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OPERADIC DEFINITION OF NON-STRICT CELLS

by Cam ell KA CHOUR

Résumé

Dans [16] nous avons étendu le travail de Jacques Penon sur les 

co-catégories non-strictes en définissant leurs co-foncteurs non-stricts, 

leurs ©-transformations naturelles non-strictes, etc. tout ceci en util­

isant des extensions de ces "étirements catégoriques" que l’on a appelés 

"rc-étirements catégoriques" (n G N*). Dans cet article nous poursuiv­

ons le travail de Michael Batanin sur les co-catégories non-strictes [2] 

en définissant leurs co-foncteurs non-stricts, leurs co-transformations na­

turelles non-strictes, etc. en utilisant des extensions de son co-opérade 

contractile universelle K , i.e en construisant des co-opérades colorées 

contractiles universelles Bn (n G N*) adaptés.

Abstract

In [16] we pursue Penon’s work in higher dimensional categories 

by defining weak co-functors, weak natural (»-transformations, and 

so on, all that with Penon’s frameworks i.e with the "étirements caté­

goriques", where we have used an extension of this object, namely the 

"n-étirements catégoriques" (n G N*). In this article we are pursuing 

Batanin’s work in higher dimensional categories [2] by defining weak 

û)-functors, weak natural co-transformations, and so on, using Batanin’s 

frameworks i.e by extending his universal contractible co-operad K , 

by building the adapted globular colored contractible co-operads Bn 

(n  G N*).
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7.3 An application of the Nerve Theorem.

One of the fundamental but still conjectural properties of any theory 

of higher categories has to be the statement that n-categories as a totality 
have a structure of an (n -I- 1)-category. Or taking the limit : there must 

exist an »-category of «»-categories. This means that we should be able to 
define functors between «»-categories, transformations between such functors, 

transformations between transformations etc..

A difficulty here is that these functors and transformations must be as 

weak as possible, meaning that they are functors, transformations etc. only 

up to all higher cells. There are approaches to this problem which attempt 

to avoid the direct construction of higher transformations using methods of 

homotopy theory ([8, 12, 19, 22, 23]).
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Even though there are some serious advantages to such approaches 

I believe it is of fundamental importance to have a precise notion of n- 

transformation, especially for the so called algebraic model of higher category 

theory (see [2, 20, 21]) where an «»-category is defined as an algebra of a 

special monad or algebraic theory. The very spirit of these approaches, which 

I believe, coincides with Grothendieck’s original vision of higher category 

theory, requires a similar definition of higher transformations.

The first step in this direction was undertaken in [16], where I have 

introduced the globular complex of higher transformations for Penon co- 

categories. In this paper I construct such a complex for Batanin «»-categories. 

As it was shown by Batanin [3], Penon’s «»-categories are a special case of 

Batanin, so this work can be considered as a generalization of my previous 

work. The methods of this work, apply also to Leinster’s «»-categories which 
is a slight variation of Batanin’s original definition. I leave as an exercise 

for a reader interested in Leinster’s «-transformations to make the necessary 

changes in definitions.
In my paper I use the language of the theory of T -categories invented by 

A.Burroni [7] and rediscovered later by Leinster and Hermida [10,18]. I refer 

the reader to the book of Leinster for the main definitions. I also use the fol­

lowing terminology: weak «»-Functors are called 1-Transformations, weak <»- 

natural transformations are called 2-Transformations, weak «»-modifications 

are called 3-Transformations, etc.
A new technique is the use of 2-colored operads. This is reminiscent to 

the use of 2-colored operads in the classical operad theory to define coherent 

maps between operadic algebras. For this purpose I develop a necessary 

generalisation of Batanin’s techniques [2] to handle colored operads.
Batanin built his weak «»-categories with a contractible operad equipped 

with a composition system. I adopt the same point of view and construct 

a sequence of contractible globular operads with "bicolored composition 

systems" (called operation systems). Like in [2], these operads are initial in
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an appropriate sense. This property happens to be crucial for constructing the 

sources and targets of the underlying graphs of the probable Weak Omega 

Category of Weak Omega Categories.

In more detail the construction proceeds in 4 stages: one first constructs 

a co-oo-graph of operation systems, followed by a co-°°-graph of globular 

colored operads, which will successively lead to an oo-graph in the category of 

categories equipped with a monad, and finally to the oo-graph of their algebras. 

These algebras will contain all Batanin’s «-Transformations (n G N*). This 

work was exposed in Calais in June 2008 in the International Category Theory 

Conference [15].

In "pursuing stacks" [9] Alexander Grothendieck gave his own definition 
of weak omega groupoids in which he saw them as models of some specific 

theories called "coherateurs", and a slight modification of this definition led 

to a notion of weak omega category [20]. Thus in the spirit of Grothendieck, 

weak and higher structures should be seen as models of certain kinds of theo­

ries. Section 7 is devoted to showing, thanks to the Abstract Nerve Theorem 
of Mark Weber ([25]), that our approach of weak omega transformations can 

be seen also from the point of view of theories and their models. According 

to [1], our approach and that of Grothendieck seem to be very similar.

In a forthcoming paper I will show that this globular complex of higher 

transformations has a natural action of a globular operad. The contractibility 

of this operad will be studied in the third paper of this series. This will 

complete the proof of the hypothesis of the existence of an algebraic model 

of the Weak oo-Category of the Weak oo-Categories.
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1 Pointed and Contractibles T-Graphs

From here T =  (T,fi, rj) refers to the cartesian monad of strict °o-categories. 

Its cartesian feature permits us to build the bigategory Span(T) of spans. 

The various concepts in this article are defined in this bicategory, which is 

described in Leinster [18, 4.2.1 page 138]. In all this paper if C is a category 

then C(0) is the class of its objects (but we often omit "0" when there is no 
confusion) and C (l) is the class of its morphisms. The symbol := means "by 

definition is".

1.1 T-Graphs

A T -graph (C,d,c) is a datum of a diagram of <»-Gr such as

T (G) C G

T-graphs are endomorphisms of Span(r) and they form a category T-Gr 

(described in Leinster [18, definition 4.2.4 page 140]). If we choose G € 

<»-Gr(0), the endomorphisms on G (in Span(r) ) forms a subcategory of 

T-Gi which will be noted T -Gr<j, and it is well-known that T-Gxq is a 

monoidal category such as the definition of its tensor:

(C ,d ,c )0 (C V ,c O -:=  (T(C) X T(G)

and its unity object 1(G) = (G,J](G), Iq). We can remember that 1(G) is 

also an identity morphism of Span(T). The oo-graph G is called the graph of 

globular arities.
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1.2 Pointed T-Graphs

A T-graph (C,d,c) equipped with a morphism 1(G) A  (C,d,c) is called a 

pointed T -graph. Also we note (C,d,c .; p) for a pointed T -graph. That also 

means that one has a 2-cell 1(G) A  (C,d,c) of Span(T) such as dp =  rf(G) 

and cp =  1 a- We define in a natural way the category T-Grp of pointed 

T-graphs and the category T-GvPic of G-pointed 7-graphs: Their morphisms 
keep pointing in an obvious direction.

1.3 Contractible T-Graphs

Let (C, d, c) be a T -graph. For any k € N we consider 

Dk =  {(<x,P) € C(k) x C(k)/s(a) =  s(fi),t(a) =  t(l3) and ¿(ct) =  d((i)} 

A contraction on that T -graph, is the datum, for all k G N, of a map 

D * - ^ C ( * + 1) 

such that

•  s([a,p]k) =  a, t ( [a,  Ph) =  P,

• d([a,P]k) = 1 d(a)=d(P)-

This maps [,]* form the bracket law (as the terminology in [16]). A T-graph 

which is equipped with a contraction will be called contractible and we note 

(C, d, c; ( [, ]*)jteN) for a contractible T -graph. Nothing prevents a contractible 
T -graph from being equipped with several contractions. So here CT-Gr is a 
category of contractible T -graphs equipped with a specific contraction. The 

morphisms of this category preserves the contractions and one can also refer 

to the category CT-Grc where contractible T -graphs are only taken on a 

specific oo-graph of globular arities G.
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Remark 1 If (a,j3) € then this does not lead to c(a ) =  c(/3), but this 

equality will be verified for constant oo-graphs (see below) and in particular 

for collections with two colours (These are the most important T-graphs in 

this article). We should also bear in mind CT-Grp, the category of pointed 

and contractible T-graphs resulting from the previous definitions. A pointed 

and contractible T -graph will be noted (C,d,c\ ([,]*)*eN>p)- □

1.4 Constant OO- Graphs

A constant °°-graph is a «»-graph G such as Vn,m s N  we have G(n) — 

G(m) and such as source and target maps are identity. We note °°-Grc the 
corresponding category of constant oo-graphs. Constant «»-graph are important 

because it is in this context that we have an adjunction result (theorem 1) that 

we used to produce free colored contractibles operads of n-Transformations 

(n € N*). We write T-Grc for the subcategory of T -Gr consisting of T -graphs 

with underlying oo-graphs of globular arity which are constant °°-graphs, 

T -GrC)P for the subcategory of T -Grp consisting of pointed T -graphs with 

underlying oo-graphs of globular arity which are constant oo-graphs, and we 
write T -Grc p G for the fiber subcategory in T-Grc p (for a given G in oo-Grc).

2 Contractible T-Categories

2.1 T-Categories

A T -category is a monad of the bigategory Span(r) or in a equivalent way a 

monoid of the monoidal category T-Grc (for a specific G). The definition of 
T-categories are in Leinster [18, definition 4.2.2 page 140], and their category 

will be noted T-Cat and that of T -categories of the same oo-graph of globular 

arities G will be noted T-Cate- A T-category (B , d, c; y,u) E T -Cat is specifi-
y

cally given by the morphism of (operadic) composition (B,d,c)<Q(B,d,c) —»•
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(B,d,c) and the (operadic) unit 1(G) A- (B,d,c) fitting axioms of associa­

tivity and unity [see 18]. Note that (B,d,c,y,u) has (B,d,c;u) as natural 

underlying pointed T -graph.

2.2 Contractibles T -Categories and the Theorem of Initial 

Objects

A T -category (B,d,c,y,u) will be said to be contractible if its underlying 

T-graph is contractible. To specify the underlying contraction of contractible 

T -categories we eventually noted it (B,d,t",y,u, ([,]/t)*eN)- The category 

of contractible T-categories will be noted CT-Cat, that of contractible T- 

categories of the same «»-graph of globular arities G will be noted CT-Cato- 

We also write CT-Catc for the subcategory of CT-Cat whose objects are 

contractible T-categories whose underlying °°-graph of globular arities is a 

constant oo-graph. Besides there is an obvious forgetful functor

CT-CatC)c T-Grc p£

and there is the

Theorem 1 (Theorem of Initial Objects) O has a left adjoint F: F -\0.  □  

P r o o f  The first monad (L, m ,/), resulting from the adjunction

r-CatC)G c 1 * r-GrCiP)G
M

and the second monad (C,m,c), resulting from the adjunction 

CT-&rc p G c 1 > T-Grc/)(j
H

are built as in [2];
The hypotheses of the section 6 are satisfied because the forgetful functors 

U and V are monadic, T -CatC)g and CT-GrC)P!c have coequalizers and N- 
colimits and it is easy to notice that the forgetful functors U and V are faithfull

- 2 7 7 -
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and preserve N-colimits as well. Thus this two adjunctions are fusionable 

which permits, through theorem 2, to make the fusion

r-C atc?G 1  ̂T-Gtc, p, G .< . CT-GvC p^Q
M l V

Cr-Catc g

where trivially

C r - C a t C j G  —  T-C&tc,G x  t-Gtc p q CT-GvC p Q ^

The monad of this adjunction F H O is noted B = (B,p,b).

Remark 2 We can also prove that the forgetful functor

CT-Catc A  T-Grc,p

has a left adjoint. A way to prove it is to extend the work of [6] on "Surcate- 

gories", and it is done in [13]. But it seems that this result is too much strong 

for this article where we use no more than 2 colours. However we will use 

this adjunction for a future paper, after the talk [17] where we need to use 

more than two colors. □

2.3 T-Categories equipped with a System of Operations

Consider (B,d,c\y,u) 6 T-Catc and (C,d,c) € T-Gtq. If there exists a 

diagram of T-Gtq

(1(G), no,id) —  (C,d,c) (B,d,c)

such as &o p = u, then (C,d,c) is qualified system of operations, and one can 

say that (B,d,c;y,u) is equipped with the system of operations (C,d,c). With 
this definition and the previous theorem it is clear that all pointed T-graphs 
(C,d,c;p) induces a free contractible T-category F(C), which has (C,d,c) 

as a system of operations. See also section 3.
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3 Systems of Operations of the «-Transformations

(n e  W)

3.1 Preliminaries

The 2-coloured collection of the «-Transformations (« 6 N*) are just noted Cn 

without specified its underlying structure, and we do the same simplification 

for its free contractible 2-coloured operads Bn.

From here on only the contractible 2-coloured operads of «-Transformations 

will be studied. All these operads are obtained applying the free functor of 

the theorem 1 to specific 2-coloured collections. These 2-coloured collections 

will be those of the «-Transformations and they count an infinite countable 

number of elements. Thus for each « € N there is the 2-coloured collection of 

«-Transformations, C", which freely produces the free contractible 2-coloured 

operad Bn of «-Transformations. The pointed collection C° is the system 

of composition of Batanin’s operad of weak «»-categories, i.e. the collec­

tion gathering all the symbols of atomic operations necessary for the weak 

oo-categories, plus the symbols of operadic units (the latter are given by point­

ing). The pointed 2-coloured collection C1 is adapted to weak «»-functors, 

i.e. it gathers all the symbols of operations of the source and target weak «»- 

categories (which will be composed of different colours whether they concern 

the source or the target). It also brings together the unary symbols of functors 
as well as the symbols of operadic units. Thus as we will see, the unary 
symbols of functors have a domain with the same colour as the domains and 

codomains of the symbols of operations of source weak °°-categories and they 

have a codomain with the same colour as the domains and codomains of the 

symbols of operations of target weak «»-categories. However these symbols 

of functors have domains and codomains with different colours. The pointed 

2-coloured collection C2 is adapted to weak natural «»-transformations, etc.
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3.2 Pointed 2-Coloured Collections Cn(n € N)

In order to clearly see the bicolour feature of these symbols of operations, 

we write (1 +  l)(n) := (l(n),2(n)}, which enables to identify r ( l)U T ( l)  

with T( 1 ) U T(2) and 1 U 1 with 1 U 2. So the colour 1 and the colour 2 will 

be referred to. Let us move to the definition of Cn(n € N). In the diagram

r ( i ) u r ( 2 ) ^ - c " - £-*■ iu 2

C" is a oo-graph so that it contains both source and target maps which will be
^m+1

noted Cn(m +1) ” i  Cn(m) , (m € N).tm+1 
m

3.2.1 Definition of C°

C° is Batanin’s system of composition, i.e. there is the following collection 

r ( l )  1 such as C° precisely contains the symbols of the composi­

tions of weak «»-categories fl™ € C°(m)(0 < p < m), plus the operadic unary 

symbols um € C°(m). More specifically:

Vm G N, C° contains the m-cell um such as: (um) - 1™_l (um) =  um-\  
(if m > 1 )-,d°(um) = 1 (m)(= 7](1 U2)(l(m))), c°(um) - l(m).

Vm € N — {0,1}, V/7 € N, such that m >  p,C° contains the m-cell ju™ such 

as: = I f 0 < p < m - 1 ,

C-iW) = C-i W  = Mr'- Also = H"1)*" !W. and
inevitably c°(yÇ) — l(/n).

Furthemore C° contains the 1-cell jU<] such as «¿(/ig ) =  ̂  (Hq ) =  uq, d°(nQ ) = 

1(1) 1(1), also inevitably c°(jUQ) =  1 ( 1 ).

The system of composition C° has got a well-known pointing A0 which is 
defined as Vm G N, A°(l(m)) =  um.

- 2 8 0 -
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3.2.2 Definition of C

Firstly we will define a collection (C,d,c) which will be useful to build the 

collections of «-Transformations (n € N*). C contains two copies of the 

symbols of C°, each having a distinct colour: The symbols formed with the 

letters n  and u are those of the colour 1, and those formed with the letters v 

and v are those of the colour 2. Let us be more precise:

V/w G N, C contains the m-cell um such as: =  t™_x(um) =  um-\  (if

m > 1) and d(um) = 1 (m), c(um) — 1 (m).

Vm G N — {0,1}, V/? G N, such as m> p,C  contains the m-cell ju™ such as: 

If p = m —\, $£_,(/#_,) =  C -iO C -i)  If 0 < p < m — 1,

ij-iW=c-i w = Als° dw =i(w)*p i(m)’ c(np)=
l(m).

Furthemore C contains the 1-cell jUq such as Sq(jUq) =  ^(Mo) =  Mo and 

=  l(l)*o 1(1)» c(Mo) =  1(1)-

Besides, Vw G N, C contains the m-cellule vm such that: s™_x(vm) =  

C-1 (v"i) =  Vm-1 (if m > 1) and d(vm) = 2(m), c(vm) =  2(m).

Vm G N — {0,1}, Vp G N, such that m >  p ,C  contains the m-cell v™ such 

as: Ifp  =  m - l , ^ _ 1(vjJ_1) = /^ _ 1(v*_1) =  vm_i. I f 0 < p < m - 1 ,

C - d W  = C - i W  = v r 1- Also ) = 2(m)**f 2(m), c(v£) = 
2(m).

Furthemore C contains the 1-cell Vq such as So(vo) =  fo (vo) =  vo and 
rf(v(})=2(l)*‘ 2(l),c(v i) =  2(l).

3.2.3 Definition of C‘(i =1,2)

C1 is the system of operations of weak oo-functors. It is built on the basis of 

C adding to it a single symbol of functor (for each cell level) :Vm G N the Fm
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m-cell is added, which is such as: If m >  1, sr£_ l (Fm) = t™_x (Fm) = Fm~l. 

Also d^(Fm) =  1 (m) and cx{Fm) = 2(m).

C2 is the system of operations of weak natural °°-transformations. C2 is 

built on C, adding to it two symbols of functor (for each cell level) and a 
symbol of natural transformation. More precisely

V/n € N we add the m-cell Fm such as: If m > 1, (Fm) =  t™_l (Fm) = 

F m_1. Alsod2(Fm) = 1 (m) and c2(Fm) = 2(m).

Then Vm € N we add the m-cell Hm such as: If m > 1, =

C - t (Hm) = Hm~l. Also d2(Hm) = 1 (m) and c2(Hm) = 2(m).

And finally we add 1-cell T such as: Sq(t) — F° and t)  =  H°. Also 

d2(t) = 11(0) and c2(t) =  2(1).

We can point out that the 2-coloured collections Cl (i = 1,2) are naturally 

equipped with a pointing X1 defined by A '(l(m)) =  um and Xl(2{m)) =  vm.

3.2.4 Definition of C" for n > 3

In order to define the general theory of «-Transformations (n £ N*), it is neces­

sary to define the systems of operations C" for the superior «-Transformations 

(n > 3). This paragraph can be left out in the first reading. Each collection Cn 

is built on C, adding to it the required cells. They contain four large groups 

of cells: The symbols of source and target weak «»-categories, the symbols of 

operadic units (obtained on the basis of C), the symbols of functors (sources 

and targets), and the symbols of «-Transformations (natural transformations, 
modification, etc). More precisely, on the basis of C:

Symbols of Functors Vm e  N, C” contains the m-cells (Xq and (i™ such as:

If m > 1 .C - ,  W ) = C - l ( « o )  =  “T 1 “ l i - i W )  = ' ”- , « ■ )  =
Furthermore d"(a^) = dn(^Q) =  1 (m) andc"(ag») = cn(P$l) =

2 (m).
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Symbols of the Higher «-Transformations Vp, with \ < p < n  — I, Cn con­

tains the /7-cells ap and pp which are such as: \/p, with 2 < p < n — 1, 

sp - i(ap) — sp-\{Pp) = 0Cp-i and tp_\((Xp) = =  Pp-i- If
p =  1,4 (« i)  - s&Pi) = «o and i<J(ai) =  »¿(ft) =  j3$. What’s more, 
\/p, with 1 < p < n — 1, dn(ap) =  dn(f3p) = 1°(1 (0)) and c"(ap) =  

c"(/3p) = 2(p). Finally Cn contains the n-cell E,n such as =

an-i,bZ_i ($,) = pn- i  and</"(£,) = 1°(1(0)) andc”(4„) =  2(n) (Here 

1® is the map resulting from the reflexive structure of T(l  U2). See 

[16]).

We can see that Vn 6 N*, the 2-colored collection C" is naturally equipped 

with the pointing 1 U2 (Cn,d,c) defined as Vm € N, A”(l(m)) =  um and 

Xn(2(m)) = vm.

3.3 The Co-oo-Graph of Coloured Operads of the 

«-Transformations (n e N*)

In order not to make heavy notations we can write with the same notation 

<5"+1 and k̂ +1, sources and targets of the co-oo-graph of coloured collections, 

the co-oo-graph of coloured operads, and the oo-graph in Mncf below. There 

is no risk of confusion. The set {C”/n  € N} has got a natural structure of 

co-oo-graph. This co-oo-graph is generated by diagrams

xn
n + l

Cn >  £n+ 1

<4-1

of pointed 2-coloured collections. For n > 2, these diagrams are defined 

as follows: First the (n +  1)-colored collection contains the same symbols 

of operations as Cn for the y-cells, 0 < j  < n — 1 or n + 2 < j  < °°. For 
the n-cells and the (n +  1)-cells the symbols of operations will change: C" 

contains the n-cell t,n whereas C"+1 contains the n-cells oc„ and j8„, in addition 

contains the (n +  l)-cell • If one notes C" — the n-coloured collection

- 2 8 3 -
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obtained on the basis of Cn by taking from it the «-cell then 5”+1 is 

defined as follows: 5"+1 \cn-$„ 0-e the restriction of 5"+1 to C" — E,n) is the 
canonical injection Cn — ^  Cn+1 and 5"+1 (^n) =  <xn. In a similar way 

K+\ is defined as follows: k£+1 |c„_^ =  5n"+1 \Cn_^ and < +1(£„) =  j8„. We 

can notice that 5"+1 and K̂ +1 keeps pointing, i.e we have for all n > 1 the 

equalities 5"+1A” =  A."+1 and K%+iXn = A"+1.

The morphisms of 2-colored pointing collections of the diagram

5? Si 5}
r° — r rl — r r2 — r r*

K-° r2*1 2 3

have a similar definition:

By considering notation of section 3.2, we have for all integer 0 < p < n  
and for all Vm € N:

“(#*£) =  Mp; =  «m; rf(Vp) = Vp; *?(«,„) =  vm.

Also: dji/ip) = ju"; 5»(««) =  «mi 52>(v^) =  v"; 5>(vm) =  vm; fi»(Fm) = 
Fm. And JcjGu") =  lip', k\  (um) = um; ^ ( v ”) =  v"; icj(vm) =  vm; 

k2 (Fm) =  Hm.

Finally: 532( ^ )  =  A# 532(«m) =  um; 8%{vnp) = v"; S2(vm) =  vm; 52(Fm) =  
off; 8%(Hm) = 8j(r) = a x. And >e2( ^ )  =  ft”; K$(um) = um; 

*3(vp) =  vp; *^(v«) =  vm, rcl(Fm) = aft; icf (tfm) =  j3^; jcf (r) =  f t.

The pointed 2-coloured collections C” (« € N*) are the sytems of operations 

of the «-Transformations. Each of them freely produces the contractible 2- 

colored operads Bn (« € N*). Each of these contractible operads is equipped 
with a system of operations given by the pointed 2-coloured collection Cn. 

These operads Bn are the operads of the «-Transformations (« £ N*) and are 
the most important objects in this article. They produce the monads Bn whose 

algebras are the sought-after «-Transformations (see section 4 below). Due to
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b(C")
the universal property of the unit b of the monad B, C” ------> Bn =  B(Cn), one

obtains the co-°°-graph B* of the coloured operads of the «-Transformations.

s? s' sr'
B°

*(c°)

C°

« * Bl — , -
K ?  A K¡ A

b(Cl ) b(C2)

51 3■ > c1 . > c2 ?

B>n— 1

1 n 
b(C )
, s r1 

Cn~\ —  -

■ Bn

b(cn)

kS~
cn

I "-2

The commutativity property of these diagrams is important for the consis­

tence of algebras (see section 4.5). In particular morphisms

5°
K °

B1

are obtain with the following way:
First we consider "morphisms of colors" (in the category of co-graphs)

1 1 U2

such as Vn £ N,i'i(l(n)) =  l(n) and i2(l(n)) =  2(n) 

Then we build for each j  € {1,2} the following diagram

( T ( i j ) x i j y ( B 1)
Uj0 J-

(Ac0)
7X1) x l

7

--------^ B 1

(¿V) 

r ( l U 2 )  x (1 U2)

where the right square is cartesian (we change the color of the operad Bx 

by pullback) and where the new operads (T(ij) x ij)*(Bl ) has a composition 

system and is contractible as well. So by universality, for each j  £ {1,2}, we 

get the unique morphism Uj and we write v\ou\  =5® and v’2 o «2 =  k .̂ Also 

it is not difficult to see the co-globularity property of the diagram

Bv Bl Bz

- 2 8 5 -
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4 Monads and Algebras of the «-Transformations

in  e N*)

Mnd is the category of the categories equipped with a monad, and Ad j  is the 

category of the adjunction pairs. These categories are defined in [16].

4.1 Monads Bn of the n-Transformations (n £ N*).
/*

If ̂  is a topos we shall note / B  —> / A  the pullback functor associated
/ Lf with an arrow A —> B of and *€/ A  — > ^ / B  the composition functor. We

have the usual adjunctions: £ /  H f*  H jtf, where it/ is the internal product
functor.

Each T -category produces a monad which is described in [18,4.3 page 150]. 

Hence Vn £ N*, the operad Bn of the n-Transformations produce a monad Bn 
on oo-Gr/1 U2. More precisely, if we note (Bn,dn,cn) its underlying T -graph 

we have: Bn := 'Lcn(dn)*T (where we put T(C,d,c) := (T(C),T(d),T(c))). 

A bicolour °°-graph g  4  1U 2 is often noted G because there is no risk of 

confounding. We can therefore write Bn(G) instead of Bn(g), and it will be 

the same for the natural transformations 5”-1 and k£_1 (see below) and we 

write Bn(G) := T(G) x 7’(]u2) Bn (implied Bn(g) = d 1 oit\) and the definition 

of B" on morphisms is as easy. Projection on T(G) x T(\u2 ) Bn are noted no 
and JC\ . The definition of 5° is similar.

4.2 The oo-graph of Mnd of Monads of n-Transformations
(n € N*)

p
Considering G —> 1 U 2 , a bicolour oo-graph. If we apply to it the monads Bn 
andfi"-1 we obtain the equalities dn7t\ = T(g)7Co,dn~lK\ = T(g)jCo. We also 

have dn~x =  dn8"~l (To remove any confusion on our abuses of notations, 

the reader is encouraged to draw corresponding diagram). Thus we have

- 28 6 -
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dnoS" l ojti = l T{lu2)°d n l oJCi = l T{lu2)°T(g)o7to = T (g )o lT{G)0 7Co. 
Hence the existence of a single morphism of o°-graph

T(G) x r d ^ g » - 1 5" '{?U t (G) x T(iu2)B"

such as 8%~]7T\ = n\8^~l (G) and TCo =  ^o5"_1(G). In particular we obtain 

the equality c"n\ 5"_ 1 (G) =  c"~ 17Ti. It is then easy to see that to each bicolour

«»-graph is associated the morphism (of oo-G/1 U2): Bn~l(G) —— Bn(G) 

(these morphisms are still simply called 8"~l (G)). It is very easy to see that
f i n — 1

the set of these morphisms produce a natural transformation Bn~l ——> Bn.

It is shown that 8"~l fits the axioms Mnrfl and Mnd2 of the morphisms of
5" - '

monads (these axioms are in [16]; particularly because Bn 1 -----> Bn is a

morphism of operads). Hence we get the morphism of Mnd

(oo-Gr/1 U 2,Bn) (oo-Gr/1 U 2,Bn~l)

c
Thus the morphisms of coloured operads Bn~x > Bn (n>  2), create nat-

O
&a~i

ural transformations Bn~l > Bn which fits into the axioms Mnrfl and
—  n i

Mnd2 of morphisms of monads. So we get the diagrams of Mnd(n > 2)

5" ~ ‘

(oo-Gr/1 U 2,Bn) = £  (oo-Gr/1 U 2,B "-1)

Similarly the morphisms i  b 1 produce two natural transformations
xf

8° K°
5°oi* -I* i[oB l, B °o i* -1* i*2oBx (if and i\ are the colour functors) which 

also fits Mtti/1 and Wbidl, which leads to the diagram of Mnd

8\
(oo-Gr/1 U 2,fi1) = 6 :  (oo-Gr/1 U 2, fi°)

*?

- 2 8 7 -
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It is generally appeared that the building of the monad associated to a T- 
category is functorial, so the diagram of "Mnd

(oo-Gr/1 U 2,Bn) (oo-Gr/1 U2,B‘) = S  (oo-Gr/1 U 2,B°)

is a «»-graph: The «»-graph B* in Mnd of the monads of the «-Transformations 

(« e N*).

4.3 The ©©-Graph of CAT of Batanin’s Algebras of 

»-Transformations (n 6 N*)

As in [16, § 4.3] we know that we have the functors 

Mnd A d j  —^  CAT

where A is the functor, which is linked with any monad, its pair of adjunction

functors and where D is the projection functor which associates X  with
G ^

any adjunction X  c 1 Y . So it is easy to see that Do A associates its
F

category of Eilenberg-Moore algebras to any monads. Particularly the functor 

Mnd CAT produces the following oo-graph of CAT

::::::::::£ Alg(Bn) ==S  Alg(Bn~l ) i  Alg(Bl) = £  A/g(B°)
Pit- 1 Pq

which is the oo-graph Alg(B°) of algebras of «-Transformations (n G N). It 

is the most important «»-graph of this article since it contains all Batanin’s 

«-Transformations (n <E N).

4.4 Domains and Codomains of Algebras

Let us remember the morphisms of Mnd: (C, T) ®̂'t\  (c1, Tr) are given by 

functors C ^ C ’ and natural transformations T’ o Q A  Qo T whose fits M«rfl 

and Mnd2. If we apply the functor Mnd — CAT to these morphisms, one

- 2 8 8 -
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can get the functor, Alg{T) —> Alg(T'), defined on the objects as (G,v) i— > 

(Q(G),Q(v) ot(G)). We can now describe the functors and j8"_j (n > 1):

• If n > 2 then Alg(Bn) Alg{Bn~x), (G,v) i—> (G,vo 5"_1(G)) 

and Alg(Bn) Algiff1- 1), (G,v) t—► (G ,vo t^~ l (G)).

• If n = 1 then Alg(Bx) A/g(fl°), (G, v) i— ► (ii(G),f[(v) o S^G)) 

and A /g ^ 1) A/g(fl°), (G,v) i— ► (^ (G ) ,/^ )  o JC?(G)).

4.5 Consistence of Algebras

As Penon’s [16], Batanin’s «-Transformations (n e  N*) are particular in that 

they describe the hole semantics of their domain and codomain algebras as 

follows: If we have an algebra (G, v) of «-Transformations, then a symbol 

of operation of the operad Bn which has its counterpart in the operad Bp 

(0 < p < ri) will be semantically interpreted similarly via this algebra (G, v) 

or via the algebra cr”(G, v) or the algebra /3"(G, v).

Remark 3 This terminology is taken from measure theory where different 

coverings of a measurable subset are measured with the same value by a 

determined measure, which makes sense to that measure. □

This is the simple consequence of the commutative property of diagrams in 

section 3.3 applied to a bicolour °°-graph.
So as to illustrate this property of consistence, let us take for example 

the symbol of operation Hm of the operad B2 (identified with b(C2)(Hm)). 

It will be semantically interpreted by an algebra (G,v) € A/g(B2) on a m- 

cell a € G(m) (of colour 1), similarly to how the Fm symbol of the Bl 

operad is interpreted by the target algebra ¡3f(G,v) E Alg(Bl). Indeed 

the equalities i =  lt\ (G) and K\b(Cx) =  b(C2)K\ immediately sug­

gests that: (a,Fm) i > (a,Hm) , then v(a,Hm) =  (vo jc](G))(a,Fm) =

- 2 8 9 -
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¡3f(G,v)(a,Fm), which expresses consistence. In short, we will say that 

Batanin’s algebras (as Penon’s algebras) are consistent.

5 Dimension 2

5.1 Dimension of Algebras

The dimension of Penon’s algebras is defined in [21] and in [16]. The 

dimension of Batanin’s algebras is totally similar, but we must precisely 

define the structures of the underlying oo-magmas of these algebras so as 

to have a reflexive structure. So we can note Bn x ^ ^  T(G) A  G a Bn- 
algebra i.e a weak «-transformation (n > 1). The two °°-magmas ([16]) 

of this algebra are defined as follows: ao "  j3 := v(ju^;*7(a) *np 'H(P)) and 

1 a v([«„,«„]; l,j(a)), if a,P  € Gin) and are with colour 1. Furthemore 

a o pP ■= v(v";Tj(a)*" r](p)) and \ a := v([v„,v„]; l n(a)), if a,/3 G G{n) 
and are with colour 2. Then (G,v) has dimension 2 if its two underlying 

«»-magmas has dimension 2. We have the same definition for fi°-algebras (i.e 

weak oo-categories).

5.2 The fi1 -Algebras of dimension 2 are Pseudo-2-Functors

Let (G, v) be a B1 -algebra of dimension 2. The B°-algebra’s source of (G, v): 

<Jq(G,v) =  (ij(G),ij(v) o 5®(G)) put on i](G) a bicategory structure which 

coincides with the one produced by (G,v) on i'i(G). In the same way, the 

B°-algebra target of (G, v): /3q (G, v) =  (/^(G),/^^) o jCj’(G)) put on 1 2(G) a 

bicategory structure which coincides with that one produced by (G, v) on 

»2 (G). All these coincidences come from the consistence of algebras, and 

so we can therefore make all our calculations merely with the fi1-algebra 
(G, v) to show the given below axiom of associativity-distributivity (that we 

call AD-axiom) of pseudo-2-functors. For other axioms of the pseudo-2-

- 2 9 0 -
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functors, which are easier, we proceed in the same way. Let Fm(m G N) be 

the unary operations symbols of functors of the operad B1. The B] -algebra 

of dimension 2 interprets these symbols into pseudo-2-functors. Indeed if 

x r ( i u 2 ) T(G) A  G is a f l 1-algebra of dimension 2 then we get: Vra G 

N, F(a) := v(Fm;r](a)) if a G G(m) (a has the colour 1), which defines a 

morphism of °°-graphs (G) —> i2(G) where i\(G) and i\{G) are bicategories. 

So we will show that this morphism F fits the AD-axiom of pseudo-2-functors. 
Let j c A y A z A i b e a  1-cellules diagram of i* (G), we are going to check 

that we get the following commutativity

F ( f l ) o » ( F ( * ) o » F ( c ) )

a(F(a),F(b),F(c)) '

( F ( « ) o > F ( f t ) )o > F (c )

d(a ,b)°oh(c)

F(a °o b) OqF(c) =

f W Jod(b,c)

d(ao^b,c)

■F(a) ol0F(bol0c)

d(a,bolQc)

F(ao 1 (¿ o ic)) 

F(a(a,b,c))

>F((aolb) ol0c)

where a (ft Oq c)â==> (a Oq b) O q  c  is an associativity coherence cell and

F(a) Oq F (b)d â’b̂ > F(a Oq b) is a distributivity coherence cell (particular to 

pseudo-2-functors). The strategy to demonstrate the AD-axiom is simple: We 

build a diagram of 3-cells of B1 which will be semantically interpreted by 

the B} -algebras of dimension 2 as the AD-axiom. To be clearer, the operadic 

multiplication of the coloured operad B1

-®1 x 7’(lU 2) T(Bl) B l

will be noted y, for each /-cellular level. Let the following 2-cells in Bl: 

d := fo C ;»?(F1) *b r\(F1) ) (F1; r ] ))];

«1 := to(MoW(Mo)*on(“i))m(/*o; n(«i)*o*7 W ) ] ;

-291  -

y

B>1

j [Ti (V 5ri (
’i

) * (F )) ;r (F
-I

?<(Ai ))]

aioh



KACHOUR - OPERADIC DEFINITION OF NON STRICT CELLS

« 2  •= [yi(vo;i7(vo)*oIi(vi)); )/i(vo;r?(vi)*oi7 (vo))] •

Remark 4 The operation symbol d is interpreted by the algebra as the dis- 

tributivity coherence cells of the pseudo-2-functors. The symbols a\ and az 

are interpreted as the associativity coherence cells, the first one for the weak 

«»-category source the second one for the weak «»-category target. □

Then we can consider the following 2-cells of Bx:

Pi = ^ ( v 2 ; r 7( [F 1; F 1] ) ^ r 7 ( i / ) ) ;

Pi =  Yi(d, !»}(«!) *o 

P3 =  '^ (F 2;T7(a1)); 

p4 = Yi{d\ l i j^ )  *o 

p5 =  ^(v^;r7 (rf)^r]([F 1;F 1]))

P6 =  ^ ( F 1) *0 ^ ( F 1) *0 ^ ( F 1))-

This 2-cells are the conglomerations of operation symbols that are interpreted 

by algebras as the coherence 2-cells of the diagram of the AD-axiom of 

pseudo-2-functors

» P1 M  

P6 P2

• □  •

P5 P3

;  p4

Then we consider the following 2-cells of Bx

Ai = ^ ( v 2;77(^(v2;i7(p2)*?77(pi)))*ii7(p6)); 

A/1=^(v2;7](p2)*2T7(^(v12;7?(pi)*?r] (p6))));

- 2 9 2 -
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A2 =  ^ ( v ? ;  7? (^(V!2; 77 (p3) 7] (p4))) 77 (p5)); 

A2 =  ^ (v ? ; r} (p 3)* ?r} (^ (v f ;J7 (p 4 )* i  7?(P5)))).

We can show that these 2-cells are parallels and with the same domain, so 

they are connected with coherences 3-cells 

01 =  [Ai,Aj], 02 =  [Aj,A2], ©3 =  [A2,Ay,

and the interpretation by B1 -algebras of dimension 2 of this 3-cells gives 

the AD-axiom of pseudo-2-functors.

5.3 The fi2-Algebras of dimensions 2 are Natural Pseudo- 
2-Transformations

Let (G,v) be a B2-algebra of dimension 2. The 5°-algebra source of (G, v): 
g 2(Oq(G,v)) =  (/J(G), ( vo52‘(G)) o(5[0(G)) put in i\(G) abicategory struc­

ture which coincides with the one produced by (G,v) on i\(G). In the 
same way, the fi°-algebra target of (G,v): /3,2(/3q(G, v)) =  (/2(G), i^vo  

*2(G))ok?(G)) put in i*2 (G) a bicategory structure which coincides with 

the one produced by (G,v) on /2(G). And the B} -algebra source of (G,v): 

<t2(G, v) =  (G, v o §2 (G)) produces a pseudo-2-functor F\ (see above) which 

coincides with the one produced by (G,v) i.e the one built with the «»-graph 

morphism i|(G) 1 2(G) defined as: F\ (a) := v(Fm\r\(a)) if a E i](G)(m). 

Besides the B1-algebra target of (G,v): j82(G,v) =  (G, vo »^(G)) produces 

a pseudo-2-functor H\ which coincides with the one produced by (G,v) 

i.e the one built with the oo-graph morphism i\(G) —̂  ^(G) defined as: 

H\(a) := v(Hm\r](a)) if a E i\(G)(m). All these coincidences come from 

the consistence of algebras, and we can therefore make all our calculations 

merely with the fl2-algebra (G, v) (without using its source algebra or its 

target algebra) to show the axiom below of compatibility with associativity- 

distributivity of natural pseudo-2-transformations (that we call CAD-axiom). 

Then let T be the unary operation symbol of natural transformation of the

- 2 9 3 -
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operad B2. This symbol is interpreted by the B2-algebras of dimension 2 

as natural pseudo-2-transformations. Indeed if B2 x r (lu2) T(G) A  G is an 
B2-algebra of dimension 2 then we write

Ti (a) := v(t; l^(a)), if a 6 G(0)(a has colourl),

We can see that it defines a 1-cells family Ti in i\ (G) indexed by i\ (G)(0) 

Fi._

~~hT

We are going to show that the previous family Ti fits the CAD-axiom of 
natural pseudo-2-transformations. For other axioms of natural pseudo-2- 

transformations, which are easier, we proceed in the same way. Let x - t y ^ - z  

be an 1-cells diagram of i\(G), we are going to prove that we have the 

following commutativity

Hi{b) o* (Hx(a) o> T| (x)) 

a(Hx(b),Hx{a), T , (x ))

(Hi (b) ©¿//] (a))ol0 T,(x)

d\{a,b)c>l\H(x)

H\(bola)olx\(x)

(o{bô a)

*1  (z) °o F\ (b Oq a) <=

H i(b)° l0(*i(y)°oFi(a))

a{H\ (b),T\ (y),F\ (a))

(^ i ( f t ) o ‘ T ,(y ) )o » F i ( fl)

i»(i,)o01F1(a)

(Ti(z) o ^ F i (b ) )  o ^ F i ( a )

a(Ti(z),Fi(b),Fi(a))

*i(z) °0 (Fi(b) °oFi(a))-

where in particular Hi (a) o]Q x\ (x )---- > Z\ (y) F\ (a) is a coherence cell

specific to natural pseudo-2-transformations. The strategy to demonstrate 

the CAD-axiom is similar to the previous demonstration (for the AD-axiom 

of pseudo-2-functors): We build a diagram of 3-cells of B2 that will be

-2 9 4 -
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semantically interpreted by the fi2-algebras of dimension 2 as the CAD-axiom. 

Like before operadic composition is

B2 x r(iu2) T(B2) —̂ ~ b 2

will be noted Ji for each /-cellular level. So we can consider the following 

2-cells of B2

® := [ri (vj ; Î7 ( ^  ) * 0  7̂ (T)) ; ri ( V(} ; n (t) Î? (F 1 ))] ;

dF :=  [ri(v,];i?(/r l ) * o n ( ^ 1)) ;7 i(^ 1;T7(ju0))]’

dH := [Yi(Vo'MH1)* lr i(H l )y,Yii.Hu,rj(i4))]i

a := [n (■vô ; n (vi ) *o v (vo )); n ( ^ Ti(vo)'kori (vi ))] ;

 ̂ := [ri ( V(J ; Î7 ( v,] ) TÎ (vi )) ; 71 (v,J ; TJ (vi ) TJ (v,] ))].

Then we consider the following 2-cells

Pi =Yz(vb'n{[Hl -,H1])*2 ri((0)y,

Pi = 'Yiifli *0 *0 ^ (F 1))’

P3 =  ^(v^;77(© )^r7([F1;F 1]));

Pa — Yiib’i 1îj(t) *o ^ ( f 1) *o ^ ( f 1))’

P5 =  t]) *2 ri(dF));

P6

P7 =  %(v̂ ;î ï(</)*§»7([t; t]));

P8 =  yi(a\ *o 1t7(//ï) *0

- 2 9 5 -
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We also consider one 2-cell p'5 built as follows:

SF := [yi(F1;r7(/i<J));y1(v(];i](F 1) ^ r i ( F 1))].

In that case we define

p5 = Th(v&V([r>*\)*oV(8F)).

These 2-cells are the conglomeration of operation symbols that are interpreted 

by algebras as the coherence 2-cells of the diagram of the CAD-axiom of 

natural pseudo-2-transformations

• = £ = > .

P2

• •

□  P3

• •

P4

• <- =  •
P5

To built the ten coherence 2-cells A, (1 < i < 10) below, which enables to 

conclude, we need the following additional 2-cells

©1 =^(vf;i](.^(v12;T](v12)*27?(V2)))*2T7(V2));

@ 2  =  % (v2; T] (fc (jU2; 7? (v2) rj (V2))) *2 T] (v2));

©4 = ' (̂v12;i7(v2)*?T7( (̂vf;i7(v2)*?n(v12)))); 

©5 = n(v12;77(v12)*?n(vf)).

The 2-cells A,(l < i < 10) are then defined in the following way 

Ai =  % (0 i; i? (p4) *i V (Pa) *i V (Pi) *i V (p i));

'8P

>7

'6P

- 2 9 6 -
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A2 =  ft (© 2; 1 (p4) * 1 V (Ps) *1 T? (P2) *1 n (Pi));

A3 =  ft (©3; n (p4) *1 (p3) * 1 V (P2) *1 r) (p i));

A4 =  ft (©4; (P4) * 1 H (P3) *1 V (p2) *1 r? (Pi));

A 5 =  f t  (© Si *7 (P 4 )  *1  V (P 3 ) *1  n  (P 2 ) *1  T? ( P i ))  •

We can note as well A =  77 (P5) t](p6) *j T](P7) *j T7 (ps). And consider 

A6 =  ft(€>i;A), A7 =  f t (0 2;A); Ag =  ft(® 3;A); A9 =  ft(©4;^); A10 =  

f t ( © 5 ; ^ ) -

We can prove that these 2-cells are parallels and with the same domain, 

so they are connected with coherences 3-cells: Q := [Aj;Ar-+i] (1 < i <  9). 

And the interpretation by 6 2-algebras of dimension 2 of these 3-cells gives 

the CAD-axiom of natural pseudo-2-transformations.

6 Fusion of Adjunctions

As we saw in theorem 1 we need to do the "fusion" of two monads to obtain a 

new monad, which inherits at the same time properties of these two monads. 

This monad is the contractible monoids monad B =  (B,p,b) of the theorem 1 

which permits us to build the operads of «-Transformations (n G N). The 

fusion between adjunctions require some hypotheses (see below) and naturally 

we shall see that our two adjunctions fill these hypotheses.

The following "fusion theorem" is a generalization of techniques used 

by Batanin in [2]. This theorem is going to be shown especially powerful 

because the required hypotheses are so simple. As a result the fusion product 

of two adjunctions is possible under conditions that we can often run into.

u ^
L e m m a  1 Let us consider the adjunction c T > SB such as has a co-

F

do
equalizer and U is faithful. Let the diagram B —  > U (C )  in then there

- 2 9 7 -
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is a unique morphism C A  Q of*# verifying U (q)do = U (q)d\ and which is

universal for this property, i.e if we give ourselves another morphism C -^ Q '
hofio such as U (q')do =  U (q')d\, then there is a unique morphism Q —tQ 'o f  

such as U(h)U(q) = U(ql). □

P r o o f  Given do, d\ the morphisms of which are the extensions of do and 

d\, and let us put do =  U (do) and d \= U  (¿1). Let us note C A  Q the co­

equalizer of do and d\. We get U(q)do = U(q)U(do)r\x = U(q)U(d\)r]x =  

U (q)d\. We can show that q is universal for this property. Let C -A Q[ 

another morphism of ̂  verifying U(q')do = U(q')d\ . So U(q')U (do)t]x =  

U(q')U(di)rjx, i.e U(q'do)r\x =  U(q'd\)i]x, Therefore we have c/do =  q'd\ _ _
with q =  coker(do,d\), which shows that there is a unique morphism Q —t 

of ̂  such as hq =  q' and also this morphism is unique such as U(h)U(q) =  
U (q>), because U is faithful. ■

u
Let the following adjunction be: (# , A) c T * (38, A) . It is fusionnable if

F
the following properties are verified:

• *€ has coequalizers and ^-colimits.

• 3B have pf-colimits.

•  U is faithful and preserves -colimits.

Remark 5 Here pf-colimits is the notation used in [6] for directed colimits. □  

Let us go to the fusion theorem.

u 3
Theorem 2 Let us consider the adjunction c T > 38 with monad (L, m, I),

M

v
and the adjunction Q) t T 38 with monad (C, m, c). We suppose that these

H

- 2 9 8 -
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adjunctions are fusionnable. In this case, if we consider the cartesian square 

o f categories

pi V

y *■ SB

then the forgetful functor x ^ 2# flS has a left adjoint: F H O. □

P ro o f  •  Let X  e  SB{0). At first, we are going to build by induction an 

object B(X) of SB and secondly we shall reveal that B(X) has got the 

expected universal property.

•  If n = 0 we give ourselves the following diagram of SB:

c„ -  x '° -= if ii.(C „ )^  ^  C ,' ^ i ( c , )

Thanks to the lemma, we obtain the morphism <j>i with the diagram

d \  = U j o ) = U ¥ o c o < b l o )

What allows to extend the previous diagram

c , — ci=c{Li)> c (l 0

And it allows again to obtain the morphism y/i

8o=ci<l>ihWo . . wi „
C(Lo) = = £  C{LX C2 

«i=c(*o)=c(#i/iVbco)

and thus to prolong once more the previous diagram

Ci — ±  L(Ci) —  Li C(L \) C2 — +  L(C2)

- 2 9 9 -
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We do an induction. We can suppose that up to the rank n we can build 

these diagrams. In particular we give ourselves the following diagram

Cn — V L(Cn) ^  2- C{Ln) Cn+1 - h i .  L(Cn+1)

where we especially note =  if/ncntynln. We are going to show that 

we can prolong this type of diagram in the rank n +  1. Thanks to the 

Lemma, we consider the morphism <j)n+ \

L(Cn) -
^ 1  — L ( jn ) — L (y/ncntynln)

what allows to prolong the previous diagram

/ - i  ^ i + l  t  / / - i  \  0 H + 1  r \
1 ---- ^n+l -------------------------------- *-C(Z,„+iJ

where we can particularly note kn =  0„+]/„+i \f/nc„. Then we consider, 

due to to the lemma, the morphism \ffn+i

} ^  Cn+2

^1 — —(-'(fin f I 1 Vncn)

and thus to prolong still the previous diagram

h+l j / \ 0n+l j  7̂1+1 *-,/j \ Vn+l ln+2 j / \
w i+ 1  *-‘(C,n+1) L,n+ 1 1) *" w i-f-2 ^ ^ ( .^ « + 2 )

Thus for all n € N we have this construction, what brings to light the 

filtered diagram built with these diagrams. This filtered diagram is 
noted B*. In particular the diagrams

. do=lnYn— lcn— 10n-l do=!n+\VnCntyn
L(Cn_i) ,............. = = ^ L ( C n) = . / i L(Cn+1)

d\ =L( y/n- 1 cn—i <pn-  \ln- i ) d\ —Z/( \ffn Cn ln )
fti+1

- 3 0 0 -

<Pn ¥n

do=W i Vn c n

L (Cw+l)
<t>n+l

Ln+1

c (Ln)
Si

So cn+ 1 :+lW iWn

C(Ln+l)
Wn+ 1

Ln Xn
Ln+1

jn
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show that

^i+l^n+l yfnCnQnlntyn— l*-n— l$n— 1 =  ^n+l^n+1 tynCntynJ-'ijjfn— lOi— l$n— 1 

I n - 1).

KiThus according to the lemma, there is a unique morphism Ln —> Ln+1, 

which is the forgetting of a morphism of (if, returning commutative 

these diagrams. Thus we obtain the filtered diagram L* of SB which is 

the forgetting of a diagram filtered of ^

Xq A-i Xn r ^n+i
M) ^ ^ L,n ^ L̂ n-1-1 ^

where B* is an expanded diagram of L* i.e we have 

b*
/-------------- A-------------- s

C o — ^ L { C o ) - ^ U  

We also have the diagram

8p=Cn— i <t>n— 1 ln— 1 tyn—2 8o=Cn<t>nlnYn-l
C ( L n- 2 ) £ C { L n )

8X =C{(j>n—\ln— \ \\fn—2Cn—2)
V n - l

8i=C(<l>nln \ f fn - lC n - l )
Vn

C„.................* .............-C „+1

which shows that

yfnc n*Pnln tyn— l c n — 1 P n— \ l n — 1 tyn—2 =  tync nfynlntyn—\C ( , ty n —\ l n —\ W n —2

Cn—2 )-

Thus according to the lemma, there is a unique morphism C„ C„+1 

which is the forgetting of a morphism of S> returning commutative 

these diagrams. Therefore we obtain the filtered diagram C* of 3S 

which is the forgetting of a diagram filtered of

„  Ki K2 Kn K>,+ 1 
Ci — ►  C2 — ►  c „  — ►  C„+ 1  ►

-301 -
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where 2?* is an expanded diagram of C*, i.e we have

_________b*_________

CQ fofoh c(Lo) C*

Thus these diagrams B*, L* and C* have the same colimit B(X) in SB. 

We put — U (Af*) and M* —> AMx its colimit (in ^ ) ,  C* =  V (//*) 

and //* —> A//x its colimit (in The functors U and V preserving pt- 

colimits, therefore B(X) is the forgetting of the pair (Mx ,Hx ) which 

is an object of 2>\ B(X) = 0((M x ,Hx )) = U(MX) =  V(HX). 
We put F(X) =  (MX,HX) which gives, as we are going to see, the 

desired left adjoint of the forgetful functor O, and where (B, p ,b ) is the 

associated monad. B(X) inherits at the same time the structure of the 
object Mx  (which lives in c€ )  and the structure of the object Hx  (which 

lives in S’). It is the reason why the monad (B ,p ,b ) can be called 

"fusion" of monads (L, m,/) and (C,ra,c). We note bx  the produced 

arrow X  — B(X) The continuation consists in showing the universal

character of bx . We are going to show that if we give ourselves a
t

morphism X  —¥ Bq of 38 such as Bq is the forgetting of an object 

(Mo,Ho) of ^  then there is a unique morphism (Mx ,Hx ) ^ ’k\

(Mo, Ho) o f ^ x j ^  such as 0(h,k)bx  = f .  For that, we are going 
to use the filtered diagram B* with which we are going to build by 

induction a cocone 5* —> ABo, and it will display the existence of the 
pair (h,k).

- 3 0 2 -
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Let go = f  and /o which is the extension of /  from Lo =  L (X ):

v  f  DCq — A ------►  /50
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¿(Cb) / fo==XQ 

<to=i /
Lo

We can suppose that this construction is up to the rank rt. Thus in 

particular we have the following diagram

Co-----------------— ^ B o

8n̂ ,—

C n ' ^ ^  y / V
x n s ' /  /

ln y S  /  /

L (c n) fy  /

<l>n > /  /

L / yn

Cn /

C(Ln)

Also the natural transformation 1 applied to

C (Ln-1) ♦* * - '>  Ln 

gives the equality

C{(f>nln tyn— 1 )c { C { L ,n— 1)) = ̂ n0n^nWn—l =  ^0

thus y„So = ynC((l>nl„y/n-i)c (C (L n- i ) ) .  On the other hand 

yn^O =  yn 8o ff t ( .L n —l ) c ( C ( L n—i ' ) )

l■0

- 3 0 3 -



(unity axiom of monads), which leads to the equality 

ynC((frnlnyfn— l) = yn8ofn{Ln— i)

(do not forget that is the forgetting o f a morphism of S ’ 

because yn8o = y n -1)- What allows to write

— yn.C(kn—\)  =  ynC(<pnlnV^n—l cn—l)

= ynC(<l>„l„ y/n-1  )C(c„_ i ) =  y„5om(L„_ i )C(c„_ i )

= yn5o (unity axiom of monads)

So the universality of y/n implies the existence of a unique mor­

phism o f £> that the forgetting g„+i is such as gn+ 1 Vn = yn- We 

also have the extension *„+1 of gn+i from L(Cn+i). Then the nat­

ural transformation lag L  applied to L(C„) ^nCn̂>n'> Cn+\ gives 

the equality

J-‘i,Wn(-n^n)l{J-'(Cn)) = In+ltynCnQn =  d.o

thus xn-\-\d,Q =  xn+iL(\ffncn<l)n')l(L(Cn')'), and

xn+ido = xn+ld0m(Cn)l{L{Cn)) (unity axiom of monads)

which leads to the equality

Xn+ll-'(y/ncn$n) — xn+ldoXXl(Cn)

(do not forget that xn+ido is the forgetting o f a morphism of ctf  

because xn+1 do = xn). W hat allows to write

x n+ ld l =  X n+ lL^jn) — x n+ lL (

=  xn.\.\L(\f/ncn<l)n)L,(lri') =  .xn-|-id?<ym(C/i)Z/(/n)

=  xn+ido (unity axiom of monads)

Then the universality of <t>n+i implies the existence of a unique 

morphism of ^  which the forgetting f n+\ is such as f n+\<t>n+\ =  

xn+1. We also have the extension yn+i of f n+\ from C(Ln+\).

KACHOUR - OPERADIC DEFINITION OF NON STRICT CELLS
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-  Thus we obtain a cone fl* —> ABo, with Bo = 0(M o,Ho) — U (Mo) — 

V(Ho). We have the two cocones as well L* —» Ai/(Mo) and 

C* —> AV(flo). The functor U preserving the ll-co lim its , the 

diagram of 88

L * -----►  AU (Mo)

A U(MX) 

results of the diagram of ^  

M *----- ►  AMq

AMX

such as M* —> AMx is a colimit. There is consequently a unique 

morphism h of ^  such as the triangle commutes

AMX

In the same way the functor V preserves pf -colimits, so the dia­

gram of SB

M * AMq .
A
: a / i

C*-----^AV(f fo)

AV(H x)

results of the diagram of

H * ----- ►A flo

M ix

- 305-
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such as //* —>• AHx is a colimit. Therefore there is a unique 

morphism k of such as the following triangle commutes

H , ------*~AHq .

\
A
; Ak 

AHx

It shows the existence of the unique morphism (h , k) of ̂  x @ Ç& 

such as

A 6 q

In consequence we obtain the morphism (h , A:) of ^  x ̂  ^  such as 

0{h,k)bx  =  / .  Let (h/,k/) another morphism of *€ x$g making the 
following triangle commute

B(X) = 0{Mx ,Hx )

We are going to prove by induction that it makes commutative the 

following triangle of natural transformations

\
A
; o ( h , k )

A5(X)

X
f

Bo = O(M0,H0) .

bx 0(h'#)

AB(X)

then it will immediatly prove the unicity of (h,k).

- 306 -
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The cocone B * —> AB ( X )  is exp lic itly  given by the fo llow ing diagram

C o ---------------- ---------- - B(X)

s '  /  /

L{Cn) f * /  /

Ln / V«

c n /

C(Ln)

W e need to prove that Vn €  N  we have the equalities: 0 ( h ' , k ? ) g %  —  g n , 

0 ( h ' , k ? ) f „  =  f n , 0 ( h ' , k ? ) x %  = x n , 0 ( h ' , k ! ) y *  = y n .

— I f  n  =  0 w e have V ( k ! ) x §  1$ =  V ( k , ) b x  =  f  =  x o h  (don’t forget 

that V ( k ! )  =  U { h ! )  =  0 ( h ' , k ! ) )  thus V ( k J) x $  =  x 0 . W e triv ia lly  

have V  (A /) /*  =  /o  because /o  =  *o  and / *  =  X q . A lso, V  ( k ' ) y g  co  

=  V ( k ' ) f £  =  f o =  y o c o ,  so V ( k ' ) y Q  =  yo -  A nd g i is unique 

such as g i Y'o =  y o -  H ow ever V ( k r ) g ^ \ f / o  =  V ( k ' ) y ^  =  y 0 , thus

= 8 i -

-  W e can suppose that u n til n  >  1, w e have these equalities; g n + i 

is unique such as g n + i  \ff„ =  y n . B ut V ( k , ) g ^ + 1  \ff„ =  V ( k / ) y ^  =  

y n , thus V ( k ? ) g £ + l  =  g H + i .  A lso  V ( ^ ) 4 +1/„+1 =  V { k f ) £ + X =  

g n + 1 =  x n + x ln + \ .  Thus V ( k ' ) x % + l  = x n + i .  A nd f n + \ is unique 

such as f n + i<j)n + i = x n + i .  Nevertheless V ( k / ) f ^ + l <j)n + i =  V { k , ) x n + {  

=  x „ + i, thus V ( k ? ) f * + l  =  f n + i • So w e have V ( k ’ )y%+ l c n + 1 =  

y ( ^ ) f n + i  =  /»+1 =  y n+ \ C n + \ ,  w hich proves that V ( k ? ) y £ + l  =  

y n+ 1-

- 3 07 -
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Finally we obtain the following fusion diagram

u c
S f . T  . -l ^  g»

L

7 Theories of the ^-Transformations in e  N*) and 

their Models.

The goal of this section is to build, thanks to the Nerve Theorem ([25]), the 

equivalence in Glob(CAT) of 7.3 which shows that «-Transformations can 

be seen as models for some very elegant theories which are colored in a 

precise sense (see 7.2). We refer to the papers [14], [5] for materials that 

we are going to use here. Here Ar is the category of categories with arities, 

ArMnd is the category of categories with arities equipped with monads, and 

MndAr is the category of monads with arities. More specifically objects

of Ar are noted (@o,io,£f) where 0o '° > srf is a fully faithfull functor, 

and objects of ArMnd and of MndAr are noted ((0o,io>*^)i (T',ry,ju)) or 

(0o,io,*O when there is no confusion about monads T which act on s i . 
Strongly cartesian monads [5] are the most important example of monads 

with arities for our purpose, because all monads arising from operads of the 

«-transformations are strongly cartesians (see proposition 2). But before this 

easy but important proposition 2, we are going to show some interesting 

objects of coGlob(CAT) (in 7.1 and 7.2), the category of coglobular objects 

in CAT.

V S'

- 308 -
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7.1 Coglobular Complex of Kleisli of the n-Transformations

(n €  N*).

Here categories Mnd and Adj are slightly different from those which were 

defined in 4 (see [14, 24] for their definitions) and are adapted for build­

ing the coglobular complex of Kleisli of the n-Transformations (n e  N*).

Consider the functor M nd---- ►  Adj which send the monad (Sf, (T,

to the adjunction (Kl(T),&,Lt ,Ut ,t\t ,£t ) coming from the Kleisli con-
f

struction. Objects of Kl(T) are objects of Sf and morphisms G ---- ►  G' of

Kl(T) are given by morphisms G — T(G') of& . Also if G —

lives in i f  then Lj(g) =  tj(G') o g and if G — -̂*~G' lives in Kl(T) then 

U t(/)  = ju(G') o T (f). Finally K send the morphism (Q,q) of Mnd to the
f

morphism (P; Q) of Adj such that if G ---- ►  G' is a morphism of Kl(T) then

P (/)  =  q(G')Q(f). Then consider the coglobular complex of CT-Catc of the 

globular contractible colored operads of the n-Transformations 3.3

5,° s ‘ s r l
B° = ?B1 Z B2 ZBn~l "> Bn^0 -y\ 1*1 k2 Kn

For each j  € N we note ( W ,1jJ‘) the corresponding monads (see 4).

Given the following functors "choice of a color" a> — Gr j* > ft) — Gr/ 1 U 2 
for each j  € {1,2} which send the co-graph G to the bicolored co-graph ¿jo!g 

and which send a morphism f  to / .  It result from the morphisms of color

1 — J-+ 1 u2  (see 3.3). By definition of the monads and B} we have the
5°  K °

following natural transformations — 1-+~ fi'/i* and ¿2+6 ° —^  fi1̂ * 
and furthemore we have for each j  ^  1 the following natural transformations

5/+, . . iff j 
B ]---- »- B} +1 and B }---- ^ Bj+l and it is easy to see that these natural

transformations fit well the axioms of morphisms of Mnd (and it is similar to

the construction in [16]). The functoriality of the building a monad from a

- 3 0 9 -
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T-Category implied that we can build the corresponding coglobular complex 

of Mnd (similar to 4.2)

7.2 Coglobular Complex of the Theories of the 

«-Transformations (n G N*).

We are going to exhibit the categories of arities for the «-Transformations 

where we can immediately see their colored nature. Then we construct 

the theories of the «-Transformations where in particular we can see again 

their bicolored features and then we describe these colored theories as full 

subcategories of their Kleisli categories. Finally we exhibit the coglobular 

complex of the theories of the «-Transformations.

Given ©o the category of graphic trees (see [2], [11], [4]). Theories build 
with sums ©o U... U ©o are called «-colored if the sum use ©o « times.

We have the following easy proposition

Proposition 1 For all « € N* the following canonical inclusion functors

S ° ---- i  Bl ---- ? B2 > Bn
K? *2 C l

PIf A dj---- ►  CAT is the projection functor, then the functor

Mnd — Adj p
AT

brings to light the following coglobular complex of Kleisli of the 

«-Transformations (« € N*)

ôi «r1
K l ( B ° ) = ^ K l ( B l ) = t K l ( B 2) = £ K l ( I ? - i ) = ^ K l ( & )

K? KÌ k£ 1

©0U ... U©o(— 6) — Gr/1 U2U ...U«

produce categories with arities. □

- 3 1 0 -
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For the «-Transformations the following morphisms of Ar are important

where i'i* and 12* are the functors "choice of a color" (see section 7.1). 

Let us consider the case of the categories with arities equipped with 

monads of the «-Transformations ((@0, *o> © — Gr), (5 °, 770, jtx0)) and

where the functors j  are identity on the objects and the functors i are 

fully faithfull (see [14, 25]). The categories ©go, 0 s i, ...,0B,, ...etc. are the 

theories of the «-Transformations (by abuse we call ©go the theory of the 

O-Transformations, which is actually the theory built by Clemens Berger in

[4]). We can also give to them the following alternative definition: Each 0 Bi 

can be seen as the full subcategory of the Kleisli category (see the

paragraph section 7.1) which objects are the bicolored trees if / ^  1 (i.e belong 

in ©0 U ©0), and which objects are the trees if i = 0. With this description we

*2 *

io ¿O

lì*
0 O . ■ ..£ ©o U©on M n

cd — G r  '* ^  (O — G r /1 U 2

((©oU0o,i'o,û) —Gr/1 U2),(fi',î7',ju')) if Ï >  1 

We have the following factorisation

I ß - A l g

i \
&g>

and for each i ^  1 we have the following factorisations

©0 u ©o (O -  Gr/1 U 2 —'+*■ Bj -  A lg

®B‘
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obtain the coglobular complex of the theories of the n-Transformations which 
is seen as a subcomplex of the coglobular complex of the Kleisli categories 

of the n-Transformations

: © Ri ©fi2 © D /l-1
8S -1

SI

K'1-1

« r 1
Kl(BP) = £  Kl(B1y = £  Kl(B2) Z Kl(Bn~l ) = £  Kl(Bn)

<-

7.3 An application of the Nerve Theorem.

Given s i a category with a final object 1, and a functor s i 

We have the following factorisation:
SB

s i

F\ cod

SB/F{ 1)

where F\(a) := F(\a). In that case we have the following important 
definition

Definition 1 (Street 2001) The last F is qualified as Parametric Right Ad­

joint (p.r.a for short) if F\ has a left adjoint. □

Definition 2 A monad (Sf, ( ) )  is a strongly cartesian monad if T is 

p.r.a. and if its unit and multiplication are cartesian. □

Remark 6 In 2001 Ross Street has called them p.r.a monads, Mark Weber 

in [25] has called them locally right adjoint monads (l.r.a monads), but we 
adopt here the terminology of the paper [5]. □

- 3 1 2 -

0So
K<2
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F
SB
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Monads of the «-Transformations are in fact strongly cartesian monads 

(see the proposition 2 below, where the proof is left to the reader) which allow 

us to exhibit the coglobular complex in Mnd Ar of the «-Transformations and 

thus, thanks to the Nerve Theorem [25] we get the globular complex of nerves 

of the «-Transformations and finally the equivalence in Glob(CAT), which 

express the definition of the «-Transformations as models for theories, that is 

the outcome of this section. It is well known that (û) — Gr, (5°, r/°, ju°) ) is a 

strongly cartesian monad [25]. In fact all monads of the «-Transformations 

(« € N*) have this property

Proposition! Foralli^  1 the monad (® — G r/H J2 ,(S ' ,tj' , fi1)) is strongly 

cartesian. Furthermore (@o LI ©o, io, (O — G r/1 U 2) is their canonical arities 

(see remark 2.10 in [5]).

So we obtain the coglobular complex in Mnd Ar of the «-Transformations

(©o, io, CO -  Gr) = = £  (®o U ©o, i0, (ù -  Gr/ 1 U 2) = n

8!
(©o U @o, io, © — G r /1U 2) =

¡+1

Ki+l

which brings to light the globular complex of nerves of the «-Transformations

:Bn-A lg :

Ngn

un-l

< - 1

5 " - ' -  M g  : 5 B} -  AI g = = £  5° -
A)

N,B°

Pn-
0 ,nl

which finally achieve the goal of this section by showing the following 

equivalence in Glob(CAT) given by the nerves functors, i.e each nerve

- 31 3 -

«I'2

Ad'g

O,.10

Í«
€ S0
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functor Nff> of the commutative diagram below is an equivalence of categories

Afc.

::ÇMod(0fln) :

Bn~x - HB1 -

n —i

N, N,S'
A}

Ig

"so

K-
Mod(0fin. i ) Mod(0fli ) °{ Mod(0no)

“ A,1
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