GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

ALAIN ESCASSUT

Calcul fonctionnel holomorphe dans les algèbres de Banach ultramétriques

Groupe de travail d'analyse ultramétrique, tome 2 (1974-1975), exp. nº 17, p. 1-7 http://www.numdam.org/item?id=GAU 1974-1975 2 A15 0>

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1974-1975, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CALCUL FONCTIONNEL HOLOMORPHE DANS LES ALGEBRES DE BANACH ULTRAMÉTRIQUES

par Alain ESCASSUT

<u>Problème.</u> - Soit K un corps valué non archimédien complet algébriquement clos, et soit $D \subseteq K$. On note K(D) l'algèbre des fractions rationnelles sans pôle dans D, et on note H(D) le groupe topologique complété de H(D) pour la topologie de la convergence uniforme sur D (H(D) est une K-algèbre de Banach si, et seulement si, D est fermé borné).

Soit A une K-algèbre de Banach ultramétrique unitaire, et $\forall x \in A$, soit s(x) l'ensemble des $\lambda \in K$ tels que $x - \lambda$ ne soit pas inversible.

De façon analogue aux propriétés connues du calcul fonctionnel holomorphe dans une C-algèbre de Banach [1], on aimerait trouver, pour tout $x \in A$, un homomorphisme unifère continu θ de H(s(x)) dans A tel que $\theta(h) = h(x)$, \forall $h \in K(s(x))$. En fait, on sait que ceci n'est pas possible, sauf si la norme $\|\cdot\|$ de A est définie par $\|x\| = \sup_{\phi \in X(A)} |\phi(x)|$, où X(A) désigne l'ensemble des caractères de A.

On va donc chercher une sous-algèbre $\mathfrak{O}_{\mathbf{x}}$ de $\mathtt{H}(\mathbf{s}(\mathbf{x}))$ contenant bien entendu $\mathtt{K}(\mathbf{s}(\mathbf{x}))$, et telle que l'application θ définie dans $\mathtt{K}(\mathbf{s}(\mathbf{x}))$ comme ci-dessus, se prolonge dans $\mathfrak{O}_{\mathbf{x}}$. Pour cela, on devra définir quelques notions nouvelles, et notamment la notion de partition naturelle du complémentaire d'un fermé de \mathtt{K} .

1. Partitions naturelles.

Soit K un corps valué non archimédien complet, algébriquement clos, et soit $D \subseteq K$. On dit que D est infraconnexe si \forall $a \in D$, l'application $x \longrightarrow |x-a|$ a une image dans R dont l'adhérence est un intervalle.

Soit $D \subseteq K$, de diamètre R. On appelle enveloppe D de D le disque circonférencié de diamètre R qui contient D (si $R = +\infty$, D = K).

Soient $a \in K$, et $r^i < r^n$ $(r^i, r^n \in \underline{R}^+)$. On appelle <u>couronne non circonférenciée</u> de centre a, de rayon inférieur r^i , de rayon supérieur r^n , l'ensemble

$$\Gamma(a, r^1, r^0) = \{g \in K ; r^1 < |g - a| < r^0\}$$
.

On appelle couronne vide d'un fermé borné D de K une couronne non circonférenciée $\Gamma(a, r^i, r^n) \subset (K - D)$, et telle que $a \in D$ et

$$r^{*} = \sup\{|g|; |g| \in D, |g| < r^{n}\},$$

$$r^{n} = \inf\{|g| : |g| \in D, |g| > r^{t}\}$$
.

On appelle <u>circonférence</u> d'un disque non circonférencié d(a,r)={|g|; |g-a|<r}

l'ensemble des $\xi \in K$ tels que $|\xi - a| = r$.

<u>Définitions</u>. - Soit D un fermé de diamètre $r \in (0, +\infty)$, et soit R > r. Nous dirons qu'une partition P de K - D est <u>naturelle</u> si ses seuls éléments sont :

- le complémentaire dans K du disque circonférencié V de diamètre R qui contient D,
- des couronnes non circonférenciées $\Gamma \subseteq V$ D , des disques non circonférenciés $T \subseteq V$ D .

Alors si P est une telle partition naturelle de K - D , le nombre R est appelé diamètre de P; le disque V est appelé enveloppe de P; les couronnes C sont appelées couronnes de P; les disques T sont appelés supertrous de P.

Nous dirons qu'une partition naturelle de K - D est <u>infraconnexe</u> si elle n'admet pas de couronnes.

Alors si D est un fermé de K, il existe une partition naturelle infraconnexe unique \mathcal{P}_0 d'enveloppe D telle que \forall a \in D - D, le supertrou de \mathcal{P}_0 contenant a soit le disque non circonférencié de centre a, de diamètre d(a, D) (distance du point a à D).

 \mathcal{P}_{0} est appelé <u>partition canonique de</u> D , et les supertrous de \mathcal{P}_{0} sont appelés trous de D .

Remarque. - L'ensemble des partitions naturelles infraconnexes de K - D, qui admettent D pour enveloppe, est ordonné par la finesse, et admet pour plus petitélément la partition canonique.

On notera $\mathcal{P}_1 \prec \mathcal{P}_2$ la relation " \mathcal{P}_1 est une partition plus fine que \mathcal{P}_2 ".

2. Algèbres H(D, P).

Soit $D \subseteq K$. Suivant les conventions habituelles, on notera K(D) l'algèbre des fractions $h(X) \in K(X)$ sans pôle dans D.

Si A est une K-algèbre, on notera Mult A l'ensemble des semi-normes multiplicatives de A, et si A admet une norme de K-algèbre $\|\cdot\|$, on notera Mult(A, $\|\cdot\|$) [4] l'ensemble des semi-normes multiplicatives de A continues pour la norme $\|\cdot\|$.

Soit D un fermé borné, et soit P une partition naturelle de K - D. On notera Mult(K(D), P) l'ensemble des éléments de Mult K(D) dont le filtre circulaire [3] est sécant à D, ou bien à au moins un supertrou de P et à sa circonférence. Alors on notera $\|\cdot\|_p$ la norme de K-algèbre de K(D), définie par $\|\mathbf{h}\|_p = \sup\{\phi(h) \; ; \; \phi \in \text{Mult}(K(D), P)\}$, et l'on a donc

$$Mult(K(D), P) = Mult(K(D), ||.||_{P})$$
.

PROPOSITION. - Soit D un fermé borné, et soient P_1 et P_2 deux partitions naturelles de D telles que $P_1 \prec P_2$. Alors on a pour $h \in K(D)$

$$\|h\|_{D} \le \|h\|_{P_{1}} \le \|h\|_{P_{2}}$$
.

Notation. - On notera H(D, P) la K-algèbre de Banach complétée de K(D) pour la norme $\|\cdot\|_{P}$.

COROLLAIRE. - Soit D un fermé borné, et soient \mathcal{C}_1 et \mathcal{C}_2 deux partitions naturelles de D telles que $\mathcal{C}_1 \prec \mathcal{C}_2$. Alors il existe un homomorphisme unifère continu unique de $\mathcal{C}_1 + \mathcal{C}_2 = \mathcal{C}_1 + \mathcal{C}_2 = \mathcal$

THEORÈME de Mittag-Leffler pour une partition infraconnexe [5]. - Soit $\mathcal P$ une partition naturelle infraconnexe d'un fermé borné $\mathcal D$, et soit $\mathcal V$ l'enveloppe de $\mathcal P$. Soit $\mathcal F$ in $\mathcal F$ in existe $\mathcal F$ in existe

$$||f||_{p} = \sup ||f_{i}||_{p}$$
.

PROPOSITION. - Soit D un fermé borné; soit $\mathcal P$ une partition naturelle de K-D, et soit $h\in K(D)$. Soient Γ_1 , ..., Γ_m les couronnes vides des $\mathcal P$ qui contiennent des pôles de h, et soient T_1 , ..., T_n les supertrous de $\mathcal P$ qui contiennent des pôles de h. Soit Λ un fermé borné contenant D tel que Γ_1 , ..., Γ_m soient des couronnes vides de Λ et tel que T_1 , ..., T_n soient des trous de Λ non inclus dans une couronne vide de Λ . Alors on a

$$\|\mathbf{h}\|_{\Lambda} = \|\mathbf{h}\|_{\mathbf{P}}$$
.

COROLLAIRE 1. - Soit $\mathcal P$ une partition naturelle de K-D, et soit Δ un fermé borné contenant D dont tout trou et toute couronne vide est inclus dans un supertrou, ou bien dans une couronne de $\mathcal P$. Alors $H(\Delta)$ est isomorphe à une sous-algèbre de Banach de H(D, $\mathcal P)$ par un isomorphisme unifère continu qui induit l'identité sur K(D).

Soit A une K-algèbre; pour tout $x \in A$, on note s(x) l'ensemble des $\lambda \in K$ tels que $x - \lambda$ ne soit pas inversible.

COROLLAIRE 2. - Soit A une K-algèbre de Banach unitaire. Soit $x \in A$, et soit P une partition naturelle de s(x). On suppose qu'il existe un homomorphisme unifère continu θ_P de H(D, P) dans A qui associe x à l'application identique X sur D. Soit Δ un fermé borné dont tout trou et toute couronne vide est inclus dans un supertrou ou bien dans une couronne de P. Alors θ_P induit sur $H(\Delta)$ un homomorphisme unifère continu, qui fait correspondre à x l'identité X sur Δ et qui est injectif si Δ est infini.

3. Partition x-spectrale et partitions x-normales.

La définition de l'algèbre $\mathfrak{O}_{\mathbf{x}}$ qui permettra la construction du calcul fonctionnel holomorphe nécessite l'introduction des partitions \mathbf{x} -spectrale et \mathbf{x} -normales du spectre d'un élément \mathbf{x} .

Notation. - Soit (A, $\|\cdot\|$) une K-algèbre de Banach, et soit $x \in A$. On notera $\|x\|_{s_1}$ la limite de la suite $\|x^n\|^{1/n}$ (on sait que $\|\cdot\|_{s_1}$ est une semi-norme telle que

$$\|\mathbf{x}\|_{\mathbf{S}_{\bullet}} = \sup\{\phi(\mathbf{x}) ; \phi \in \text{Mult}(A, \|\cdot\|)\}$$
).

<u>Définition</u>. - Nous dirons qu'une couronne non circonférenciée $\Gamma(a, r^1, r^n)$ est <u>fortement incluse</u> dans une couronne non circonférenciée $\Gamma(a, R^1, R^n)$ si $r^1 < R^1 < R^n < r^n$.

Soit (A, $\|\cdot\|$) une K-algèbre de Banach, soit $x \in A$, et soit D = s(x). Nous dirons qu'une couronne non circonférenciée $\Gamma(a, r^1, r^n)$ est une couronne x-vide de D si $\Gamma(a, r^1, r^n) \subset (K - D) \cap d(a, <math>\|x\|_{S_1}$) et si r^1 et r^n satisfont $r^1 = \sup\{\varphi(x - a) | \varphi \in \text{Mult}(A, \|\cdot\|) ; \varphi(x - a) < r^n\}$

et

$$r^{\dagger} = \inf \{ \varphi(x - a) | \varphi \in \text{Mult}(A, \|.\|) ; \varphi(x - a) > r^{\dagger} \}$$
.

LEMME. - Soit (A, ||.||) une K-algèbre de Banach, soit x un élément inversible de A, et soit D = s(x). Soit ||.|| une semi-norme ultramétrique de A telle que $||1/x||_{S_1} \le ||1/x||^A \le ||1/x||$. Alors on a $||1/(x-b)||^1 = ||1/x||^1$ pour tout $b \in K$ tel que $||b|| < 1/||1/x||^1$.

Rappelons que $\|x\|_{s_i} \ge \sup_{\lambda \in s(x)} |\lambda|$ de sorte que $\|x - a\|_{s_i}$ est indépendant de a si $a \in s(x)$.

On appellera partition x-spectrale la partition naturelle S_x de K - D qui a pour diamètre $\|x-a\|_{S_1}$ pour $a \in S(x)$, et dont les supertrous T vérifient diam $(T) = 1/\|1/(x-a)\|_{S_1}$ pour $a \in T$, et dont les couronnes sont les couronnes x-vides de D.

On appellera partition x-normale une partition naturelle P de K - D qui a pour diamètre $\|x\|_{S_1}$ et qui possède en outre les propriétés suivantes :

- les couronnes vides de P sont en nombre fini, et chacune est fortement incluse dans une couronne x-vide de D.
- presque tous les supertrous T de P vérifient $1/\|1/(x-a)\| = \text{diam}(T)$ pour $a \in T$, et ceux (en nombre fini) qui ne vérifient pas cette relation sont tels que $1/\|1/(x-a)\| \le \text{diam}(T) < 1/\|1/(x-a)\|_{S_1}$.

Soit $a \in S(x)$. On notera f(x) l'unique partition naturelle infraconnexe de K-D de diamètre ||x-a||, et dont les supertrous $T(\alpha)$ vérifient

diam $T(\alpha) = 1/||1/(x - \alpha)||$.

PROPOSITION. - Soit A une K-algèbre de Banach unitaire. Soit $x \in A$, soit D = s(x), et soit X l'application identique sur D. Soit θ une partition x-normale de K - D; alors il existe un homomorphisme unifère continu unique θ_{θ} de $H(D, \theta)$ dans A tel que $\theta_{\theta}(X) = x$.

Si θ_1 et θ_2 sont deux partitions x-normales de K - D telles que $\theta_2 < \theta_1$ alors θ_{θ_2} induit θ_{θ_1} sur $H(D, \theta_1)$.

COROLLAIRE. - Soit A une K-algèbre de Banach ultramétrique, et soit $x \in A$.

Alors il existe un homomorphisme unifère continu unique θ_0 de $H(s(x), \theta_x)$ dans $\theta_0(X) = x$.

PROPOSITION. - Soit (A, ||.||) une K-algèbre de Banach unitaire. Soit $x \in A$, et soit A_x la sous-K-algèbre unitaire pleine engendrée par x dans A. On suppose que ||.|| et ||.||_{s1} induisent sur A_x deux normes équivalentes. Alors l'application de K(s(x)) dans A_x : $h \longrightarrow h(x)$ est continue et se prolonge en un homomorphisme unifère continu θ_S de $H(s(x), S_x)$ dans A.

4. Algèbre des germes Ox.

On notera $\mathcal{O}_{\mathbf{X}}$ la limite inductive des algèbres $\mathbf{H}(\mathbf{s}(\mathbf{x})$, $\mathbf{P})$ lorsque \mathbf{P} parcourt la famille des partitions x-normales. Alors $\mathcal{O}_{\mathbf{X}}$ est une sous-algèbre de $\mathbf{H}(\mathbf{s}(\mathbf{x}))$ dont les éléments seront appelés germes analytiques x-normaux sur $\mathbf{S}(\mathbf{x})$.

THEORÈME. - Soit A une K-algèbre de Banach ultramétrique unitaire. Soit $x \in A$, et soit X l'identité sur s(x). Alors il existe un homomorphisme unifère continu unique Θ_{x} de O_{x} dans A tel que $O_{x}(X) = x$, et si la semi-norme $\|\cdot\|_{S_{1}}$ de A est une norme pour laquelle A est complète, alors O_{x} se prolonge en un homomorphisme continu de $H(s(x), S_{x})$ dans A.

Notation. - Si $f \in \mathcal{O}_{x}$, on notera $\tilde{f}(x) = \mathcal{O}_{x}(f)$.

PROPOSITION. - Soient A et A' deux K-algèbres de Banach ultramétriques unifères, et φ un homomorphisme unifère continu de A dans A'. Soit $x \in A$, et soit $f \in \mathcal{O}_{x}$. Alors $\varphi(f(x)) = f(\varphi(x))$.

5. Fonctions analytiques dans A.

<u>Définitions.</u> - Soit A une K-algèbre de Banach ultramétrique unitaire, soit $\Omega \subseteq A$, et soit $E \subseteq K$. Lous dirons qu'une couronne non circonférenciée $\Gamma(a, r^i, r^n) \subseteq K = E$ est une <u>couronne</u> Ω -vide de E si

$$r^{1} = \sup\{\phi(x-a) ; \phi \in \text{Mult}(K(E), \|\cdot\|_{S_{1}}), x \in \Omega, \phi(x-a) < r^{n}\},$$

$$\mathbf{r}^{n} = \inf \{ \phi(\mathbf{x} - \mathbf{a}) ; \phi \in \mathbb{N}it(\mathbb{K}(\mathbf{E}), \| \cdot \|_{\mathbf{S}_{1}}), \mathbf{x} \in \Omega, \phi(\mathbf{x} - \mathbf{a}) > \mathbf{r}^{1} \}.$$

On notera $E_{\Omega} = \bigcup_{\mathbf{x} \in \Omega} s(\mathbf{x})$, F_{Ω} l'ensemble des $\mathbf{a} \in K$ tels que $\sup_{\mathbf{x} \in \Omega} \|1/(\mathbf{x} - \mathbf{a})\|$ ne soit pas borné, et enfin on notera D_{Ω} l'ensemble $E_{\Omega} \cup F_{\Omega}$.

LEMME. - D est fermé.

On appellera partition Ω -spectrale la partition naturelle de K - D de diamètre $\sup_{\mathbf{x} \in \Omega} \|\mathbf{x}\|_{\mathbf{s}_1}$, dont les couronnes vides sont les couronnes Ω -vides de D et dont les supertrous T vérifient $\operatorname{diam}(T) = \inf_{\mathbf{x} \in \Omega} (1/\|1/(\mathbf{x} - \mathbf{a})\|_{\mathbf{s}_1})$ pour $\mathbf{a} \in T$.

De même, on appellera partition Ω -normale une partition naturelle de $K - D_{\Omega}$, de diamètre $\sup_{x \in \Omega} ||x||_{s}$, possèdant les propriétés suivantes :

- les couronnes sont en nombre fini, et chacune est fortement incluse dans une couronne de la partition Ω -spectrale.
- les supertrous T vérifient presque tous $\dim(T) = \inf_{x \in \Omega} (1/\|1/(x-a)\|)$ pour $a \in T$, et ceux (en nombre fini) qui ne vérifient pas cette relation sont tels que

$$\inf_{x \in \Omega} (1/\|1/(x-a)\|) \le \operatorname{diam}(T) < \inf_{x \in \Omega} (1/\|1/(x-a)\|_{S_{\frac{1}{2}}})$$
.

On notera $\binom{\pi}{\Omega}$ la limite, inductive des algèbres $H(D_{\Omega}, F)$ lorsque F parcourt la famille des partitions Ω -normales; on notera $\binom{\pi}{\Omega}$ les éléments analytiques de $H(E_{\Omega})$ de la forme $f = g + \sum_{j=1}^{n} \lambda_j/(x-a_j)^{q_j}$, où $g \in \binom{\pi}{\Omega}$ et où $a_j \in F_{\Omega}$ et $\lambda_j \in K$ (les points a_1 , ..., a_n n'étant pas forcément tous distincts).

$$\lim_{n\to\infty} (\sup_{x\in\Omega} \|g(x) - h(x)\|) = 0.$$

THEOREMS. - Soit A une K-algèbre de Banach ultramétrique unitaire, soit $\Omega \subseteq A$, et soit $f \in \mathcal{O}_{\Omega}$. Alors $\forall x \in \Omega$, $f \in \mathcal{O}_{X}$ et l'application de Ω dans $A : x \longrightarrow f(x)$ est analytique dans Ω . De plus, pour toute boule B de centre a incluse dans Ω , f(x) est développable en série de Taylor : $\sum_{n=0}^{\infty} a_n(x-a)^n$ convergeant dans B.

BIBLIOGRAPHIE

- [1] BOURBAKI (Nicolas). Théorie spectrale, ch. I.: "Algèbres normées ...". Paris, Hermann, 1967 (Actualités scientifiques et industrielles, 1332.
 Bourbaki, 32).
- [2] ESCASSUT (Alain). Eléments analytiques et filtres percés sur un infraconnexe, Annali Mat. pura ed applic., Bologna (à paraître).
- [3] GARANDEL (Gérard). Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, Indagationes Mathematicae, 1975 (à paraître).
- [4] GUENNEBAUD (Bernard). Sur une notion de spectre pour les algèbres normées ultramétriques, Thèse Sc. math. Univ. Poitiers, 1973.

[5] ROBBA (Philippe). - Fonctions analytiques sur les corps valués ultramétriques complets, Astérisque, 1973, nº 10, p. 109-218.

(Texte reçu le 9 juin 1975)

Alain ESCASSUT Laboratoire de Mathématiques associé au CNRS Université de Bordeaux-I 351 cours de la Libération 33405 TALENCE