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ON ORDINARY LINEAR p-ADIC DIFFERENTIAL EQUATIONS
WITH ALGEBRAIC FUNCTION COEFFICIENTS

Bernard DWORK

Groupe d’étude d’Analyse ultramétrique
(Y. AMICE, P. ROBBA)
3e année, 1975/76, n° 18, 10 p. 17 mai 1976

(based on joint work with P. ROBBA [3])

In previous articles ([3]t) [4]), we considered differential équations whose coef-
ficients are analytic elements. The central idea was to consider the behavi~r of
the equation on the generic disk. The purpose of this article is to extend this

procedure to the case in which the coefficients are algebraic functions.

Indeed, an early example concerning such differential equations was given by
5) who (in effect) discussed the question : Let y = x(x - t)(x - X),

X constant. Does there exist a constant C (depending upon 03BB) such that the

equation

has a bounded solution on the disk at infinity, 1+) ? This formulation is
not quite correct as the x-plane does not give a good parametrization of the el-

liptic curve at infinity but it follows from the general theorems of this article
that the disk at infinity plays no special role and the question is the existence
of a solution of (1) which is an analytic function on a residue class (Remark :
The answer is yes if the elliptic curve has non-supersingular réduction and in
that case, C is any unit determination at 03BB of -1 F(1 2, 1 2 , t ; x) viewed

as algebraic element in the sense of CHRISTOL ([1:J).
We consider a linear differential equation whose coefficients are both analytic

functions on an annulus A (of center zero and outer radius 1 ) and are alge-
braic over the ring H(A) of analytic elements on A . The ring has a na-

tural imbedding in E, the field of analytic elements on the generic disk. We
demonstrate the existence of a non-canonical isomorphism mapping such algebraic-
analytic functions on A into bounded functions on D(t, 1-) algebraic over E

in such a way that the boundary norm goes over into the sup norm on D(t, 1-)
(cf. corollary 1..10 below).

Using this isomorphism, we show that there is no difficulty in translating in-
formation concerning solutions lying in 03B10394 into information concerning solutions
in the generic disk and conversely. In particular, we get one usual comparison
theorem (cf. lemma 3.4, theorem 4.4 below) and the rules of growth of solutions.

It seems likely that this work may be extended to differential equations whose
coefficients (as function of x ) are algebraic elements in the sense referred to

above.
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o. Notation.

0.1. : Let K be a field of characteristic zero complète under a non-archime-

dean valuation with residue class field of characteristic p / 0 . Let Q be an

algebraically closed, maximally complete field under a valuation extending that of

K and linearly disjoint from E~ = K(X) over K~ . Let Q have a valuation ring

containing an élément, t, whose image in the residue class field of Q is trans-

cendental over the residue class field of K.

0.2 : For each .and each positive real number r, let

For = 03A3~03BD b03BD(x - a)03BD, analytic on D(a , r**) , let for
p  r ,

This is extended to functions f ~ meromorphic in D(0 ~ r~~ by writting

if f =g/h , both g and h being analyticon D~a ~ r") ~

0.3 : Let E be the completion of EG under the Gauss norm

We shall write f or this norm on E.

0.4 : For each bounded subset A of 0 such that CA) &#x3E; 0 (or the ’
union of such a bounded set with the complement u of r) for

some r &#x3E; 0 . Let H(A) be the completion under the topology of uniform convergen-
ce of the subspace of EO consisting of rational functions with coefficients in

K having no poles in Under the sup norm , is a Banach space.

Let denote the quotient field of H(A) .

0.5 : Let 03C0 = (TI ) ~N 
be a non-increesing sequence of positive real numbers

vv t!:1~

with 
~

11 
# 1

~0.5.~ ~

Let wr be the Banach space of germs of analytic functions at a
a

such that

withnorm u-~!!ut( " .

0.6 : We use ~â to dénote the space of functions analytic in D~a ~ p )



18-03

with topology of uniform convergence on disks D(a , r ) with r  p . We write

a insteed of 03B11 (if a eD(0, 1+) ).

0.7’ : In parti cular in 0.5, if v =: t for ail 03BD c N , we dénote n by
’t 0 ~ TT ~Tï ’ and write Il for the norm of VF’ (and for the operator norm on that

space) and write for W~ $
’ ’ 

a a

t~ Algebraic functions analytic on an annulus.

For each annulus,;

let H(~)B be thé field of analytic éléments on ~, ~L(A) thé quotient field of

the ring of functions analytic on A the field of those

éléments in thé quotient field of OL 
~ 

which are algebraic over 

Let m (resp : ma) be the inductive limit of the fields m(Ab) (resp 
as b -? 1 . If u ~ ma, then u is a ratio of éléments of OL for suitable 0394 ,

but aiso satisfies a polynomial équation with coefficients in ?)I(A)  It follows

that u has only a finite set of zéros and pôles in A . This shows that u e QA’
for some A’ = Ab’ for some b’ 0152 1) . Indeed it is clear that JR is the

inductive limit of the rings H(8b} and that :ma is the inductive limit of the

ring of éléments of a 
0394b 

which are algebraic over 

The boundary norm

for éléments of the quotient field of CL may be written more simply as
A

There is a natural map of m into E 1 Our first object is to show that each

élément of ~ has a branch in 

1.4 : THEOREM. - An irredu cible polynomial in one variable with coefficients

in m remains irreducible E .

Proof. - Let f be an irreducible monic polynomial in J)~Y] ~ Hence f has

ooef f icients in H(A), for suitable annulus 6 . Suppose

(t.4~) f = gh ,

where g (resp. h ) is monic élément of of degree n (resp. m ) . Viewing
(t.4.t) on a non-linear equation saticf ied by n + m unspecified coefficients ~f

g and h ~ we are led to consider the tangential mapping

This map is trivially injective as otherwise if Gh + with H: ~ 0 then
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gH is divisible by h while deg H m = deg h which shows that (g , 1 and

thus . ~ 1 which aontradicts thé irreducibility of f over It now fol-

lows from [3] (,thooren.3.1.&#x26;) that the coefficients of f and in Lie in H[0394"] for some

This contradicts the irreducibility of f over m . This complètes the proof of

the theorem.

For u e E , we may think of u as analytic element on D(t, 1-) and the Gauss

norm, the sup norm onr D(t , 1 ) and the specialization norm

ail coïncide. Of course u(t) =0 if and only if u is the zéro élément of E .

Thus each élément v of the algebraic closure of E may be imbedded in the

ring, germs of analytic functions at t. Again for such v, v(t) = 0

only if v = 0 . Since E is complete, the Gauss valuation has unique extension to

Ealg .
’

l .6. PROPOSITION. - Thé unique extension of Gauss norm to (viewed as imbed-
ded in coindides with the specialization norm (1 .5).

Proof. - Evident.

1.7 : We observe that if u e 0. is algebraic over E then u is bounded on its

disk of convergence with center t. However the example log(x/t))
shows that u need not converge in D(t y 1 ) ,and hence need not be in 

field.

~8. LEMMA. - Thé boundary norm valuation of N has unique extension, t$

its alqebraic closure. if let u be an solution in 6 of the

irreducible polynomial over m satisfied by v. Then

Proof. - The field E is the completion of m under the boundary norm valuation:.

The unique rese of the extension of boundary norm valuation thus follows from 

rem 1.4, equation (1.8.1) merely states that the valuation of m(v) is given by
the isomorphism.of that field into E(u) together with the restriction to that

field of the valuation of 

1.8.2. COROLLARY. - The boundary norm is the unique valuation of ma which ex-

tends the boundary norm valuation of m. Thus by (1 .8.1 ) the boundary norm valua-
tion on ma coincides with the norm obtained blanchi at 1t.

1.9. THEOREM. - Each element u of ma has a branch in W1,0t. More explicitly,
the irreducible polynomial in satisf ied by u splits in 
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Proof. - Let f be the irreducible polynomial for u in 21[VJ . Let v be a

root of f in 0 . Then u ~ v defines an isomorphism of into E(v) .
Each derivative u ’ of u lies in and its image is v 9 the m.
derivative of v . This shows that ,

We assert that for each. m &#x3E; 0 ,

Indeed by hypothesis, there exists A such that then

and hence

and taking the supremum on the left side over all z on the circumference of

center 0 and radius r ~ we obtain

for all r close enough. to 1 . Taking the limit as r goes to 1 

BUt 0394 is given by 1..1 and taking limi ts on b ~ 1 gives (1.9.2) as asser-

ted. It follows f-om (1.9.1), (1.9.2) and the Taylor séries for v at t that v

lies in and then holds for each solution of f at t. This complètes the

proof of the theorem.

1.10. COROLLARY. - The natural mapping of m into E has a (non-canonical) ex-

tension T of into n which commutes with differentiation, d/dx .

For u we have

2. 

Let E’ be a field of éléments of OL~ (hence without zéros in D(t, 1-) ) which
is complète under the sup norm and closed under differentiation. Let 

the ring of linear differential opéra tors with coefficients in E’ . Then ~t
opérâtes on W03C0t with the operator norm

2.1. THEOREM. - Let L e let R be the monic generator of the 03C0-closure

~ of the ideal 

Then



18-06

2.2. COROLLARY. - If L is of order n, then

The proofs are the same as given by ROBBA ([4Jt:. ~ 2) the point being that at
each step E may be replaced by E’ .

3. Differential equations over an annuls.

Let T be as in corollary 1.10 an inbedding of 2l’ into W1,0t. Our object is
to compare differential équations having coefficients in ma with équations having
coefficients in 

We set

E’ = completion of ~ in (so E’ ~ E )

Thus ~t and the isomorphism r extends trivially to an isomorphism of

~L with R. whichwe again dénote by T .

Let and let TL be its image in ?. 
The n-closure in ~, of the idéal has monic generator R as left idéal

of ~’ .

Let (R ) be a séquence of monic éléments of Rt such that

(such a séquence existe as Ott is dense ?* ).

There exists a sequence (P) sEN of éléments of Ott such that

Proof. - The proof is based on the fact that mt is dense in E’ . To complète
thé proof, see [4]~ lemme 3.~

3.3. LEMMA. - Let L !~e an annulus such as ’t.~ If u is Quotient

$f éléments then

If u is ratio of bounded éléments of then
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Proof. - See [4*]~ lemme 3 . 3 .

3.4. LEMMA. - Let L Clearl L is stable on 03B10394 and on its quotient

field, if b (in équation 1 .1 ) is close enouqh te 1 . We assert that

dim, bdd bdd 
.

where the riqht side refers to the kernel, of L in the space of all ratio g/h
where g and h are bounded éléments of CL ~

Proof. - See [4] théorème 3.4, [3] theorem 2.4.

THEOREM 3.5. - If L and there exists u (# 0) in thé quotient field of

OL such that Lu = 0 then the bdd Ker rL is nôt triviale

Proof. - See [4] theorem 3. 5.

THEOREM 3.6. - Let L be a monic élément of R0 such that

(i) The coefficients of L lie 

(ii) Thé solutions at t ~f ~L lie in ’

has a full set of solutions in 

Proof. - Let n be the order of L. We write for ail n 6 N t

where each Then
m~J

It follows from:hypothesis and corollary 2.2 that

Hence by ~ .~1’~

but by hypothesis (i) and hence the sup norm coincides with the

boundary norm. Then in particular

This complètes the proof cf the theorem.

4. Comparison of the radii of convergence.

T be as in§ 3. Let L be a m~nic élément of ~ , let
r e (0 , ~ ~ and let r be the monic divisor of TL in ~’ defined by

Then
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a f actorization in ?’ . Let A be of order m , and r of order n.

4.3. THEOREME. - The factors A and r lie in 

Proof. - The field Et is the completion of Mat in and hence is of infi-

nite dimension as E-space. However the field generated cver E by the coefficients

of TL is a finite extension of E and hence complete. It follows from § 2 above

that the coefficients of r lie in this field. Thus letting 0 be an élément of

ma such that the coefficients of L lie in and letting 0. denote TG ,

we may write

where each 0393i, A. lies in R = E[D] , order r.  n , order A..  m , and 03BD is

the degree of 0 over m. We choose an annulus 0394 (as in equation 1.1) such

that the coefficients of L lie in H(~)~0] ~ such that the degree of 0 over

is again v and such that is a linear combination of powers of 0

with coefficients in H(~.) . This équation (4.2) represents a system of non-linear
differential equations defined over E and sitisfied by the coefficients

(in E ) of the operator A. , r. i If

dnd

then precisely as in the proof of [4] (theorem 4), A has a non-trivial kernel in

CL. and this contradicts the définition of r . Thus

is an injective mapping of

However (4.3.4) is not the tangentiaL mapping to be associated with the "varie-

ty" (4.2). The tangential mapping is the map
"

given by

This mapping has a kernel for a trivial reason 0 ),
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does not imply that all the yl are zéro. To overcome this difficulty we reinter-

pret (4.2) by writting

where each L. has coefficients in H(~) . Let 0. ~ ". ~ 0 be the distinct

conjugates of °t over E Q Then (4.2) is équivalent to the system

which we view as a system. of non-linear equations for the coefficients of the A. 
and the r . :&#x3E; Ihe tangent mapping is now given by .

where the 03BBi , 03B3i are a s in equa tion (4.3.5) and

For an element in the kernel of this mapping we have (by our analysis of (4 ~3 ~3})

and hence = 0 . Likewise for the 03BBi. We conclude from [3] (theorem 3.1.b)i 1

i, r. lies in m(0394’)[D] for 0394’ = 0394b’ ~ 0394b = 0394 ; i. e. each

i, ri lies in and hence r 9 , lie, in as asserted.

4.4. -. Let L ~ R0. Then .

Proof. - This follows fnom thé preceeding theorem (cf. [3], theorem 4.2.2).

Let L be monic élément of R0 of order n. such. that

(i) Ihe coefficients of L lie in CL ~
(il) Thé équation Ly=0 has a full set of independent solutions in OL .

Then L has a full set of solutions in W1,n-10 .
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