GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

Daniel Barsky

Mesures p-adiques à densité 2

Groupe de travail d'analyse ultramétrique, tome 1 (1973-1974), exp. n° 9, p. 1-5 http://www.numdam.org/item?id=GAU_1973-1974__1__A6_0

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1973-1974, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

25 février 1974

MESURES p-ADIQUES À DENSITÉ 2

par Daniel BARSKY

On montre que les mesures à densité ne forment pas une sous-algèbre de convolution de l'algèbre de convolution des mesures p-adiques sur $\mathcal{C}(Z_p$, $C_p)$.

Notations. - N, Z, R ont leur signification habituelle. Soient Z_p l'anneau des entiers p-adiques, Q_p son corps des fractions, C_p le complété de la clôture algébrique de Q_p muni de la norme ultramétrique prolongeant celle de Q_p normalisée par $|p| = p^{-1}$. Soient $C(Z_p, C_p) = C$ l'espace des fonctions continues sur Z_p à valeurs dans C_p muni de la norme de la convergence uniforme sur Z_p notée $|\cdot|$, C' le dual de C muni de la norme habituelle notée $||\cdot||$, si $p \in C'$,

$$\|\mu\| = \sup_{f \in C_{-\{0\}}} (|(\mu|f)|/|f|)$$

(où l'on note $(\mu|f)$ l'action de μ sur f).

On notera $\ell(x)$ la partie entière de $(\log(x))/\log(p)$ où $x \in R$. Bien entendu, p est un nombre premier. On note $\phi_n \in \mathbb{C}$ la fonction caractéristique de la boule $\mathfrak{B}(n\ ,\ \ell(n)\ +\ 1)$ de centre $n\in\mathbb{N}$ et de rayon $p^{-\ell(n)-1}$, et $\psi_{x,h}\in\mathbb{C}$ la fonction caractéristique de la boule $\mathfrak{B}(x\ ,\ h)$ de centre $x\in\mathbb{Z}_p$ et de rayon p^{-h} . On note enfin \mathfrak{A} l'espace des fonctions analytiques bornées sur la boule unité ouverte \mathfrak{B} de \mathbb{C}_p muni de la norme de la convergence uniforme sur \mathfrak{B} notée $\|\cdot\|$.

1. Lien entre mesures et fonctions analytiques sur B.

Nous poserons les définitions suivantes :

Définition 1 [2]. - Une mesure est un élément de C'.

$$(\mu \otimes \nu | f \cdot g) = (\mu | f)(\nu | g)$$
,

et prolongée par continuité sur $C(\underline{Z}_p^2,\underline{C}_p)$.

Définition 4 [2]. - Soient μ et ν deux mesures, leur produit de convolution $\mu \star \nu$ est défini par $(\mu \star \nu | f) = (\mu \otimes \nu | f)$, où f(x, y) = f(x + y).

Soit $\theta_X(x)$ $(X \in \mathcal{B} \text{ et } x \in \underline{\mathbb{Z}}_p)$ la fonction de $\mathcal{B} \times \underline{\mathbb{Z}}_p$ dans $\underline{\mathbb{C}}_p$, définie par $\theta_X(x) = 1 + X\binom{x}{1} + \cdots + X\binom{x}{n} + \cdots$, où $\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$,

on posera $Q_n(x) = {x \choose n}$.

PROPOSITION 1. - Soit $F(X) = \sum_{n \geqslant 0} a_n X^n$ un élément de α . Il existe un isomorphisme d'espaces de Banach π entre α et α et α tel que, si $\pi(F) = \mu_F$, alors $(\mu_F | Q_n) = a_n$ pour $n \geqslant 0$, et $(\mu_F | \theta_X) = F(X)$ pour tout $X \in \alpha$.

On sait que, si $F(X) = \sum_{n \geqslant 0} a_n \ X^n$, alors $\sup_{n \geqslant 0} |a_n| = ||F||$, et qu'il existe une unique mesure μ_F telle que $(\mu_F|Q_n) = a_n$ pour tout $n \geqslant 0$ [6]. On a aussi

$$(\mu_F|\theta_X) = (\mu_F|\Sigma_{n>0} Q_n X^n) = \Sigma_{n>0}(\mu_F|Q_n) = \Sigma_{n>0} a_n X^n .$$

d'où la proposition.

a est en fait une algèbre de Banach pour le produit ordinaire des fonctions, de même le produit de convolution fait de C'une algèbre de Banach.

PROPOSITION 2. - L'application π , définie à la proposition 1, est un isomorphisme d'algèbre de Banach entre α et α .

Il reste à montrer que $\pi(F_{\bullet}G) = \mu_F * \mu_G$, donc que, pour tout $X \in \mathcal{B}$,

$$(\mu_{\mathbb{F}} \star \mu_{\mathbb{G}} | \theta_{\mathbb{X}}) = (\mathbb{F} \cdot \mathbb{G})(\mathbb{X}) = \mathbb{F}(\mathbb{X}) \mathbb{G}(\mathbb{X})$$

or

 $(\mu_F * \mu_G | \theta_X) = (\mu_F \otimes \mu_G | \tilde{\theta}_X) , \text{ où } \tilde{\theta}_X(x, y) = \theta_X(x + y) = \theta_X(x) \theta_X(y) ,$ donc $(\mu_F * \mu_G | \theta_X) = (\mu_F | \theta_X)(\mu_G | \theta_X) = F(X) G(X) ; \text{ d'où la proposition.}$

PROPOSITION 3. - On a la formule suivante :

$$(\mu \star \nu|_{\psi_{\mathbf{n},\mathbf{h}}}) = \Sigma(\mu|_{\psi_{\mathbf{k},\mathbf{h}}})(\nu|_{\psi_{\mathbf{j},\mathbf{h}}})$$

la sommation étant étendue aux indices k et j tels que $0 \le k$, $j \le p^h$ et $|k+j-n| \le p^{-h}$.

Soient F et G les images de μ et ν par π^{-1} . On a

$$F(X) = \sum_{k=0}^{h-1} (\mu | \psi_{k,h}) (1+X)^k + (1-(1+X)^p)^h) F_h(X) \text{ , où } F_h \in \mathfrak{A} \text{ et } \|F_h\| < \|\mu\| \text{ ,}$$

$$G(X) = \sum_{j=0}^{p^{h}-1} (v|\psi_{j,h}) (1+X)^{j} + (1-(1+X)^{p^{h}}) G_{h}(X) , \text{ où } G_{h} \in C \text{ et } ||G_{h}|| \leq ||v|| .$$

(pour la démonstration, cf. [3] ou [5].) On a alors

$$(F_{\bullet}G)(X) = \sum_{n=0}^{p^{h}-1} \sum_{j,k} (\mu | \psi_{k,h}) (\nu | \psi_{j,h}) (1 + X)^{n} + (1 - (1 + X)^{p^{h}}) R_{h}(X)$$

la deuxième sommation porte sur j et k tels que $0 \le k$, j $< p^h$ et $|k+j-n| \le p^{-h}$, $R_h \in \mathfrak{A}$, et $||R_h|| \le ||F|| \cdot ||G||$. On remarque, en effet, d'une part que

$$(1 + X)^{p^{h+m}} = (1 + X)^{m} - (1 - (1 + X)^{p^{h}})(1 + X)^{m}$$

et d'autre part on a le lemme suivant :

LEMME. - Soit
$$F \in \mathcal{C}$$
, soit $\mu_F = \pi(F) \in \mathcal{C}$. Soit $F_h(X) = \sum_{j=0}^{p^n-1} b_{j,h}(1+X)^j$.

Pour que l'on ait $b_{j,h} = (\mu_F | \psi_{j,h})$ pour $0 < j < p^h - 1$, il faut et il suffit qu'il existe une application g_h de g_h dans g_h telle que

$$|F(X) - F_h(X)| \le |(1 - (1 + X)^{p^h})g_h(X)|$$
.

Sill en est ainsi $g_h \in \alpha$, et $\|g_h\| \le \|F\|$.

Pour la démonstration, voir [3].

On conclut alors, avec le lemme, que

$$(\mu \star \nu|\psi_{n,h}) = \sum (\mu|\psi_{k,h})(\nu|\psi_{j,h})$$

la sommation portant sur k et j tels que $0 \leqslant k$, $j < p^h$ et $|k+j-n| \leqslant p^{-h}$. La proposition 3 est démontrée.

2. Construction d'une mesure à densité.

Soient $M^+ = \{x \in Z_p ; x = p^n , n > 0\}$, $M^- = \{x \in Z_p ; x = -p^n , n > 0\}$, $M = M^+ \cup M^-$. Soit f l'application de Z_p dans C_p , définie par

$$f(x) = 0$$
 si $x \notin M$, $f(x) = 1$ si $x \in M^+$, $f(x) = -1$ si $x \in M^-$.

Nous allons montrer le résultat suivant :

THEORÈME 1. - Il existe une mesure à densité sur Z_p , μ , telle que, pour tout $x \in Z_p$,

$$\lim_{h\to +\infty} (\mu | \psi_{x,h}) = d_{\mu}(x) = f(x)$$
.

Considérons la quantité suivante : $D(x , \ell , h) = \sum_{i} f(p^{i}) + \sum_{j} f(-p^{j})$ les sommations portant sur les indices i et $j \in N$ tel que $1 \le i$, $j \le \ell$, $p^{i} \in \mathcal{B}(x , h)$ et $-p^{j} \in \mathcal{B}(x , h)$. Montrons que $\lim_{\ell \to \infty} D(x , \ell , h)$ existe pour tout $x \in \mathbb{Z}_{p}$. Si $0 \notin \mathcal{B}(x , h)$, il n'y a qu'un nombre fini d'indices k tels que p^{k} ou $p^{-k} \in \mathcal{B}(x , h)$, donc $D(x , \ell , h)$ est stationnaire pour ℓ assez grand. En particulier, si $x = +p^{n}$ ou $-p^{n}$, alors

$$\lim_{\ell \to +\infty} D(x, \ell, h) = +1$$
 ou -1 $(n < h)$,

si $|x \pm p^n| < p^{-h}$ pour tout $n \in N$, alors

$$\lim_{\ell \to +\infty} D(x , \ell , h) = 0 .$$

Si $0 \in \mathcal{B}(x, h)$, tous les points p^n et $-p^n$ se trouvent dans $\mathcal{B}(x, h)$ pour n > h et, par conséquent,

$$\lim_{\ell \to +\infty} D(x , \ell , h) = 0$$

car $D(x , \ell , h) = 0$ pour $\ell > 1$. Posons $(\mu | \psi_{x,h}) = \lim_{\ell \to +\infty} D(x , \ell , h)$, il est clair que ceci définit une mesure sur $\mathcal C$. Montrons que cette mesure est à densité sur $\mathcal Z_p$. Il faut donc montrer que, pour tout $x \in \mathcal Z_p$, il existe $d_{\mu}(x)$ tel que

$$\lim_{h\to +\infty} (\mu \, \big| \, \psi_{x,h}) \, = \, \lim_{h\to +\infty} \, \lim_{\ell\to +\infty} \, \mathbb{D}(x \, , \, \ell \, , \, h) \, = \, \mathrm{d}_{\mu}(x) \, .$$

Si $x \notin M$, $x \neq 0$, il existe h_0 tel que, pour $h \geqslant h_0$, aucun point de M n'appartienne à $\mathcal{B}(x,h)$, donc, pour $h \geqslant h_0$, $\mathcal{D}(x,\ell,h) = 0$ et donc, dans ce cas, $\lim_{h\to +\infty} (\mu | \psi_{x,h}) = 0$. Si $x \in M$, il existe h_0 tel que pour $h \geqslant h_0$, x soit le seul point de M dans $\mathcal{B}(x,h)$, donc, pour $h \geqslant h_0$, $\mathcal{D}(x,\ell,h) = 1$ ou -1, et donc

 $\lim_{h\to +\infty} (\mu | \psi_{x,h}) = 1$ ou - 1 suivant que $x \in M^+$ ou M^- .

Si x = 0, alors $(\mu | \psi_{x,h}) = 0$ pour tout h, et donc

$$\lim_{h\to +\infty} (\mu | \psi_{X,h}) = 0.$$

On a donc bien montré que μ est à densité sur \underline{Z}_p et que $d_\mu = f$.

THEORÈME 2. - Soit μ la mesure définie au théorème 1. $\mu * \mu$ n'est pas à densité en 0.

En effet,

$$(\mu \star \mu|_{\psi_{0,h}}) = \sum (\mu|_{\psi_{k,h}})(\mu|_{\psi_{j,h}})$$

la sommation portant sur k et j vérifiant $0 \le k$, $j < p^h$ et $|k+j| \le p^{-h}$; donc

$$(\mu * \mu | \psi_{0,h}) = \sum_{0 \le k \le ph} (\mu | \psi_{k,h}) (\mu | \psi_{ph-k,h}) + (\mu | \psi_{0,h})^2 .$$
Si $k \ne p^n$ $(n < h)$, alors

$$(\mu | \psi_{k,h}) = (\mu | \psi_{p,h-k,h}) = 0 \text{ si } k = p^n$$
,

alors $(\mu|\psi_n) = -(\mu|\psi_{h-n}) = 1$, donc $(\mu * \mu|\psi_{0,h}) = -2h$. Or 2h n'a pas de limite p-adique lorsque h tend vers $+\infty$, donc $\mu * \mu$ n'est pas à densité en 0.

COROLLAIRE. - Les mesures à densité ne forment pas une sous-algèbre de convolution de C.

BIBLIOGRAPHIE

- [1] AMICE (Y.). Interpolation p-adique, Bull. Soc. math. France, t. 92, 1964, p. 117-180 (Thèse Sc. math. Paris, 1964).
- [2] AMICE (Y.). Mesures p-adiques, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 6e année, 1964/65, exposé nº 16, 6 p.
- [3] BARSKY (D.). Mesures p-adiques et prolongement analytique, Thèse Sc. math. Univ. Paris-7, 1974.
- [4] BARSKY (D.). Mesures p-adiques à densité, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 15e année, 1973/74, exposé nº 4, 6 p.
- [5] LAZARD (M.). Les zéros d'une fonction analytique. Paris, Presses universitaires de France, 1962 (Institut des Hautes Etudes Scientifiques. Publications mathématiques, 14, p. 47-76).

[6] SERRE (J.-P.). - Espaces de Banach p-adiques. - Paris, Presses universitaires de France, 1962 (Institut des Hautes Etudes Scientifiques. Publications mathématiques, 12, p. 69-85).

(Texte reçu le 21 juin 1974)

Daniel BARSKY 36 rue de Penthièvre 75008 PARIS