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ON ORDINARY LINEAR p-ADIC DIFFERENTIAL EQUATIONS
WITH ALGEBRAIC FUNCTION COEFFICIENTS

by Bernard DWORK
(based on joint work with P. ROBBA [3])

In previous articles ([3], [4]), we considered differential equations whose coef-
ficients are analytic elements. The central idea was to consider the behavisr of
the equation on the generic diske The purpose of this article is to extend this

procedure to the case in which the coefficients are algebraic functionse

Indeed, an early example concerning such differential equations was given by
TATE ([2], § 5) who (in effect) discussed the question : Let y2 = x(x = 1)(x = A)y

A constante Does there exist a constant C (depending upon A ) such that the

equation
- dz
(1) C%& = z/y

has a bounded solution on the disk at infinity, (D(O , 1+) ? This formulation is
not quite correct as the x=-plane does not give a good parametrization of the el-
liptic curve at infinity but it follows from the general theorems of this article
that the disk at infinity plays no special role and the question is the existence
of a solution of (1) which is an analytic function on a residue cless (Remark
The answer is yes if the elliptic curve has non-supersingular reduction and in
that case, C 1is any unit determination at ) of Vﬁﬁ F(% s 5 5 1 3 1) viewed
as algebraic element in the sense of CHRISTOL ([1]).

We consider a linear differential equation whose coefficients are both analytic
functions on an annulus A (of center zero and outer radius 1 ) and are alge~
braic over the ring H(A) of analytic elements on A « The ring H(A) has a na-
tural imbedding in E , the field of analytic elements on the generic disk. We
demonstrate the existence of a non-canonical isomorphism mapping such algebraic-
analytic functions on A into bounded functions on D(t 4, 17) algebraic over E
in such a way that the boundary norm goes over into the sup norm on D(t ' 1)

(cfe corollary 1410 below)e

Using this isomorphism, we show that there is no difficulty in translating in-

formation concerning solutions lying in @ into information concerning solutions

A
in the generic disk and conversely. In particular, we get one usual comparison

theorem (cf. lemma 3.4, theorem 4.4 below) and the rules of growth of solutionse

It seems likely that this work may be extended to differential equations whose
coefficients (as function of x ) are algebraic elements in the sense referred to

aboves
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O« Notations

Oel ¢ Let K be a field of characteristic zero complete under a non—archime=-
dean valuation with residue class field of characteristic p # O . Let Q be an
algebraically closed, maximally complete field under a valuation extending that of
K and linearly disjoint from Eg = K(X) over Kq e Let Q have a valuation ring
containing an element, t , whose image in the residue class field of (Q 1is trans—-

cendental over the residue class field of K
0.2 : For each a € (Q .and each positive real number r , let
Dia , ) ={xe€Q; [x - al] < 1}
Dla 4 T") ={x €Q ; [x = al g1} &

For feQ[[x=-2al]], £=2 0 bv(x - a)V , analytic on D(a 4 T ) , let for

pP<Ty

€1, (o) = sup I | 6°

This is extended to functions f , meromorphic in D(0O , r ) by writting

121, (o) = lal, (e)/Inl, (o)
if f=g/h, both g and h being analytic on D(a 5 T ) &

03 : Let E Dbe the completion of E. under the Gauss norm

0
f - Iflo (1)

We shall write !f[ for this norm on E .

E
0.4 ¢ For each bounded subset A of (3 such that d(A s CA) > 0 (or the-

union of such a bounded set with the complement in Q u {«} of (D(0O , r) for

some r > 0+ Let H(A) be the completion under the topology of uniform convergen=

ce of the subspace of EO consisting of rational functions with coefficients in

K having no poles in A « Under the sup norm , || ”A s H(A) is a Banach spaces

Let M(A) denote the quotient field of H(A) .
0.5 ¢ Let 11 = (“v)vGN‘ be a non-incressing sequence of positive real numbers
with
o
(0e541)

"v/"v+1 monotonically increasing e

Let Wg be the Banach space of germs of analytic functions at a

]

e = AV
u Z:=O bs(x a)

such that

”u”n supv nvlbvl'< + o
with - norm u - ”u”n .

0e6 2 We use ag to denote the space of functions analytic in D(a , p-)
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with topology of uniform convergence on disks D(a 4 r ) with r < p o We write
: 1 :
o instesd of &  (if a eD(0, 1™ ).

0.7 s In particular in 0.5, if m, =1 for all y € N, we denote 1 by
ﬁ1,0 and write ” ]1 0 for the norm of W” (and for the operator norm on that

space) and write Wa’u for Wg .

te Algebraic functions analytic on an annulus.
For each annulus,,
(1.1) A =p, = DO, 17) =D(0, b)) , be(0o, 1)

let H(a)' be the field of analytic elements on A , W(A) the quotient field of

H(p) qA the ring of functions analytic om A and T(p) the field of those

elements in the quotient field of a which are algebraic over WmM(aA) o

Let M (resp : J@ ) be the inductive limit of the fields m«A ) (resp nl(Ab))
as b=1,1If uel® o them u 1is a ratio of elements of aA for suitable A

but also satisfies a polynomial eguation with coefficients in M(A) « It follews
that u has only a finite set of zeros and poles in A + This shows that u € QA'
for some A' = Ab' for some b! € (b 4 1) « Indeed it is clear that M is the
inductive limit of the rings H(Ab) and that 7® is the inductive limit of the

ring of elements of GA which are algebraic over H(Ab) o

b
The boundary norm
(1.2) ”1MG = lim SUP., 1 Iulo (r)
for elements of the quotient field of @ may be written more simply as
(1.3) HUH = lim ‘UIO (r) = lim ”uHAb for ue i,
There is a natural map of W into E . Our first object is to show that each

element of i has a branch in Wl 10 .

1e4 ¢ THEOREMe - An irredu cible polynomial in one variable with coefficients

in T remains irreducible owex F .,

Proofe — Let f be an irreducible monic¢ polynomial in Jf¥] « Hence f has
coefficients in H(A) for suitable annulus A « Suppose

(te4el) f=gh,

where g (respe h ) is monic element of E[¥] of degree n (respe m )o Viewing
(144.1) on a non-linear equation satisfied by n + m unspecified coefficients ef

g and h 4, we are led to consider the tangential mapping
(@YD) 4 x (&[¥]) 4 = (6,[¥])
(G 4 H) = G+ gH &

This map is trivially injective as otherwise if Gh + gH =0 with H # O then
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gt is divisible by h while deg H< m = deg h which shows that (g , h) # 1 and
thus = (£,f') # 1 which contzadicts the irreducibility of f over M + It now fol-
lows from [3] (theorem 3.16) that the coefficients of f and th Ife im H{A™] for some

A' =Ab'cﬂ. .

This contradicts the irreducibility of f over M o This completes the proof of

the theoreme.

For u € E , we may think of u as analytic element on D(t , 17) and the Gauss

norm, the sup normi on D(t , 1) and the specialization norm
(1.5) u = |u(t)]

all coincides Of course u(t) =0 if and only if u is the zero element of E .
Thus each element v of the algebraic closure E®'9 of E may be iMbedded in the
ring, Q s Of germs of analytic functions at t « Again for such v , v(t) =

only if v =0 . Since E 1is complete, the Gauss valuation has unique extension to
alg '
E .

1.6e PPOPOSITION. -~ The unique extension of Gauss norm to Ealg (viewed as ifbed-

ded in Oy ) coindides with the specialization norm (1.5).

Proof. - Evident.

1.7 : We observe that if u € O, is algebraic over E then u 1is bounded on its

t
disk of convergence with center t . However the example x1/p =-:exp(p—1 log(x/t))

shows that u need not converge in D(t 4, 17) , and hence need not be in Wi’o .
However E2'9 n wl’o is a field.
1.8, LEMMA. - The boundary norm valuation of M has unique extension, ” ” s te

ﬂ?lg s its algebraic closure. If v & ma 9 let u be any solution in 6% of the

irreducible polynomial. over M satisfied by v . Then

(184 1) I, = lu(e)] .

Proof. - The field E 1is the completion of M under the boundary norm valuation.
The uniquenresa of the extension of boundary norm valuation thus follews from thee—
rem 1.4, equation (1.8.1) merely states that the valuation of M(v) 4is given by
the isomorphism. of that field into E(u) together with the restriction to that
field of the valuation of EL9 ,

1842+ COROLLARYs — The boundary norm is the unigue valuation of 7@ which ex-
tends the boundary norm valuation of M . Thus by (1.8.1) the boundary norm valua-

tion on M coincides with the norm obtainecd by speqializimgga.brancheat, t e

1.9. THEOREMs - Each element u of T has a branch in W1'o « More explicitly,

t
the irreducible polynomial in JUV] satisfied by u splits in Wl’o .
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Proofe = Let f be the irreducible polynomial for u in WV] « Let v be a

root of f in Ot e« Then u = v defines an isomorphism of M(u) into E(v) .

Each derivative u(m) of u lies in M(u) and its image is v'™/ , the ol
derivative of W« This shows that :

.91 (m) - (m) .
(1.9.1) @) = v )

We assert that for each m> O,
(m)
* .2 [ ]
(1.9.2) [l At <
Indeed by hypothesis, there exists A such that u € qh « If z €p then
D(z , |Z|“) cA

and hence

‘u(m)gzz

m
et NI KN
and taking the supremum on the left side over all z on the circumference of

center O and radius r , we obtain
my  (m)
|y /m!lO (r) < ”u”A

for all r close enough to 1 « Taking the limit as r goes to 1 gives,:

1™ /mt], < el -

But A is given by %1 and taking limits on b =» 1 gives (1.9.2) as assem
tede It follows f-om (1.9.1), (1.9.2) and the Taylor series for v at t that v
lies in WL’O and then holds for each solutionof f at t « This completes the
proof of the theorem.

1.10. COROLLARY. — The natural mapping of M into E has a (non—canonical) ex-
tension 1 of n® into E°MY n it o0

t
For u GJRa we have

(1.11) Ml =llmdlq,0 *

which commutes with differentiation, d/dx .

2, Differential gguations on the generic diske.

Let E' be a field of elements of O, (hence without zeros in D{t , 17) ) which
is complete under the sup norm and closed under differentiativn. Let RE' = E'[D],
the ring of linear differential operators with coefficients in E' « Then RE’

operates on Wz with the operator norm

”Z Cm;Dm”n =-supm|m! Cm[E'/"m:'

2.1, THEOREM. -~ Let L € RE' y let R Dbe the monic generator of the mn—closure
in RE' of the ideal RE' L.

Then

Ker, R = W' A Ker

t t tL‘



18~06
2,2, COROLLARY., - If L 1is of order n , then

n-1
flt nKer,C L c Wt .

The proofs are the same as given by ROBBA ([4], § 2) the point being that at
each step E may be replaced by E!' .

3. Differential equations over an annulus.
Let 1 be as in corollary 1.10 an imbedding of 1®  into W:_"”O e Our object is

to compare differential equations having coefficients in 7¥ with equations having
coefficients in Tma .

We set
‘ 1,0
mf =2 c Wy
. a . 1,0
E' = completion of IS in Wy (so E' 5 E)
a
R, = M3[D]
&1 = E'[D]

Thus (Rt c R' and the isomorphism ¢ extends trivially to an isomorphism of

(RO with th which we again denote by 7

Let L € (RO and let ¢L be its image in R'h .

The m=closure in: R' of the ideal R®R'¢L has monic generator R as left ideal
of R' e

Let {Rs}seN' be a sequence of monic elements of Ry such that
(3+1) HRS - R“n <1t/s Vs eN

(such a sequence exists as R, is dense R! Yo

LEMMA. 3.2. - There exists a sequence {ps}seN of elements of (Rt such that

(302.1) RS = pS mod R_t L

(3.2.2) IRl < 1/s

_tb

Proofe ~ The procf is based on the fact that Jﬂi is dense in E' . To complete

the proof, see [4], lemme 3.1,

3.3. LEMMA, -~ Let L e (RO s let A Dbe an annulus such as 1.1« If u is guotient

of elements of aA s then

o7 Ll < ey o ¢

If u is ratio of bounded elements of aA s then

1l < flrHlq, 0 [Mlly,0 ¢
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Proofe. — See [47], lemme 3.3.

3.4, LEMMA, - Let L € Ry « Clearly L is stable on & and on its quotient

field, if b (in _eguation 1.1) is close enough te 1 « We assert that

dim. bdd Kert 7L > dim bdd Ker‘ﬁ L

where the right side refers to the kernel of L in the space of all ratio g/h

where g and h are bounded elements of qA .

Proofs. - See [4] theoreme 3.4, [3] theorem 2.4,

THEOREM 3.5. — If L e RO and there exists u (# 0) in the guotient field of

@z such that Lu = O then the bdd Ker ¢L is net trivial.

Proofs — See [4] theorem 3.5.

THEOREM 3.6+ - Let L be a monic element of ®, such that

(i) The coefficients of L lie in GA ’

(ii) The solutions at t of <L lie in at ’
1,0
t [ ]

then L has a full set of solutions in W

Proofe - Let n be the order of L « We write for all n € N ,

(3.6.1) D™/m! = z?;g Bm,j Y mod R, L

where each B . € e « Then
MeJ

(346.2) D" /m!

X4 (r By ) D) mod (L)

It follows from hypothesis (ii) and corollary 2.2 that

n-1
(3.6.3) v B, ;0= 0@™)
Hence by 111,
_ n-1
(3.6.4) ”Bim,j”g =0(m )
but by hypothesis (i) each Bm i ezﬂb and hence the sup norm coincides with the
9

boundary norme Then in particular

_ n-1
(34645) le’j(o)I =0(m" )

This completes the proof c¢cf the theoreme

4, Comparison of the radii of convergencee.

Let ﬁb y R, RbJ’ T be as in § 3. Let L be a menic element of Ry s let
re (0, 1) , and let T be the monic divisor of tL in R®' defined by

(4.1) Ker, T = a: n Ker, 7L .
Then
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(4.2) ']‘L --:A.F 9

a factorization in R' « Let A be of order m, and T of order n «

4.3, THEOREM. — The factors A and T lie in R

£ °
Proofs - The field E' 1is the completion of Mf in WL’O and hence is of infi-—
nite dimension as E-space. However the field generated over E by the coefficients
of ¢L 1is a finite extension of E and hence complete. It follews from § 2 above
that the coefficients of T lie in this field. Thus letting ¢ be an element of
M®  such that the coefficients of L lie in (o) and letting 0

we may write

+ denote 10

v

(4.3.1) A= Zl"o by » O

r =50y Ty + O
where each Fi ) Ai. lies in ® = E[D] 4, order F < n 4 order A. <m, and y 1is
the degree of ¢ over M « We choose an annulus A (as in equatlon 1) such
that the coefficients of L lie in H(A)[o] o such that the degree of 0o over
M(a) is again v and such that do/dx is a linear combination of powers of ©
with coefficients in H(a) o This equation (4.2) represents a system of non-linear
differential equations defined over H(A) © E and satisfied by the coefficients

(in E ) of the operator Ay 5Ty ¢ If
e @D g0 MEO

(4.3.2)
n-1
and
AT + A'Y = 0
then precisely as in the proof of [4] (theorem 4), A has a non-triv*al kernel in

ai and this contradicts the definition of T « Thus

(443.4) (A g y) = AT + by
is an injective mapping of
(at[D])m—1 X (at[D])n ¢ into Glt[D])

However (44344) is not the tangential mapping to be associated with the "varie-

-1 ¢

ty" (4.2). The tangential mapping is the map
(o), )Y x (6,01, _)” = (401,
given by

| -1 -t i
(4:3.5)  (padgomad g 5 yormvpa) > (5o 0p A) T+ A 5505 vy

This mapping has a kernel for a trivial reason (if y # O ),

BoCvi O Yo € 4P
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does not imply that all the y; are zeTos To overcome this difficulty we reinter-

pret (4.2) by writting

_.n+m -1 i
(4.306) TL = D + E)i=o O.t Li

where each Li has coefficients in H(a) « Let 05 9 *°e 9 0 be the distinct
v

conjugates of o, over E . Then (4.2) is equivalent to the system

n-+m \)—1 (i !—'], ‘i n v -; s
(4.3.7) D™ 4 IV g 0] Li =(0" + 2, o5 h;)(D +2Y 0 Ts)s 3= 192gmy
which we view as a system of non-linear equations for the coefflcients of the Ay

and the Fi « The tangent mapping is now given by

(4'3‘8) ()\09”‘!}\\)—1' H YQ"""'Y\)—']i) - (TJ }\-) (Tj I")' + (Tj) A) (\Tj, Y)’

where the ‘A, , y; are as in equation (4.3.5) and
1
Ts A =21 50 x

-1
Ty Y =50 JYl
(4.3.9)

1
Z\i-oe ry +D"

-7 m
T3 A= Z‘l’=OoJA +D .

For an element in the kernel of this mapping we have (by our analysis of (4.3.3))

(4.3.10) Tj'Y:O, j=1'2,ooo,\)

and hence eagh wy, =0 « Likewise for the A, « We conclude from [3] (theorem: 3+7Teb)
that each Ay o T lies in m(A')[D] for some A*‘=rAb, c A, =h3 ie ee @ach
Ay o Ty lies in M[D] and hence T 4 A lie. in mi[D] as assertede

4.4, THEOREMs. — Let L € R, « Then

0

din.(Kert L) n @

£ ;_dim‘Ker Ln aA .

Proofs ~ This follows fpom the preceeding theorem (cfe [3], theorem 4.2.2).

4.5, COROLLARY. -~ Let L be monic element of RO of aordox n such that

(i) The coefficients of L 1lie in ﬂo ’

(ii) The equation Ly = O has a full set of independent solutions in GO

Then L has a full set of solutions in Wé”n-1:.
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