
DIAGRAMMES

M. C. GAUDEL

TH. MOINEAU
A theory of software reusability
Diagrammes, tome 23 (1990), p. 67-84
<http://www.numdam.org/item?id=DIA_1990__23__67_0>

© Université Paris 7, UER math., 1990, tous droits réservés.

L’accès aux archives de la revue « Diagrammes » implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=DIA_1990__23__67_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

DIAGRAMMES VOLUME 23

ACTES DES JOURNEES C . l_ . I . T .

(UNIV. PARIS 7, 27 JUIN—2 JUILLET 1989)

A THEORY OF SOFTWARE REUSABILITY

M.C. GAUDEL1 and Th. MOINEAU1-2

(1) Laboratoire de Recherche en Informatique (2) SEMA GROUP
Unité associée au CNRS UA 410 16 Rue Barbes

Bat. 490, Université Paris-Sud 92126 MONTROUGE
91405 ORSAY CEDEX FRANCE

FRANCE

Résumé :

La réutilisation du logiciel est un problème économique majeur et suscite de
nombreux travaux. La plupart des approches actuelles de la réutilisation sont
basées sur des méthodes empiriques, et aucune théorie formelle n'a encore été
proposée. Ce papier donne une définition formelle de la réutilisabilité, basée
sur des spécifications algébriques modulaires. Cette définition n'est pas to­
talement constructive, mais fournit une méthode pour trouver les composants
potentiellement réutilisables et prouver leur réutilisation. Finalement les rap­
ports entre réutilisation et hiérarchie sont examinés afin d'exploiter pleinement
la réutilisation avec des spécifications hiérarchiques.

Mots-clés : réutilisation, types abstraits algébriques, spécifications formelles,
modularité, PLUSS.

Introduction.

Software reusability is a topic of first practical importance. Most of the current ap-
proaches are based on empirical methods such as key words or descriptions in natural lan-
guage. For some spécifie fields there exist good libraries of software components, and the
description of the component is given in the terminology of the application area (mathemat-
ics, management, . . .) . However, there is no gênerai approach to this problem.

To reuse a pièce of software is only possible if what this pièce of software does is pré­
cise ly stated. It me ans that a spécification of this software component is available. In this
paper, we consider the case of software components which are formally specified using alge-
braic spécifications. We deal with the following problem : given a spécification SP* to be
implemented, and a spécification SP of an already implemented software component, is this

*This paper is a revised version of [GM 88].

r*çu 1* 30/03/1990

component reusable for the implementation of SP* ? Thus we are not considering reusabil-
ity of software design, or reusability of spécification (which are also important problems)
but reusability of code. A software component library should, at least, c on tain couples of
the form <formai spécification, pièce of codc>. Our claim is that the use of formai and
structured spécifications is fundamental for reusability. We define rigorously, in the case of
algebraic structured spécifications, the relations ais reusable for" and ais efficiently reusable
for* between two spécifications, the first one being already implemented. Moreover, it turns
out that thèse définitions fit well with the primitives of our spécification language.

We consider partial algebraic data types [GH 78,BW 82] and hierarchical spécifica­
tions [WPPDB 83]. The spécification language we use for our examples is PLUSS
[Gau 85,Bid 89a] which is based on the ASL primitives [Wir 83]. The first part of the paper
is a short présentation of thèse basic concepts. In part 2 we define, following [Bid 89b], the
semantics of the use of predefined spécifications. Part 3 is an informai introduction of our
définitions of reusability. Part 4 states precisely thèse définitions. Part 5 explores the rela-
tionship between reusability and hierarchy : several theorems are given which show that our
définitions are compatible both with the classical définitions of hierarchical spécifications
and with the practical aspects of software reusability.

Thus this paper suggests a criterion for software reusability which is theoretically
founded. This criterion is not completely constructive, but it provides a guideline to find
out reusable software components and prove their reuse. Moreover, the theorems of part 5
state how to exploit reusability in hierarchical spécifications.

1 Basic définitions.

A signature E = (S, F) consists of a set S of sort names and a set F of opération
symbols, for each of which a profile si . . . sn —> s n + i with Si G S is given.

À E-algebra A is a family (3^),^5 of carrier sets together with a family of partial
functions (fA)/eFi 8UCh t n a t t n e profiles of the opération names f G F coincide with the
profiles of the functions fA.

A (total) E-morphism </> from A to B is a family (<f>3)aes of (total) applications (f>9 :
sA —• 5B , such that for ail opération name (/ : « i . . . sn —• s) G F and ail objects a\ G
sA,... , ^ G sA the following holds : if fA[ai} . . . , a n) is defined then (f>9(f

A{aii.. . , a n)) =
fB{<f>»i{ai)y • • • » ^*»(an))- Two E-algebra A and B are isomorphic, written A ~ S, iff there
is an isomorphism (bijective E-morphism) between them.

TE b the well-known term-algebra. The interprétation tA of a term t in a E-algebra
A b specified by :

- if t = c E F, then tA = ^ / cA.
- if t = fti... tn) then tA =def fA[tA

t.. -,tA) provided that ail the interprétations tA

and f(tAi..., tA) are defined; otherwise tA is undefined.
ÏEuV ^ t n e free E-algebra of terms with variables in V.
PALG{£) is the category of the partial E-algebras with E-morphisms, PGEN(E) is the

category of finitely generated E-algebras (i.e. ail éléments of the carrier sets can be obtained
by the interprétation tA of a term t 6 TE)-

A spécification SP = (E, E) consists of a signature E and a set E of positive conditional
axioms on E : ¢1 A.. .A$ n ==> $ n + i , where $ t are either équations [ti = t?) or definedness
predicates D(t) where ii , ¢2 and t are terms of T^uv (a E-algebra A satisfies D(t) iflF tA is
defined for ail assignments of its variables).

68

PALG(SP) is the category of ail the models of SP (the E-algebras satisfying ail axioms
of E). PGEN[SP) b those of finitely generated modeb. Tsp b the initial model of
PALG(SP) and PGEN(SP). If A G PALG(SP)t IA b the unique E-morphbm IA :
Tsp —• A.

We use the abbreviation SP0 C SP for E0 C E (50 Ç S and F0 Q F) and E0 C E, We
write SP = SP0UASP for E = E0U AE (S = S0UAS and F = F0UAF) and E = E0UAE.
ASP b called an enrichment. Note that thèse définitions are purely syntactic (union of
présentations).

If SPQ C SP, we note C/ : PALG(Z) —• PALG(E0) the forgetful functor defined
by : suW = sA for s E S0 and / ^) = / A for / G F0. {/(A) corresponds to the E0-reduct
of A as defined in [WPPDB 83].

As mentioned in the introduction, we will deal with hierarchical spécifications denoted
by SP = SP0 + ASP (thb corresponds to the ENRICH construct of ASL).

2 Hierarchical models, implementations, realizations.

2.1 Hierarchical models.
As a preliminary to any study of reusability, it b necessary to define what b a correct

implementation of a spécification. Thb définition b dépendent on the semantics considered
for the spécifications, Le. the modeb associated with the spécification. There are several
approaches :

1. the modeb are those bomorphic to Tsp] such a semantics b called initial semantics.
2. the modeb are those bomorphic to the terminal algebra; such a semantics b called

terminal semantics.
3. the modeb are ail the modeb in PALG(SP)t such a semantics b called "loose"

semantics.
4. a loose semantics may consider only finitely generated modeb, those in PGEN(SP)

[WPPDB 83].
Loose semantics makes it possible to give a simple définition of implementations [SW 82] :

an algebra b an implementation of a spécification SP, if, via some forgetting, restriction and
identification, it b a model of S P.

However, loose semantics without hierarchy introduces trivial algebras among the mod­
eb : the solution b to start from some basic spécifications (such as booleans, naturals) with
initial semantics, and to consider enrichments of spécifications with hierarchical constraints.

Most of the time, it b convenient to consider finitely generated modeb : ail the values
are denotable by a term and thus are computable in a finite number of steps. Non finitely
generated modeb are sometimes useful, but as we are concerned with reusability, it seems
sound to choose finitely generated modeb : it means that the spécification of a software
component b supposed to mention ail the functions of thb components.

Thus we consider that the semantics of a spécification SP b a subclass of PGEN[SP)
noted HMOD(SP) of hierarchical finitely generated modeb, where the hierarchical con­
straints ensure that any model (implementation) of SP = SPQ-\-ASP restricts into a model
of SPo. More precbely the forgetful functor from SP into SPQ applied to a hierarchical
model of SP gives a hierarchical model of SP0.

Définition 2.1 The class of the hierarchical models of a spécification is :

69

- HMOD(SPQ) = {TSp0} if SP0 is a basic spécification (E0tE0).
- HMOD{SP) = {Ae PGEN{SP)\ U[A) G HMOD(SP0)} if SP is a hierarchical
spécification : SP = SP0 + ASP (U is the forgetful functor from PALG{T) into
PALG(E0)J.

HMOD(SP) b a full sub-category of PGEN(SP). The exbtence of initial or terminal
model b not ensured (Tsp b not always a hierarchical model [Ber 87]).

Of course, the class of modeb of a spécification dépends of its hierarchy; for instance :
HMOD((SPQ + A5Pi) + ASP2) C HMOD{SP0 + {ASPX U ASP2))

But the reverse b not always true. Thb will turn out to be quite important for reusability
aspects.

We do not restrict the class of modeb to minimally defined ones [BW 82]. It means
that an opération can be implemented in such a way that it b more defined than what b
specified. Thb seems interesting in the framework of reusability.

2.2 Realization.
As stated in introduction, we consider couples <spécification, program>t where the

program b correct with respect to the spécification. In the algebraic spécification framework
[EKMP 80,SW 82,BBC 86] it means that the program b a model of the spécification modulo
some forgettings, restrictions and identifications.

However, as soon as software b modular, we are concerned mainly with pièces of software
which use other pièces of software. For instance, a module implementing a spécification of
the sets of integers includes some code for the opérations insert and b-a-member, and uses
some already exbting implementation of the opérations on integers. Thus, given a structured
spécification SP = SP0 + ASP we call a "realbation" of ASP a pièce of software such that
when coupling it with a hierarchical model (implementation) of SPo, one gets a hierarchical
model of S P. In order to be reusable, a realbation of ASP must accept any model of SP0 :
no assumptions can be made on the implementation of SPo. Thb property b not only
important for reusability, but abo in large software projects where several programmers are
working concurrently on various modules.

Thèse considérations lead to the following définition :

Définition 2.2 A realization of enrichment ASP of SPQ is a functor A from
HMOD(SPo) into HMOD{SPQ + ASP) such that : VA0 G HMOD{SP0)> U{A{A0)) s
A0.

The class of réalisations of ASP on the top of SPQ is noted REALspQ[ASP).

As stated above, thb functor must be conservative. For instance, if SPQ b an imple­
mentation of the integers by 8 bits strings, A will provide an implementation of SP where
integers are implemented by 8 bits strings, not by 16 bits strings : for instance, there b no
recoding of the integers by the realization of the sets of integers.

Composition of réalisations works well :

Theorem 2.1 Let SPX = SP0 + ASPlt SP2 = S Pi + A5P 2 and ASP3 = ASPX U A5P 2 .
If Ai G REALsPoiASPx) and A2 G #£AL5 />1(ASP2) ; then A2 o Ai G

REALSPo{ASP3).

70

SPEC : NAT
USE :BOOL
SORT : Nat
OP : 0, s

+, *, fact, <
AXIOMS :

0 + y = y
s(x) + y = s(x + y)
0 * y = 0
s(x) * y = (x * y) 4- y
fact(0) = s(0)
fact(s(x)) = s(x) * fact(x)
0 < 0 = true
s(x) < 0 = fabe
0 < s(x) = true
s(x) < s(y) = x < y

WHERE :
x, y : Nat

SPEC : INT
USE :BOOL
SORT : Int
OP : zéro, suce, pred

+ , - , <
AXIOMS :

suce (pred (x)) = x
pred (suce (x)) = x
x -f zéro = x
x + succ(y) = succ(x -h y)
x + pred (y) = pred(x + y)
x — zéro = x
x - suce (y) = pred(x — y)
x — pred(y) = succ(x — y)
x < x = true
zéro < pred (zéro) = fabe
zéro < x = true

==> zéro < succ(x) = true
zéro < x = fabe

= > zéro < pred(x) = fabe
succ(x) < y = x < pred(y)
pred(x) < y = x < succ(y)

WHERE :
x, y : Int

Figure 1: NAT and INT spécifications

Proof : The forgetful functor Ï73 from ALG(SP3) into ALG(SP0) is equal to Ui o C/2

where Ux et U2 are the forgetful functors from ALG(SPX) into ALG(SPQ) and from
ALG{SP2) into ALG{SPX). Thus VA0 G HMOD(SP0) : c/3(A2 o Ax(Ao)) = Ux o
(L/2 o A2) o Ai(Ao) c- Ux o Ai(Ao) ^ AQ. D

It b important to note that there does not always exbt a realbation for a ASP. If
A S P removes some modeb from HMOD(SPQ)} assuming for instance some implementa­
tion choices of 5P0 , there exbt no realbation. However SP = SPQ -h ASP may hâve
hierarchical modeb, thus global implementations. The exbtence of a realbation means that
the implementation choices in A 5 P and in SP0 are completely independent.

3 What is reusability ?

3.1 Intuitive introduction.

SP, i p * SP[

SP ^ SP1

Figure 2: Scheme of reuse.

Thb part b an intuitive introduction to the formai définitions which are given in part 4.
Let us consider an example : suppose we hâve in a software components library a pro­

gram corresponding to the spécification INT of figure 1; we want to develop a program
corresponding to the spécification NAT of figure 1. Following our intuition and our expéri­
ence of programming, it b obvious that the code of INT b reusable for implementing NAT.
More precbely, BOOL, Nat, 0, s and < can be implemented by reusing INT.

In thb example, we notice that :
- a renaming b needed between INT and NAT;
- the axioms of INT and NAT are différent;
- INT provides functions which are not required by NAT;
- some functions required by NAT are mbsing in INT.
Thèse remarks lead to the scheme of figure 2 which shows that reusability of SP for SP1

w.r.t. a subsignature EJ. of E' implies the exbtence of two spécifications 5Pi and SP[such
that :

1. S Pi b an extension of SP : the mbsing functions (and possibly some hidden functions)
are added to SP : S Pi = SP + AS Pi. Practically speaking, a realbation of AS Pi
must be developed, since the reused program b only known by its spécification S P.

2. SP[b an enrichment of SP1 which b équivalent, modulo a renaming, to 5Pi. Thb
équivalence states the validity of the reuse of SP for SP1 and makes it possible to
hâve différent axioms in SP and SP\ as in example of figure 1. A more (and too)
restrictive définition of reusability could consider only syntactic renaming from 5Pi
to SPf.

3. Any model of SP[can be restricted via the forgetful functor to a model of SP* :
unnecessary functions of SP, and hidden functions are forgotten :

VA; G HMOD(SP[), [/'(A;) G HMOD[SF)
4. In order to ensure that sorts and opérations of EJ. are actually reused from SPt EJ.

must be a renaming of a subsignature of E.

However condition 3 b too restrictive in some cases : if we consider the example of
figure 1, implementing NAT by reuse of INT, the resuit of the forgetful functor b not a
(hierarchical) finitely generated model of NAT, since the négative integers are kept. Thus
we need a "stronger" forgetful functor than the classical one : by the way, it b a forg«t-
restrict functor in the sensé of [EKMP 80,SW 82]. Other problems arise if some functions
are more defined in SP than in SP*. Part 4 gives the corresponding définitions.

3.2 Reusability vs abstract implementation.
Reuse b a spécial, simpler case of abstract implementation of algebraic data types

[EKMP 80,SW 82,BBC 86]. In thb paper we are concerned by direct reuse. It means that
the "abstraction functions" of [BBC 86] or the "copy functions" of [EKMP 80] are just
identities, and that the "identify function" b no more necessary to get a model of SP'.

4 Reusability : définitions.
As mentioned above, we hâve a reusability définition in three steps : extension, équiva­

lence modulo a renaming, and forgeting-restricting. We study each of them successively.

4.1 Extension.
The extension phase consbts in giving an enrichment ASPi on the top of S P , which

must be realbable :

Définition 4.1 ASP is realizable on the top ofSP0 iff REALSPo(ASP) ^ 0.

Thb property b noted SPQ —• SP or SP = SP0 © A S P .

Remark.
REALsp0{ASP) b the semantics of the USE construct of the PLUSS spécification lan­

guage [Bid 89b]. PLUSS makes a dbtinction between the USE construct, which corresponds
to the modular structure of the software, and the ENRICH construct which expresses the
incrémental development of spécifications and which has the same semantics as in ASL.

SP = SP0 © ASP corresponds to the following construct in PLUSS :

SPEC : SP
USE : SP 0

A S P

Realbability b a transitive relation :

Theorem 4.1 J /SPi = SP 0© ASPX and SP2 = S P i © A S P 2 then SP3 = SP0 © (ASPX U
ASP 2) .

Proof : Let ASP3 = ASPi U ASP2. One can take Ax G REALSp0{ASPx) and
A2 G REALsp^ASPi). From theorem 2.1, A2 o Ai G REAX,SP 0 (ASP 3) , and thus
REALsr0{ASPz)ïQ. D

Note that HMOD(SP3) b generally différent from HMOD(SP2). SP2 and SP3 are
equal if they are considered as non hierarchical spécifications, but are différent as hierarchical
ones.

The définitions above does not cope with parameterization : A may perfectly take into
account some properties of the spécification SPo. It must not take into account properties
of the implementation of SPo. Parameterized spécifications and generic modules introduce
additional difficulties and are not considered in thb paper.

73

4.2 Equivalence of hierarchical spécifications modulo a renaming.

A renaming between two signatures Ei and E2 b a signature bomorphbm p : Ei —• E2

[EM 85]. Some authors define renamings as injective signature morphbms [Pro 82]. Since
we are interested in équivalence of spécifications, we consider bijective renamings. Signa­
ture renamings easily extend into term renamings, algebra renamings, and (hierarchical)
spécification renamings.

The classical notion of spécification équivalence b that SP and SP1 are équivalent iff
E = E' and Tsp ^ T$p'- For hierarchical spécifications, the définition b :

Définition 4.2 : hierarchical équivalence.
Two basic spécifications SPQ and SPQ are hierarchically équivalent iff Eo = EQ and

TSP0 — TSp£.
Two hierarchical spécifications SP = SPQ + A S P and S F = SPQ* + ASP / are hierar­

chically équivalent iff :
- SPQ and SPQ* are hierarchically équivalent
- AE = AE'.
- HMOD(SP) = HMOD{SPl).

Hierarchical équivalence b denoted by SP = SP*. It means that two hierarchical spéci­
fications are hierarchically équivalent iff they hâve the same (unfolded) signature, the same
hierarchy, the same hierarchical modeb. Only the axioms can differ.

Proposition 4.2 Let SP = SP0 + A S P and SP1 = SP'Q + ASP 1 . If SPQ = SP^, AE =
AE' and TSp0 s TSPi, then HMOD{SP0 + ASP) = HMOD{SPi

0 + ASP ') and thus
SPEESP*.

Proof : by induction on the hierarchy. D

From the définitions above, it cornes :

Définition 4.3 Two hierarchical spécifications SP and SP* are hierarchically équiva­
lent modulo a renaming p (SPp= SF) iff p(SP) = SP'.

4.3 Forget-restrict functor.

As noted above, we need a forget-restrict functor in order to get finitely generated
modeb of SP* (see fig. 2).

Définition 4.4 Let SP' C SP[two spécifications.
The forget-restrict functor V : PALG(SP[) —• PGEN{SP') is defined by :

• VA€ PALG{SP[),
V* G S', *vw =[IulAMsT»'). *U(A)

• V{fl8l...8n—>a)€F',

fvM(a ...a) = / fUlA)i*u->*») ^ / ^ K - A) ^ ^
' \ undefined otherwise

• V^ : A —• B, V(#) M the restriction ofU(<f>) to V(A).

(A)

74

As defined above, Iu{A) M th* unique morphism from Tsp' into U(A).

V(A) b the finitely generated part of U{A) with respect to E' [sv(A) = {a G sA\ 3t G
Tsp» y a = tA}). By the way, the sorts of S F are subsorts of those of SP[[FGJM 85]. It's
easy to prove that V b a functor from PALG(SP[) into PGEN(SP'), and that composition
of forget-restrict functors works well : if V2 b the forget-restrict functor from SP2 to SPi
and Vx b the forget-restrict functor from SPX to SP0 then Vi o V2 b the forget-restrict
functor from SP2 to SP 0 .

Besides, by définition, the forget-restrict functor restricts the domain of functions in such
a way that only finitely generated objects can be got as resuit.

4.4 Reusability.
We now put together the three steps and define reusability.

Définition 4.5 SP is reusable for SP1 w. r . t . a s ignature E'r modulo a renaming p
(SPp*-> SP'[E'r}) iff there exist two spécifications SPX and SP[such that :

[RI] SPi=SPeASPi.

[R2] SPip=SP[.

[R3] SI» C SPi.

[R4a] VA! G HMOD[SP'I), V'{A'i) G HMODiSF).

[R5] E ' r Ç E ' a n d / T 1 ^) C E .

where V is the forget-restrict functor from PALG{SP[) into PGEN(SF).

Note that in A'it some functions can be more defined than what b required by SP'. It
does not matter since HAfO-D(SP') b not limited to minimally defined modeb (as defined
in [BW 82]).

Définition 4.6 SP is efficiently reusable for SP' w.r . t . a s ignature E'r modulo a
renaming p (SP p^ SP'[E,

r]>/ iff there exist two spécifications S Pi and SP[such that :

[RI] SPi = SPeASPi.

[R2] SPip=SP[.

[R3] S F CSP[.

[R4b] VAi G HMOD(SP[), U{A'X) G HMOD(SF).

[R5] E'rÇE' andp-l(E'r)ÇZ.

where U' is the forgetful functor from PALG(SP[) into PALG{SPI).

The intuitive notion behind efficient reusability b that the carriers of SP are finitely
generated with respect to SP1 : there are no useless values.

75

At the practical level, our définition of reusability in three steps will resuit in spécifica­
tions of the form :

SPEC : A: F O R G E T . . .
(USE : SP

ASP^ RENAMING
E N D X

. I N T O

EJ. modulo a

U'(P(A2)) e

Note that X is an abstract implementation of SP' : HMOD(X) Ç HMOD{SP').

The second step (équivalence modulo a renaming) can be skipped : SPi and SP[can
be embedded in an unique but more complex spécification SP2 :

Theorem 4.3 SP is reusable (resp. efficiently reusable) for SP' w.r.t.
renaming p iff there exists a spécification SP2 such that :

[1] SP2 = SP®ASP2.

[2] SP1 C p(SP2).

[3] VA2 6 HMOD(SP2), V'{p{A2)) € HMOD^SP1) (resp.
HMODiSP1)).

[4) E*r Ç E' and p-l(Vr) Q E.

Proof : <= Take SPi = SP2 and SP[= p(5Ps).
=> Take SPi = (Ei ,£ i U p"l(£'j)). Since SPi p= SP[the axioms of SP[(renamed
by p~l) do not change the hierarchical models of SPi. •

This approach is less close to reality, but easier to deal with theoretically. Consequently,
in the rest of this paper we will consider reuses in two steps. Besides, we ignore renaming,
since it is only a matter of syntactic sugar. However, the results still hold in the case of reuse
with a renaming. Reusability and efficient reusability without renaming are noted <-* and
~ . We will dénote a spécifie reuse of SP for SP' by the scheme : SP —• 5PX V SP'\T?r},
and an efficient reuse by SP — SPi \ u 5P ' (E;] .

Properties.
- if SP is efficiently reusable for SP' w.r.t. EJ. then SP is reusable for SP' w.r.t.
- if SP —• SP' then SP is efficiently reusable for SP1 w.r.t. E.

El .

Example.
The following example illustrâtes thèse définitions. We consider four spécifications and

look at the relations of reusability between them.

SPEC : NAT1
USE :BOOL
SORT : Int
OP : 0, s, + , *
AX : ...

SPEC : NAT2
USE : BOOL
SORT : Int
OP : 0, s, <
AX : ...

SPEC : INT1
USE :BOOL
SORT : Int
OP : 0, s, p
AX : ...

SPEC : INT2
USE :BOOL
SORT : Int
OP : 0, s, p, <
AX : ...

76

The axioms are the classical ones and are omitted. The hierarchical models are :

- HM O D (N A T l) = {N} U {Z/nZ \neN}
- HA/OZ?(NÀT2) = {N}
- HM O D (I N T l) = {Z} U {Z/nZ \neN}
- HMOI>(INT2) = {Z}

Thus :
- NAT2 is efficiently reusable for NATl w.r.t. EBOOL U {{Int}, {0, s}).
- INT1 is reusable for NATl w.r.t. EBOOL U ({ / * * } , {0, a}).
- INT2 is reusable for NAT2 w.r.t. EBOOL U ({Int}, {0, s, < }) .
But :
- NATl is not reusable for NAT2 w.r.t. E B O O L U<{/nt} , {0, s}) . Since Z/2Z is a NATl

model for which there is no extension into JV, and JV" is the only model of NAT2.
- NATl is not reusable for INTl w.r.t. E B O O L U ({Int}t {0, s}) .
- NAT2 is not reusable for INT2 w.r.t. EBOOL U ({Int}, {0, s, <}>.

D

The reusability and efficient reusability relations are not symmetric (see NATl and INTl
above). This is not surprising as soon as we want integers to be reusable for the naturals
but not the reverse. The transitivity of thèse relations is discussed below.

5 Reusability, reuse and hierarchy.
Our formai définition of reusability is applicable only if it is compatible with the primi­

tives of most of the spécification languages. This part of the paper discusses the relationship
between reusability, reuse and hierarchy.

5.1 What about primitive spécifications ?
The first resuit we give is négative :

Fac t 5 .1 There exist spécifications SP and SP' such that SP = SP0 0 ASP and SP ^

5 J * [E r] (resp. SP ^ SP1^]) but SPQ <h SP*^Er n E0] (resp. SP0 <£> SF[Er n E0]J .

Counter-example : Consider the spécifications (hère SPQ is the spécification BOOL) :

SP
SPEC : NAT

USE :BOOL
SORT : Int
OP : 0, suce,

<
A X : . . .

SP1

SPEC : LIST
USE : NAT
SORT : List
OP : nil, cons, car

error
A X :

car (cons(n,l)) = n
car (nil) = error

SP1

SPEC : SPi
USE :BOOL
SORT : Nat, List
OP : 0, suce, error

nil, cons, car
AX

car (cons(n,l)) = n
car (nil) = error

SP is reusable for SP' wj.t . EJVAT, but SP0 is not reusable for SP4 w.r.t. EBOOL via SP\.
For the Ei-algebra Ai such that IntAl = N U {error} and {error < n) = true is a hierarchical
model of S Pi. But Ai is not a hierarchical model of SP' since U'{Ai) is not finitely generated with
respect to ENAT (cf. error).

77

n
This resuit seems surprising : if SP is reusable for S P , it seems tempting to reuse a

primitive part of SP for SP'. It is well known that as soon as we consider hierarchical
spécifications, hierarchy is of first importance. This resuit exemplifies this importance : one
may not modify the hierarchy, or ignore it, without care.

It is clear that, if it is possible to flatten the spécifications without modification of the
hierarchical models, there is no problem. However, fact 5.1 points out that reusability is not
generally transitive. Fortunately we will see in part 5.2 that reuse is nevertheless compatible
with hierarchy.

Our second resuit is a kind of symmetric one :

Theorem 5.2 If SP *-> S P [E r] (resp. SP ^ S P [E r] j and SP' = SP& © ASP1, then
SP «-• SP0[E r n 1¾] (resp. SP *v> SP*0[Er n E'Q}).

Proof : Btraightforward n

5.2 What about enrichment (efficient case).
Let us consider now the case when SP is efficiently reusable for SP* via 5 P i . What

can be done for implementing SP" = SP1 © AS F'?

Theorem 5.3 Reusability of enrichment.

HMOD[SP2)

Â

HMOD^SPi)

US

U[

-*HMOD(SP")
i

A

-^HMODiSP9)

Let SP, SPi and SP* be spécifications such that SP —• SPi \ u SP9 (SP is efficiently
reusable for SP' w.r.t. some E'r), and SP" a spécification which use SP' : SP" = SP' ©
ASP".

If Ex H AE" = 0, then SP2 =_SPX © A S P " and for ail realization A of ASP" on top
of SI", there exists a realization A of ASP" on top of SPX, such that the above diagram
commute, i.e. :

VAieHMOD[SPi)> V!ïoA{Ai)~AoU[{Ai)

Proof : See annex A D

This theorem is a gêneralization of the extension lemma given in [EM 85] for equational
spécifications and total, initial algebras.

Figure 3 shows the différence between the situations studied in fact 5.1 and theorem 5.3.
By the way theorem 5.3 deals with another kind of reusability : those of the realizations of
ASP". Moreover it shows that ASP" can be realized independently of the reuse done for
SP1.

5.1 :
SP!

SP

SPo

5.2 :

U

SP1

SPi

SP

U

5.3 :

SP1

î .
5P^

SPi

SP

tr

SP"

SP1

Figure 3: Situations of fact 5.1 and theorems 5.2 and 5.3

The proof of the theorem 5.3 is constructive : it shows how to get a realization of ASP"
on the top of SPi given a realization of ASP" on the top of SP' : just putting together the
carriers and the opérations of Ai (which is an implementation of SPi) and of A". Practically
it corresponds to putting together type déclarations and code of opérations.

This resuit is important : it allows to consider a program as a set of pièces, the bodies
of which can be replaced or developed in an independent way. For instance, let us suppose
that we hâve to develop the components below :

SPEC : L_NÀT
USE : NAT
SORT : List
OP : nil, cons,
A X : . . .

SPEC : NAT
USE :BOOL
SORT : Nat
OP : 0, suce, +, *, <
A X : . . .

and we already hâve programs implementing

SPEC : LJJATl
USE : NATl
SORT : List
OP : nil, cons, . . .
AX: . . .

SPEC : NATl
USE :BOOL
SORT : Nat
OP : 0, suce, <
A X : . . .

SPEC : NAT2
USE : BOOL
SORT : Nat
OP : 0, suce, +, *, <
AX : . . .

We know, from theorem 5.3, that it is possible to replace the NATl component by the
NAT2 component in L_NAT1, and to use L.NAT1 (with NAT2) to implement L_NAT. This
avoids to implement addition and multiplication on naturals.

Remark. The condition Si f~l AS" = 0 is essential; it is not a problem to satisfy it using

appropriate renaming of what is forgotten from SPi to SP1. D

79

SPEC : SET
USE : NAT
SORT : Set
OP : empty, insert, is-in
AX

(1) is-in(x,empty) = false
(2) x = y => is-in (x,insert (y,s)) = true
(3) x ^ y => is-in(x,insert(y,s)) = is-in(x,s)
(4) is-in(x,s) = true => insert(x,s) = s
(5) (is-in(x,s) = false) A (x < 0 = true)

=> insert(x,s) = insert(0,s)

(defun empty ()
•O)

(defun i s - i n (n set)
(member n s e t))

(defun insert (n set)
(i f (i s - i n n set)

set
(if(<=nO)

(insert 0 set)
(cons n set))))

Figure 4: A spécification and a (strange) realization of sets of naturals numbers.

5.3 What about enrichment (non efficient case).
It would be nice to extend the previous résulta to the non efficient reusability, unfortu-

nately the previous theorem is no more valid. For instance, let us consider the spécifications
NAT and INT of figure 1 and the spécification SET of the figure 4 (the last axiom looks
strange, but it is on purpose).

INT is not efficiently reusable for NAT; SET = NATeASET, but INT+ASET has no
hierarchical models since :

true = is-in(-1,insert(-1,empty)) from (2)
= is-in(-l,in8ert(0,empty)) from (5)
= is-in(-l,empty)) from (3)
= false from (1)

By the way, the problem is more fun dament al than it seems : suppose now that the
strange axiom (5) is removed. The LISP program of figure 4 is a correct (but strange)
realization of sets of natural numbers. However, it is no more the case if naturals are
replaced by integers. Then, the only way to get such a realization is to define a predicate
i s -a-nat and to add a check of this predicate in front of each function. Unfortunately,
the introduction of such predicates (i.e. subsorts) makes the reuse process much more
complicated.

Définition 5.1 Let SPQ C SP two spécifications which use a spécification BOOL of
booleans. A discriminant predicate between SP and SPQ, for s 6 S0, is an opération
(p9 : s —• Bool) € F such that :

VA e PGEN(SP), Va e sA
t pf(a) = i

If s G S\SQ, by convention, pA(a) = false^a £ sA.

true ifaesvW
false otherwise

80

gpec : SET-OF-NAT
use : NAT
sorti : Set
opérations :

empty : —• Set
insert : Nat x Set — • Set
is-in : Nat x Set — • Bool

axioms :
(1) D(insert(x,s))
(2) D(is-in(x,s))
(3) is-in (x.vide) = false
(4) x eq y = true

= > is-in(x,insert(y,s)) = true
(5) x eq y = false

==> is-in(x,insert(yJs)) = is-in(x,s)
(6) is-in(x,a) = true

= > insert(x,s) = s
where :

x, y : Nat
s : Set

end SET-OF-NAT

spec : SET-OF-NAT-EXTENDED
use : INT
sorts : Set
opérations :

empty : —• Set
insert : Nat x Set — • Set
is-in : Nat x Set — • Bool

axioms :

D(instrt(x}s)) = > pNat(x)
D(is-in(x,s)) => pNat(x)

* AE»
(1) PNat{x) => D(insert(x,s))
(2) pNat{x) => D(is-in(x,s))
(3) PNat{x) ==> is-in(x,empty) = false
(4) psat{x) A pNat(y)^ x eq y = true

= » i8-in(x,insert(y,s)) = true
(5) PNat{x) A PNat(y)A x eq y = false

=> is-in(x,in8ert(y,s)) = is-in(x,s)
(6) PNat(x)A is-in(x,s) = true

= » insert(x,s) = s
where :

x, y : Nat
s : Set

end SET-OF-NAT-EXTENDED

Figure 5: A example of extended enrichment.

R e m a r k .

A discriminant predicate is the characteristic function of the finitely generated part of

5V(J4) jf g p a n (j gpQ n a v e free generators C and Co (Co Ç C), the définition of the p,
predicates is straightforward :

" Ps{co) = ^ r u c f°r a l l constant (co : — • s) E CQ.
- P*Axi) = true A ... ApêK{xn) = true <=> pê[f0{xi... xn)) = true for ail (/0 :

si . . . s n — • s) e C0.
. p9(c) = false for ail constant (c : — • s) G C\CQ.
- PB(/(*! • •. Xn)) = false for ail (/ : a i . . . a„ — • s) e C\C0.
If it is not the case, the définition of thèse predicates is highly dépendent on the rest of

the spécification.
D

Déf in i t ion 5.2 : e x t e n d e d enr i chment .
Let PRQ C PRI be two présentations, ASP an enrichment of PRQ, such that E i f l A E =

0, and (pê)seSi the discrimant predicates between PRQ and PRi.
An extended enrichment of ASP from PRQ to PRi, is the enrichment ASP =

(A E , A Ï ? U P A E) where :

SI

• PAS W the set of axioms : D{f{xXi.. . ,x», . . . , i n)) ==> p.Jx») = true, for each
(f : s i . . . sn —• s) G AF and s< G S0.

• AÊ is obtained from AE by the following transformations : any axiom $ iA . . .A$n ==>
$ becomes : t\i[P**[xt) = true]A$i A. . .A$ r l = > ¢, wAcre fie x» arc ail the variables
of sort Si G SQ that occurs in the $y and $.

The P^E axioms express that the opérations of ASP, when S Pi is used instead of SPQ,
must be restrict ed to the parts of the sorts of S Pi which are finitely generated by EQ.
Similarly, the $ prémisses added to the axioms AE express that thèse axioms are valid on
thèse parts of the sorts.

Example .

The figure 5 shows how an enrichment SET-OF-NAT which uses NAT (cf. Figure l)
can be transformed into SET-OF-NAT-EXTENDED which uses INT, using the predicates
greater-or-equal-to-zero as psat and with PBOCÀ defined by : pBoot[x) = true iSx = true
or x = false.

It is important to note that we reuse INT for NAT : thus we get a spécification of sets
of natural numbers which uses INT. It is not a spécification of sets of integers.

We hâve a theorem similar to theorem 5.3 :

Theorem 5.4 Reusability of enrichment.

V"

V{

»HMOD(SF')

A

^HMODiSF)

HMOD[SP2)

A

HMOD(SPi)

Let SP, S Pi et SP' be spécifications such that SP —• SPX \ v SP' (SP is reusable
for SP* w.r.t. some E'T), and SP" = SP' © ASP", with Ex n AE" = 0.

Then 5P2 = S Pi 0 ASP", and for ail realization A E REALSp>{ASP"), there is a
realization"K G REALspl{ASP"), such that the diagram above commutes, i.e. :

VAi G HMOD(SPi), 72" oÂ(Ai) ~ A o V[{Ai)

Proof : See annex B D

Conclusions and further researches,
We hâve given a criterion for "efficient8 software reusability, and proved that this notion

of reusability fits well for hierarchical spécifications. We hâve introduced "non efficient
reusability" (such as integers for naturals) in order to be more permissive. However, the
results on this kind of reusability are slightly disappointing since they seem rather complex
to apply.

It is int ères tin g to note that non efficient reusability is not exactly what we hâve called
"direct reusability", and is a step forward implementation. Thèse résulte enforce our opinion
that the kind of reusability we are studying, i.e. code reusability using its spécification,
should be done on as-it-is bases whenever possible. This is quite cohérent with practice.

This study was devoted to structured spécification and modular programs. It is clear
that it must be extended to parameterized spécifications and generic programs.

Acknowledgement s.

Our thanks to Michel Bidoit and Gilles Bernot for numerous fruitful discussions and
friendly encouragements.

This work is partially funded by ESPRIT (Meteor Project) and by the PRC-Greco "Pro­
grammation et outils pour l'intelligence artificielle*. Th. Moineau's grant is funded by
Sema-Me tr a.

83

Références
[BBC 86] G. Bernot, M. Bidoit and C. Choppy, "Abstract implementation and

correctness proofs", in Proc. Srd STACS, Jan. 1986, Springer-Verlag
LNCS 210, Jan. 1986.

[Ber 87] G. Bernot, "Good functors ... are those preserving philosophy !", in Proc.
2nd Summer Conférence on Category Theory and Computer Science, Ed-
inburgh, Sept. 1987.
also LRI report No. 354, June 1987.

[Bid 89a] M. Bidoit, "Pluss, un langage pour le développement de spécifications
algébriques modulaires", Thèse d'Etat, Université Paris-Sud, Mai 1989.

[Bid 89b] M. Bidoit, "The stratified loose approach : A gêneralization of initial and
loose semantics", in Proc. lst Int. Conf. on Algebraic Methodology and
Software Technology, Iowa City, USA, May 1989.

[BW 82] M. Broy and M. Wirsing, "Partial abstract types", Acta Informatica,
No. 18, 1982.

[EKMP 80] H. Ehrig, H. Kreowski, B. Mahr and P. Padawitz, "Algebraic implementa­
tion of abstract data types", Theoretical Computer Science, Oct. 1980.

[EM 85] H. Ehrig and B. Mahr, "Fundamentals of algebraic spécification", Springer
Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.

[FGJM 85] K. Futatsugi, J.A. Goguen, J-P. Jouannaud and J. Meseguer, "Principles
of OBJ2", in proc. 12th ACM Symposium on Principles of Programming
Languages, Jan. 1985.

[Gau 85] M.-C. Gaudel, "Towards structured algebraic spécifications", ESPRIT'85
- Status Report, Part I, pp. 493-510, North Holland, 1986.

[GM 88] M.-C. Gaudel and Th. Moineau, "A theory of software reusability", In
Proc. ESOP'88, LNCS 300, Springer Verlag, 1988.

[GH 78] J.V. Guttag and J. J. Horning, "The algebraic spécification of abstract data
types." Acta Informatica, No. 10, 1978.

[Pro 82] K. Proch, "ORSEC : Un Outil de Recherche de Spécifications Equivalentes
par Comparaison d'exemple", Thèse de 3eme cycle, Nancy I, Dec. 1982.

[SW 82] D. Sanella and M. Wirsing, "Implementation of parametrized spécifica­
tions", Report CSR-102-82, Department of Computer Science, University
of Edinburgh.

[Wir 83] M. Wirsing, "Structured algebraic spécifications : a kernel language", Ha­
bilitation Thesis, Technische Universitât Mùnchen, Sept. 1983.

[WPPDB 83] M. Wirsing, P. Pepper, H. Partsch, W. Dosch and M. Broy, "On hierarchy
of abstract data types", Acta Informatica, No. 20, 1983.

