsp « Then it follows from the open map~—

ping theorem that || ”sp and || || are equivalent on A (See R« REMVERT [14])e

(14846) & By the formula of (1.8.5) one sees that, after replacing f by AfS

-

(e =14 A e€k*) , we may work with “f“sp =1

If |£(x)| <% for all x e X then, from (1.8.1), it follows that ||f'f| < 1
for n>> 0 « So ”f“s < 1 « This contradiction shows the existence of Xo € X

with [£(x)] = 14l gp *

(1e9) Further structure theorems on Tate—algebras.

(1.941) (GERRITZEN) : If k 4is (quasi-)complete then any Tate—algebra A/k is

japanese (is e. integral extensions of A in a finite field extension are finite

modules over A ).
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is

) ¢ If k is (quasi-)complete_then A

(14942) (KIEHL-KUNZ-BERGER-NASTOLD
an excellent ring (in the sense of GROTHENDIECK. (See : KIEHL-~KUNZ-BERGER- NAS~

TOLD [1])

2+ Affine holomorphic spaces.

(241) Let A be a Tate-algebra, defined over a field k . Let X = Sp(A)

the collection of all maximal ideals of A « For every x € X , the residue field
and has therefore a unique valuation, al-

and f € A 4, we

denote

k(x) = A/x 1is a finite extension of k
ways denoted by 1 1, extending the valuation of k « For x € X

denote by f(x) the image of f in k(x) «

The topology on X is generated by the subsets {x € X ; If(x)l < 1} with

f € A « A base for this topology is the set of the so-called Weierstrass—domains

W(Ey 5 eee 5 £) = (B EX ] lfi(x)l <1 for all i} .

A more general class of open (and closed) subsets of X are the rational demains

R=R(fy 5 eee s £) ={xeX3 |fi(x)| < Ifogx)l for all i} ,

where we have supposed that fO 9 ees o fn have no common zero on X « With R ,
o T/(£y =Ty £5 5 = s £ =T, £5)e

we assoclate a Tate—algebra B B.=.A(Ta g s
(242) PROPOSITION.

(242¢1) The map A,—3> B induces a continuous map Sp(p) ¢ Sp(B) —>Sp(A) « The
image is R and Sp(g) ¢ Sp(B) = R 1is a homeomorphisme.

(2.2.2) For every ( k—algebra homomorphism) ¢ 3 A = C oi.Iéte—algebras with

Sp(4)(Sp(C)) &« R there is a unigue x : B —=>C with xp =4

¥
. —>C
L

r'd
-

@

W >

Proofe.
(2.2.1) t For any k—algebra homomorphism ¢ , the induced map Sp(p) is conti-
nuouse For the given B , oreeasily verifies that Sp(yp) : Sp(B) >R is a homee-

morphisme
(24242) ¢ The map x ¢ B.—> C is uniquely determined by X(ﬂi) (=14 w 4n)

and X(Ki) =:¢(£i)/¢(fo) must holds The existence of y follows from § 1 (1.8.4)e

Namely, the elements g, = W(ii)/W(fQ) in C sctisfy
Igi(x)l < 1 for all x e Sp(C) »

Q a,
Hence, the set {“gmm ees gn?“ 5 aq s 9 o >0} is bounded and the map
Xg AT, gm s T)=>C,

given by
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o a o o
halt n 1 n . . _
2 ay Ty ece T ->2 m(aa) gy eew g’v s (with a, € A llm,aa = Q)

is a k-algebra homomorphism. The kernel of y contains

(f,] ~'H1I fO 9 o § fn - Tn £O)A

and y induced the required yx 3+ B —=>GC ,

(2.3) For every rational domain R = R(f ’ fn) , we define

o™

P(R) = ATy 5 = o T/ (£; =T, fo);l:m .

According to (2.2.2), P(R) does not depend on the choice of {fg s = o £} and
moreover R -> P(R) is a pre-sheaf defined on the base {R 3 R rational} e Let us
denote by Hy the sheaf on. X (with the usual topology) associated with P .

(244) Resultse

(24441) For x € X ¢ the stalk Hy . is a local analytic ring (ie e. a finite
9

extension or a ring of convergent pewer series over Kk )e

(24442) The natural map of the localisation of A at x 3 A HX.x ¢ induces
9

-
9 X

Nalg

- X
an isomorphism for the completions of those local rings, Ax ——>

(2.4.3) For a rational domain R with B =P(R) , the map ¢ ¢ A —> B induces
an isomorphism of ringed spaces (Sp B , HSp B) = (R, HX/R) .

n
Progf. - For X =Sp(k(Ty 4w s T)) = {(t; o= s t) € k", all ltil < 1

all this is easily verified. All the operations : completion, localisation, forming

of . H , commute with taking residues we Tre te an ideal I < k(Tm g 9 Tn) e Erom

this obseervation the general case follows.

(2.5), Definitions. — An open subset ¥ ¢ X =Sp A is called affine if there exists
a Tate—algebra B and a morphism ¢ : A - B which induces an isomorphism of

ringed spaces (Sp B 5 Hg p) = (Y., Hy ) «

(246) Remarkse — The ringed space (X , HX) is an example of what He CARTAN
and S. ABHYANKAR would call a k—analytic space. Since X 1is totally disconnected,
the sheaf Hy, is very big. In particular, r(X y Hy) 2 A o

Note that A - I'(X , Hy) is injective, since the map

A—TX, HX) —">'erx HX,X ——>'ﬂ¥ex HXﬁx _ﬁ>-nxéx AX

is injectives

To get something interesting, we have to consider on X a Grothendieck-topology
instead of the ordinary topologye For this purpose, we have introduced open affine
subsets of X o Our definition is (with a slight modification) the one of GERRIT-
ZEN-GRAUERT ([6]4 pe 162)e Afterwards, we will show that Y determines the alge-—
bra B (this is of course clear for rational domains ¥ )e It follows that Y is
an affine open subset in the sense of J« TATE ([16], pe 270)e (It is immediate
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that an affine open subset in the sense of Je TATE is also an affine open set in
the sense of (2.5)).

In order to see what this Grothendieck topology on X should be, we have to find
"gluing=properties" for the pre-sheaf P .

(247) LEMiiAs

(2.741) If Y, s ¥, © X are rational domains, then so is Y, n ¥, « Moreover
P(Y, n Y,) = P(¥,) &, P(Y,) .

(24742) If Y1 c Y§ < X are open subsets such that {2 is .rational in X and
Y.

1 is rational in Yé 9 then Y, is rational in X .

il
Proofe

(2.741) s Let Y, = R(fo g o g fn), and Y, = R(go y o g gm) then

[}

Y1'nY¢2v=vR(ngo,f1g1,...,f gmo"sf 919'"9f 9)0

Moreover

is easily seen to be 1somorph1c with

ATy o= 2 T2 5y 00 S

AT/ (£, =T, £)) & A 3/ (g:.1 -85 9y) =

(2.742) s Let Y, =R(go y -y gm) and let
Q9 fn € A(S1 g - 9 Sm,>/(gi - Si go)

define Y, as a rational subset of Y, . Elements £} , w , f! e P(¥2) such that

£

the “fi - fi“ are very small define the same rational subset of Y, « So we may
suppose that fo 9 = o fn are represented by elements in A[S1 g w5 O ] of total
degree < N . We may replace fO g w9 fn by gO fo 9 w9 go f . Hence, we may
suppose that fO 9 o g fn € A « For suitable constants Ag v = e A, € k we have

on Y1 )

Ifo(x)l > Ixi giﬁx)l forall i and xeY, .

And thus Y, =Y, R(fo I S TN I I gm) is rational in X .

(2.8) THEOREM, - Eor any finite covering z% =:(X ), of X by rational domains, the

Cech—complex G, * Q - P(x) €>E£,P(X ) ﬁ>€£;P(X ,WX ) = eee is universally
acyclic (i. es C gm M is acyclic for every normed A—module M ).

Proof. = We follow Je TATE ([16], pe 272)e First two special cases of coveringse
(2¢841) LEMMAs - Let f € A and put

X, ={xeX; |£(x)| €1} and X, ={xeX; [£(x)|=1} .
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Then the covering {Xm s X,} of X is ue a. (universally acyclide

(2.8.2) LEIVH“AA. ""Let. fo [
Then the covering of % by X, ={x eX; Ifi(x)l =1 (i=0,m,n) 1is Us as

-y £ €A satisfy max, Ifi(x)l =1 for all x € X.

Proofe — Je TATE ([16] lemma 8.3 and 8.4) shows that both coverings have a conti-

o

nuous A-linear homotopy C, -9 ©_ o This induces a homctopy 3 & 1M on C,. ®A M.

3
Now we need some general hocus pocus to do the general case 3

(2.8.3) LEMike — Let % and § be coverings of X (by finitely many affine

open subsets). Suppose that £/Z is Ue ae for every Z which is an intersection

of elements in ¢ .

If ¢ is ue a. then % 1s U. ae

We consider the double complex C,. @A Co ® It is given that
% %

10 ('3?‘3 QALP(Z) , for Z an intersection of elements in § , is exact,

2¢ Cf & C. ., for i==1,0,w,1r, is exact »
2 A TG

So, all rows and columns, except possibly C, @A (‘51 =C, , are exacts Hence C%
M {) %

is exacte The same reasoning holds for C, gm M e
3:' n\

(2.8.4) Continuation of the proof of (2.8)¢ = First we observe If # and g
aTe Ue. aey then so is Zn § ={Xn ¥ 3 Xez , Y €5} o Indeed, by (2.8.3).

'=g this followse

applied to #' =% n g and

%y
Let us stuart with any finite covering % =-{R(fél) g -y fgl)} by rational do-

mainse Choose ¢ > O such that lfél)(¥)| > ¢ for all x e R(fél) R ££1)) .

Let (gq g w9 gs} denote the set {fgl‘} , and let, for every subset ¢ ef
{1! g 9 S} L3

%& ={x eX 3 |gi(x)| <e¢ for ieg and Igi(x)l >¢ for 1éqg} e

&

The covering ¢ =ﬂ{%5}all o is the intersection of s coverings of the type in
(248.1) Hence 9 is ue as In order to show that % 1is u. ae, it suffices to see

that %/Z 1is ue a. for any Z which is an intersection of elements of §

This new covering %' = %/Z consig of Weierstrass-domains in Z 4 ie €e sets cf
the type {x € Z; lfti)I,S 1. for some its} o Let {h, 5 = ht} denote the
set of all functions occuring in those inequalitiesy and let ' = (x;) denote

-
3o
&

the covering of Z given by
Y= {xeZ lhi(x)lg‘l. for i€g and Ihi(x)l;,m for i #£c} .

Again ' is u. as and in order to show that %' is u. a., we have to show
x'/Z' 4 Z' any intersection of elements of ' , is u. ae This last covering

however is of the type mentioned in (2.8.2), and the proof is finished.

(2.9) THEOREM (GERRITZEN-GRAUERT [6&] pe 178)e — An open affine subset of X.=Sp(A)

is a finite union of rational domaing.
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Proofe — The proof is quite long. The eesential part is a result on Runge embel-

dings (There seems to be a gap in the proofs)e

(2.10) COROLLARY. — The open affine subset Y of X determines unigquely the mor-
phism of Tate~algebrets A - B for which (Sp B , HSp B) - (¥, H/¥) 1is an

isomorphisms
Proofe =~ Put Y = U2=m Xi where the Xi are rational domains in X . Then the

X; are also retional in Y and (2.8) implies B = ker(EE;P(Xi) %>-P(Xi n Xj)) .

(24711)) COROLLARY. = Any finite covering of X by affine open subsets is universal-
ly acyclice
Proofs — Follows from (2.9), (2.8) and (2.8.3)s

(2412) Remarks. - A morphism Sp(p) ¢ Y = Sp(B) = X = Sp(A) 1is called a Runge-
map when ¢ 38 A ->DB has a dense image. The proof of (2.9) relies on the follo-

wing proposition s
Let u =Sp(p) 3 Y =5p(B) =X= Sp(A) be given, and let fy 4=~ 4 f € A be

-1
X.a ={xeXj Ifi(x)1 < slfo(x)l for all x} and %E =u (Xe) .

If uz: Xm - XT is Runge then for ¢ close to 1, u YE > Xe is also a

Runge-mape

(2413) For our purpose, we define a Grothendieck-topology on a topological space

X as follows
1° A family & of open subsets of X such that
59X e & U1 Veg=UWnnVeSTFe.
2° For every U e & a set Cov(U) of coverings by elts in & , 1. es any,
U= (Ui) e Cov(U)
satisfies 3 all U, €8 and U Ui =W e
3° {U-»> U € Cov(U) for all Ue F .
4 U eCov(l) and Ve UsV ed then UV e Cov(V) e
50 Ui € Cov(Ui) and (Ui) e Cov(U) then U U; € Cov(U)

We remark that the object defined above is in fact a special case of a pre-to-
pology in the sense of Grothendiecke So we can ‘use the whole machinery of sheaves

and cohomology for a Grothendieck—topologye

(2.14) An affine holomorphic space X , & ,OX) is the following ¢

1) X =Sp A for some Tate—algebra A .
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2) % consists of all open affine subsets of X .

3), For all Ue §, Cov(U) consists of all coverings of U by elements in §

which have a finite subcoveringe.

4) Q  is the sheaf (for $ ) of rings defined by Q{UL) = the unique Tate-
algebra B for which A -> B with an immersion U = Sp B'&—> Sp A

Q, is a sheaf according to (2.11).
(2415) A holomorphic space (X , 5, C&),is a topological space X with a Grothen—

dieck~topology $ and a sheaf of rings @, such that 3 (Ui) e Cov(X) with
(Ui R 57Ui R C&/Ui) is an affine holomorphic space for all i

{Notee = U € § is called affine if (U , §U , C&/UQ is an affine holomorphic

spacee If U 1is affine and Ve & then WnV is an affine open subset of U 4]

(2416) Some properties of affine holomorphic spaces (see [ﬁO]).

(241661) Hom A 4, B) = Hom(Sp B , Sp &) «

k-alg (

(241642) Definitione = An O,-module M on X =Sp A is called coherent if
there exists a finitely generated A-module N such that the sheaf M is isomor-
phic with the sheaf U ~> QXKU9’®A,NE (U open affinec X ) «

(241643) Propositions = An ox-module M is coherent if there exists a
(U;) € Cov(X)
such that M/Ui is eoherent for each i «
If M is coherant, then
HYX , M) =0, 1>0
%

H(X 4 M) =N, and M is associated with the A~module N .

Proofe — The second part of the proposition follows directly from (2.711)e The
first part is a property of "descent" for A - B)=ﬁt,ox(Ui) s 1e ees consider
A —> B =B 8, B (note B B=chy 4 6,(U; nU;) ), then :

(i) A B-module M(f g) is isomorphic with some N ®, B if there exists a

B gm\B-module isomorphism
M ey B &, B) %rll%(ag B) .
. A 5 A
Bt B
(ii) For fg A-modules N, and N, , the sequence
Hom, (Nya1,) -> Homy (N g, BN, @, B) H’“‘E@AH(N1 ®, (B&) BN, @ (BE, B)) .

This “descent"—property is proved by Re KIEMLe

3e Global properties of holomorphic spacess
P e ey o a o e e e Y e e o S AT AN VN o i A e e
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(3.1) (Quasi-)Stein spaces.

Definitione — A holomorphic space X% 1is called a quasi-Stein space if

] (xi)iEN € COV(X‘) 9
an affine covering with
1), X; € X, 4 forall 1.
2) Ox(xiﬂ) - t)x(Xl) has dense image.
X. is called a Stein-space if a more restrictive property holds 3
BEg sy £E 0p(Xy )
with
(a) Xy ={xeX 43 Ifj(x)l <1 for all 3}
*
(b) f,,'/a . -y fI/a (for some a € k ) are topological generators of OX(\Xi”)

(3.1.1) THEOREM (R. KIEHL [10])s —If M is a coherent @-module (i. es MU

coherent for every open affine U< X ) and X is quasi-Stein, then

10 M(X) - M(Xi) has dense imagee

20 HYX , M) =0Q for i>0.

o .
3 Mx is generated over QX,x by M(X) «

Proof. — Easy consequence of (2.16.3) + definition (3¢1)e

(3.1.2) THEOREM (KIEHL [10] ; LUTKEBOHMERT [11])e — Let X be a Stein-space of

dimension n ,which can locally be embedded in a N-dimensional space /k « Then X

has an embedding into kNmM' N

*n

(3.1.3) Examples. - k" and G =k = are Stein-spacess

The structure of G can be given by :
*n m - .
GA=Uxm; )(m_={(x1 ,...,xn)ek\ 3 lni < ]xils Inl all i} »
*
(Here mek and 0< Inl <1 )e
An open subset U < G 1is called open affine is U is open affine in some Xn .

For an open affine Uc G , it is clear what Cov(U) ise For G, Cov(G)
consists of the coverings (Ui) be open affine sets such that (Ui)/U e Cowv(U)

for every onpen affine U < G .

With (Xn) € Cov(G) , one calculates 3

o o
O(G) = lim O(Xn) = {2 n @ x1‘1' ees x| convergent on all of G} «
< o€Z @ 7 n

~

More generally, any algebraic variety has a unique structure of holemorphic spa-

cee If the variety is affine then the holomorphic space is a Stein-spacee
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(3¢2) Proper mappingse — A morphism f : X = Y of holomorphic spaces is called

proper if the following holds.
(a) f 4is separated, i. € A 3 X = X xy X is a closed embeddinge

(f) Ther is (Y ) . seT € Cov(Y) , w1th each Y affine open, and for each i eI

there are two flnlte coverings (U,.)™* 1 @ f—1'(¥i) by affine sets

'
ij7 3= lJ)J
such that Uij < V,. (all i, 3)e

Here U <<V for affine open sets U , V , means the foll')wing $ there is an
ey O<g< 1, and an embedding V c {()‘1! see A ) e k! all l)‘il < 1} such
that Ua {(}\,1 eoe M\ ) € k all |)\.i|\ E} *

A holomorphic space X is calledcompact (ér complete) if "X -» point" is proper.

(3.2.1) THEOREM (R. KIEHL [9])e = f s X => Y proper, M a_ coherent Oy—module

then all Rt £, M are coherent OY-modules.

COROLLARY, — If X is compact and M is a coherent Ox-module, then

dim H'(X , M) < » for all i .

(3.3), Projective spacese — Pn(k) is a compact holomorphic spacee The well known
GAGA-properties hold s

1 141 Correspondance between algebraic coherent sheaves N and the coherent

ox-modules M .

20 alg(x' l(X M) .

3" Any analytic subset of P"™(k) is algebraic.

ana

* *
(344) The sheaves © , I , M , Dive

* * *
(3e4.1) O is defined by U - Ox(u) ( = invertible elements). This is a
sheaf since O(U) - O(U'i)' = & O(Lhi n LLJ) is exact for every (Ui)’ € Cov(l)

(34442) M = the sheaf of meromorphic functions is defined by U —> Qt(\q((lL))
for every affine open U (Qt = total quétient ring).

Proofs — We have to verify that this is in fact a sheaf on every affine open
space U< X o Let (U ) € Cov(U) and let (ti/ni)i e@'Qt(q((Ui)) satisfy
ti/ni =% /n. in Q‘c(OX‘(LLi n Uj)) (all i, j)e Then we have to show the exis-—
tence of t/n e Q.t(\%((u),), with image ti/ni in every Qt(@(Ui)) .

One proceeds as follows : let
I(\UJi),- ={s e O(Ui) 3 sty en, O(.‘Ui)t} .
Then
I.(Lli), ® OX\(UJ’. n LLJ) = I(Uj) ® OX(LLi n Uj)‘ .
By (2.1643), there is an ideal I c ox(n,) with I/Ui = I(Ui) for all i . I
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contains a non-zero divisory otherwise Iz = 0O for some z € OX(MD s 2 # 0 o And
also I(Ui) z=0, V¥ i . But each I(Ui) contains a non-zero divisore Hence
Z/Ui =0,%i and so z=0,.,Take nel,y, n#0, n a non-zeto-divisore
Then ti/ni = si/n s ¥ 1 and the s satisfy si/ui n Uj =~sj/Uﬁ n Uj « So the
s; glue to an element t € ox(ub .

* * * *
(344.3) M  is defined by M (U) = Qt(0(U)) =m(U) for every open affine
Uc X e As in (3.4.2) this is a sheaf.

(34444) The sheaf of divisors Div is defined by an exact sequence
* *
0> 0 >N —»Div->0.
(3+4445) As in the classical case,

* . .
H'(X 4, © ) = invertible sheaves on X/isomorphisme

Proof. = The usual one

HY (X , o*) = liTUeGov(X) ﬁscu 0 6*) .

(3.4.6) If X =Sp A is affine, then there is a 1.1 correspondance between in=—

vertible sheaves on X. and projective rank. 1 modules over A o Hence
*
H* (X , OX) = rank 1 projective A~modules / isomorphism 2]

*
(34447) Suppose X =Sp A , and A is regular, then H'(X , OX) = Class groups
of A « In particular,

*
A is a unique factorisation domain <=== H'(X , O ) =0,

(3.4.8) PROPOSITION (Le GRUSON [8])e — Let X =Sp A , and let A be regular.
If A has unique factorisation then also A{(T) and A(T , T—1) have unigue fac-

torisatione

*n

*
(3.4.9) CONSEQUENCE, - Let G =k then H'(G , OG) =0 .

Proofe - It suffices to consider
-1 .
)(.n = ((x1 g w9 xn) e kB s Inl < Ixil.s Iﬂl for all 1i} ,

where mek, Q0K Inl < 1 « We want to show that any invertible sheaf £ on Xh

is trivial (i. e. aﬁOX5) . Let fb be the structure sheaf on
n

Xh_m P% {xn € k. 3 lan < Inl} .

Then
(g% _4) x {x ek x| = Il = (/X _4) x {x ek; x| = Inl}
because of (3.4.8). Hence by (2.16.3), ¢ and § 9lue together to form an in—

vertible sheaf

# on X X {xh_e k 3 anl < lﬂl—m} °

n—1
But £' is trivial by (3.4.8). Hence also £ is triviale
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4 Analytic toril and abelian varietiese
L e Y B e oW oW WV N e e o d

The results of this sections are mainly due to L. GERRITZEN ([2] , [4]).

*
(441) A subgroup T’ of G =k © is called discrete if
'n{xeGj; gg Ixil < (»;"11 s V i} is finite for all e< 1 .
The map 4 ¢ G -> R" defined by
4(%y g = 5 %) = (= log x| § = y-Log |x_|)
is a group bomomorphisme It is easily seen that

' is discrete ==== 4(I') © R" is discrete and ker 4/T = finite «

We are interested in the case : I has maximal rank (=n) , and T" has no

torsion elements. Hence T = 4(I'), and 4(I') is a lattice in R" .

PROPOSITION, — The quotient G/T is called a holomorphic torus 3 G/T" has a

unique structure of holomorphic space over k such that m ¢ G -> G/T is a holo-

morphic mape Moreover G/T" is "compact"e

Proof. ~ For convenience, we do only n =13 n> 71 can be done in the same
waye Then T = (q) , and we may suppose O < |q| < 1 « The topological space G/T
can be covered by the images 'X1‘,_X2 under 1 of

)(;1‘={x.eG H IqI < IX| < lTL“l <1} i
X, ={x €G3 |n|< Ixl <M @ mymy Lk

©o

where |q| < lnzl < 1“1;1 <71 e

Of course, ﬂ/)(‘.i : Xi - Xi is a homeomorphisme Further X.1 n X, is the dis-

joint union of the images (under = ) of

{x ek x| = 1} and {x ek Imgl < le‘s |n1i} .

So X1v and X2 are glued in a nice way, and G/T' becomes a holomorphic spacee
One can make another covering of G/T by Y1 9 Yé such that Yi << Xi « Hence

G/T' is compacte

(442) let T =G/T have dimension n . Then

*
HY(G/T 40 ) = 2"

HY*(T , C) = C for any constant sheaf G «

*
Proof. — Again we consider only n = 1 . Then H'(G/T ,0) is given by the

exact sequence

0 > 6" (/1) > o (X1) @ o (X2) —>®*(’>Z1‘ n ;2) > HI(G/T +0) = O,
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* lard
because H!(Z , O ) =0 for Z = X1 9 X2 or X,1 nX2 « The same covering can be
used to calculate H'(T , C) .

(4.3) Our aim is to calculate the field of meromorphic functions on G/T , MG/T)e

(4.3.1) PROPOSITION. - (G) = the quotient field of
(¢ (83
1

n
0(G) = {Z; n 3, 21, ee* % s everywhere convergent} .

Proof. - ¥(G) = lim M(X,) with
: n i -i .
X; = {(zy ymyz) ek |nl"g Izj,l < ™ for all 3} .
Given a projective system (ai/bi) in lim m@xi) , We can make ideals

L ={teoX); t(ay/b,) eoX)} s Iiﬂ'lxi =1,

So we find a coherent sheaf of ideals J ¢ O . Since G is a Stein-space, we
have 3(G) #0 .+ Take n € 3(G) and n # O . Then t.i/ni = ai/bi in ch(o(x.i))
for suitable t; € O(Xi) o Since ti+1/ui = t; , we find an element t e 0(G) with

e 3 -— 1 31
t/Ui =t; 5 Vi Hence t/n = Lim (ai/bi) .

*
Using further H1(G s ©) =0, we can choose t and n such that

ge Ce da (tx ’ hx) =1 in qz,x for every point x € G .

(4.3.2) PROPOSITIONs - The group I acts on G and M(G), . For this action, we
have m(G)F = M(G/T) »

Proofe = More or less clears

(4.3.3) DEFINITION, — An holomorphic function f : G -» k is called a theta—

‘function for (G, I') Aif for every y €' there exists a function ZY e o(G)
with

(2) = 7 (2) flyz)

It follows easily that ZY has no zero's in G and hence ZY must be an ele~

ment of the group

g “n. * *
A = {)\.Z,h see va i A€k 3 Uq o0 s c[n EE} = @(G_,) .

(4.3.4) PROPOSITION, — Any f e M(G/T) ocan be written as f = 91/90 , where
8g, v G4 2Ie theta—functions with the same "multiplicator" Z

Proofe. = Write f =:o1/eo with g; € 9(G) and 6; relatively prime. Then
o) = 5 o)
f(yvz) = = f(z)
Y E}O’ YZ'

Since Gy ¢ 84, are relatively prime, we find

Qi(z) = Zy(z) eiﬁyz) (i=0Q, 1) for some ZY € 0(G)
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(4.4) Construction of p-adic theta-functions. - In order to compute T(G/T) = the

meromorphic functions on G/T , we have to construct theta functions with a given

"multiplicator" vy —=> %Y .

(4 .4 ° 1:) LEi\Jl;»IlA.

1° The multiplicator ~ —=> ZY is a 1~cocycle in H'(I' 4 A) , is €o

ZQ'Y(Z) = %Y'(Yz) zY(z) (for all y sy* €T 5 z € G) e

*
2° Any 1~cocycle v -> ;Y (in. ®'(T , A) ) has the form (d(y) € k )

Z _ Qq %n
(2) = aly) oy)(z) where o 3 T >H={z,' ez aeZ’

is a group.homomorphism( ¥ = all analytic characters on G )e
-

d(\y")ﬂ =oly*)(y)

*
Define q: T x H->h by qly o h) =h(y) then oly*')(y) =aly » o(y*)) and
¥*.
L xT -»h givenby (y »y') = aly s o(y?)) is bilinear symmetrice

Moreover d(yy*) d(y)

3° After possibly ¢ finite field extension of k there is a symmetric bilineair

* *
from ps I’ xI = k and a group homomorphism. ¢ ¢ T => k such that

7, = cly) ply s v) oly)

2
ply s ¥v*)" =aly » oly®) »
Proof. = 1° and 2° are clear if one uses A = k* H.
3° Choose a base wy, 3 = 5 Y of T and elements p(Yi ’ Yj) satisfying
2
p("{i 9 YJ) = p('YJ ’ 'Yi) and p('Yi 9 'YJ) = C{('Yi ) G(Yi)) .
The bilineair extension of p is symmetric and satisfies
2
ply o yv')" =aly saly®)) »
*
Moreover gY = c{y) ply s y) oly) for some function ¢ : T >k =
Substitution in 1° guilds that ¢ 1is a homomorphisms

(4,4.2) Definitions = Given a 1-cocycle Z , we want to determine L(Z) = the
vectorspase of theta-functions with multiplicator 2% , 1. e. the holomorphic func-

tion on G satisfying
£f(z) = %Y(z).f(yz) (yeT 4 2€G) e

To simplify matters, we introduce M = all formal expressions 2 heH 2h h with

coefficients a, €e k ¢« M is a vector space over k with some extra structure ¢

h
action of T ¢ (2 ay h)Y =2 ah;q(Y s h) h
multipl. by elts in

H: h'(Z ay h) s=2 a, h! h .
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LO(Z) = the elements of M satisfying f = Z’Y £Y

= the formal. g-—functions with cocycle .

(4.4.3) LEMiA,
o)

1 L (Z) #0 if and only if there is h € H such that ZY = q(y » h) for all

Y € ker T e
Q

20 If L°(%Z) #0 , then dim LO(Z) < # (torsion elements of H/g(I') )e

Equality holds if & is injective.

3° L(Z) # 0 if and only if LO(Z) £0 and |aly , oly)) | <1 as soon as
oly) # 1 e

4° If L(Z) £0, then L(Z) = 19(3) .

Proofe — We introduce the following notations s sub groups H ' 4 H* of H and
I'' of I' such that H'@H' =H ;3 o(I') <H' and H'/o(T) 4is a finite 9group
Fr*@ kerg =T »

o

with representatives Wy g g W
Any f € M has uniquely the form

=2 Z
. s 0
Since Zy(z), f(yz). =23 aly s Wy h") ZW wy h" 5 the condition f el (%)

is equivalent with

w, h" (a € k*)
" Lypyh" ) e

i’\) "h!l

j- ai’VQh" Q(Y s Wy h") = aiQVYoh" for all y eT!

Lai,v,hﬂ' aly for all y e ker g

" Z =
’ wi h ) Y ai,\),h!'

In another formy for some as 4 € k , we have
9

{aisysh" = aly » w; b") 1,0

=T
ai,h" £ O = ZY = Q(Y ’ Qwi.h") ) for all v €kerg e

From. this 1° follows immediately; 2° also follows because
Hy = {leH; aly » h) =1 for all vy € ker o}
is contained in H' . So there is at most ene h" with ai,,h" #0O o
Rmrther explication s since q 1is non-degénerate, the group HO has
rank = n-rank(ker g) = rank o([') «

Further since q(y s o(y')) is syrmetric one has q(her g , o(I')) =1 and
Hy 20(r) « Hence Hy < H' o

3° gnd 4" : We have to estimate the absolute values of the coefficients of
£ e10@z) .

a VB Wy h" = a; mn alv W, n") clv) plv 5 v) olv) w, h' .

iyVoh'
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Suppose a; 1 #0 and y # O . Convergence of the subsequence
9

Zn;1iai,h" alny , W, h") c(nv). p(ny , nv) c(nv)rwi_h" (of f)

on all of G implies clearly |p(y 5 v)| <1 «
On the other hand if |p(v , v)| <1 for all yer', y #0 , then

(v s v*y == loglaly 4 o(v")|

is a positive definite symmetric bilinear from on I* xI'' « So (v 5 v') 1is an

inner product on F"®Z R and

2
(V:\))BCZ\)i (\)=(\)imvn) and ¢ > Q) .

From this one easily sees that f € L(Z) »

(4.5) Algebraicity of G/T «

THEOREMe -~ The following conditions are equivalent

(1) G/T is algebraie,

(2) G/r 4is projective algebraig,

(3) G/T is an abelian variety,

(4) There is a group homomorphism ¢ ¢ I’ => H such that

(a) aly » o(y") =aly" s o(y)) for all vy ,y' €T

(B) &y s y" =‘"'lOQIQKY ’ c(y')l is positive definitee.

Proofe = (3) === (2) ==» (1) are obvious.

(1) === (4) the transcendence degree of M(G/T) over k is at least n . Take
algebraic independent elts £, ¢ « fn e 1 (G/T) and write them as

1,
f —-El f = EE with "ge ce de ( o) =1
155,00 T Ty e Code {0g 9 =9 0y = 00 s

8 0 = 9 Oy holomorphic functionse Then 04 5 = o ¢, are theta functions with

the same multiplicator Z .
The algebraic independence of :E,1 9 v g fn. implies that

rO rm

{09 ¢4

rn
coe On: ? Zri:'*,‘?,}

are algebraically independent over k  Hence dim L(Z%) ;,(zgn) « On the other
hand,
T
dim L(Z%) = IH/b(F)liorsion where r = rank g(I') »

Hence rank o(') = n , and we have proved (4).
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(2) === (3)e The multiplicator of G/T ;'En : G/T x G/T - G/T 1is an analytic
mape By GAGA, it is also an algebraic mapas

The hard part is to show (4) ==» (2) 3

(4.5¢1) LEMMA, - Let Z be a cocycle with a positive definite g (as in (4))s
Then

(1) For every z € G, there exists a ¢ € L(éa) with: 0(z) #0 «

(2) Let g ¢ = 9 0, be a base of L(ég) « Suppose that z, 5 z, € G and
z1‘£sz%1 mod I' « Then the vectors (Qo(zm) 9 9 GL(Z%) and (60(22) g w9 GL(Z2))

in kt are linearly independent over Kk

Proofe
(1) For ¢ € L(Z) and a 4, b € G the functions
=1 -,
65 = 0(za™") 9(zb™") o(zab)

belong tao L(Zs) e« Let 0 #0 , then the zero set X of (0 in G has codimen-

sion 1 « One can find a , b with a”] ’ b"1', ab £ 2~1 X . Hence 05(z) #0 .

(2) Suppose that the vectors (eo(zm) ) v s et(z1)) and (90(22) g o g et(Z2))
are linearly dependent over k o For any F € L(Z) one has for any z 4, b € G and

a fixed constant ¢ € k* H
-1 -1, -1 =7
F(zj:z ) P(z1I b ) F(z12 zb) = ¢ E(22 z ) F(z2 b ) F(z2 zb), «

Hence the meromorphic function (of z ) (F(\z_1lzz-1'))/(F(z2 zz—1)) has no zero's

and no poless So

"‘1.’
E(z1lz )

ch=9(G) «
)

That means F(zy) = a(z) F(z) with = z, z, and a €A . The explicit for-

. -1
F(z, z

mula for the F*s in L(Z) given in (4.4.3) implies y €T «

(4.5.2) IEMMA. - Let Z be a positive definit ‘I~cocycle and let B v ™ 9 Gt

be a base of L(ii) « The holomorphic map ¢ ¢ G/T 4>'Et(k) given by

¢(Z) = [OO(Z) y - ,,Gt(z)]

has the propetties

1 X = im(p) 4is an algebraic subspace of Pt(k) of dimension n e
20 @ s G/T = X is an isomorphism of holomorphic spaces.
Proof.

10 ¢ G/T = P,(k) is well defined and injective according to (4.5.1) part
P ~t
(1) and (2). Since G/T" is “"compact", the map ¢ is proper. By the proper map-
ping thevrem, X = im(p) is a closed analytic subset of Pt(k) .
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By GAGA, X = im(p) is also an algebraically closed subset of P (k) « Since
¢ ¢ G/T = X 1is bijective, we have

n = dim G/T = dim X + dim(fibre) and dim(fibre) = O .

(2) A covering Y; (1 =0 4w 5 t) by affine open pieces is given by

. t
Y, = {[aO'"’at} G,Et(k) 3 |aj|,§ Iai for all j} a=(QAmru,xt} e k” 3 all |Xj|<$ 1}e

Put Xy =¥, nX; then (Xi)-e Cov(X) , and one can verify that
( -1(X~))t € Cov(G/T) »
? Mil/i=0 '

The map ; * ¢—1(Xi) - X, is bijective, and after a calculation of derivati-~
ves and finds, for every x € Xi ’

”~

”~
X, - O -7 .
1yX G(F P 1(\X)

By methods of the type, explaned in (2.10), it follows that ¢;ﬁi: Xi -> ¢—1(Xi)

is also holomorphic. Hence ¢ 3 G/T = X has an holomorphic inversee.

(446) Final remarkse.- Now every abelian variety over Q_ can be obtained as a

holomorphic torus G/I" « One can only parametrize those abelian varieties by a
G/T , which degenerate over the residue field Fp of Qp .

In partigular, only those elliptic curves over k can be parametrized which
split into projective lines over the residue fieldof k (Equivalently, the j-
invariant has absolute value > 1 ). (See [15])e In [12], De MUMFORD has shown
that also degenerating curves of genus g > %, over a local field, have a nice

non-archimedean representatione
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