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CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Vol. LU-3 (2011)

COVERING MORPHISMS OF CROSSED COMPLEXES 
AND OF CUBICAL OMEGA-GROUPOIDS ARE 

CLOSED UNDER TENSOR PRODUCT

by Ronald BROWN and Ross STREET

Résumé
Le but de cet article est de démontrer les théorèmes mentionnés dans 
le titre, ainsi que le corollaire disant que le produit tensoriel de deux 
résolutions croisées libres, en groupes ou en groupoïdes, est aussi une 
résolution croisée libre, en groupes ou en groupoïdes. Ce corollaire est 
obtenu en utilisant l’équivalence entre la catégorie des complexes croisés 
et celle des omega-groupoïdes cubiques, avec connexion, dans laquelle on 
donne la définition initiale du produit tensoriel. D’autre part, c’est dans 
cette deuxième catégorie qu’on peut appliquer les techniques de sous- 
catégories denses pour reconnaître qu’un produit tensoriel de revêtements 
est un revêtement.

Abstract
The aim is the proof of the theorems of the title and the corollary that 
the tensor product of two free crossed resolutions of groups or groupoids 
is also a free crossed resolution of the product group or groupoid. The 
route to this corollary is through the equivalence of the category of crossed 
complexes with that of cubical w-groupoids with connections where the 
initial definition of the tensor product lies. It is also in the latter category 
that we are able to apply techniques of dense subcategories to identify the 
tensor product of covering morphisms as a covering morphism.

Mots-clés / Keywords: crossed complexes, cubical omega-groupoids, 
monoidal closed, density, covering morphisms.
Classification MSC 2010: 18B40, 18D05, 18D10, 18G40,55U40
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Introduction

A series of papers by R. Brown and P.J. Higgins, surveyed in [Bro99, Bro09], 
has shown how the category Crs of crossed complexes is a useful tool for 
certain nonabelian higher dimensional local-to-global problems in algebraic 
topology, for example the calculation of homotopy 2-types of unions of 
spaces; and also that crossed complexes are suitable coefficients for non­
abelian cohomology, generalising an earlier use of crossed modules as coeff­
icients. While crossed complexes have a long history in algebraic topology, 
particularly in the reduced case, i.e. when Cq is a singleton, the extended use 
in these papers made them a tool whose properties could be developed in­
dependently of classical tools in algebraic topology such as simplicial appr­
oximation. A key new tool for this approach was cubical, using the notion 
of cubical oj-groupoids with connections. A book is in press on these topics, 
[BHS11],

One aspect of this work is that it leads to specific calculations of homo- 
topical and group theoretical invariants; as an example, the notion of iden­
tities among relations for a presentation of groups combines both of these 
fields, since it also concerns the second homotopy group 7r2(A'('P)) of the 
2-complex determined by a presentation V  of a group. Calculations of this 
module were obtained in [BRS99] not through ‘killing homotopy groups’, 
or its homological equivalent, finding generators of a kernel, but through the 
notion of ‘constructing a home for a contracting homotopy’. To this end 
we had to work by constructing a free crossed resolution F  of the univer­
sal covering crossed complex^ of a group or groupoid. Any construction of 
a contracting homotopy of F  breaks the symmetry of the situation, as is 
necessary, and also may rely on rewriting methods, such as determining a 
maximal tree in the Cayley graph. Thus we see covering crossed complexes 
as a basic tool in the application of crossed complex methods, in analogy to 
the application of covering spaces in algebraic topology.

A major tool for dealing with homotopies is the construction of a 
monoidal closed structure on the category Crs of crossed complexes giving 
an exponential law of the form

Crs(A ® B, C) “  Crs(A, CRS(5, C))
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for all crossed complexes A, B, C, [BH87].

This monoidal closed structure and the notion of classifying space BC  of 
a crossed complex C  is applied in [BH91] to give the homotopy classification 
result

[X ,B C ]*[U X „ C \

where on the left hand side with X  a CW-complex, we have topology, and 
on the right hand side, with FIX* the fundamental crossed complex of the 
skeletal filtration of X ,  we have the algebra of crossed complexes.

Tonks proved in [Ton94, Theorem 3.1.5] that the tensor product of free 
crossed resolutions of a group is a free crossed resolution: his proof used the 
crossed complex Eilenberg-Zilber Theorem, [Ton94, Theorem 2.3.1], which 
was published in [Ton03]. The result on resolutions is applied in for exam­
ple [BP96] to construct some small free crossed resolutions of a product of 
groups. We give here an alternative approach to this result.

The PhD thesis [Day70] of Brian Day addressed the problem of ex­
tending a promonoidal structure on a category A  along a dense functor 
J  : A —* X  into a suitably complete category X  to obtain a closed monoidal 
structure on X. The two published papers [Day70a, Day72] are only part of 
the thesis and represent components towards the density result. The formu­
las in, and the spirit of, Day’s work suggested our approach to the present 
paper. However, here the category A  is actually small (consisting of cubes) 
and monoidal, and so is an easy case of Day’s general setting. The same sim­
plification occurs in the approach to the Gray tensor product of 2-categories 
in [Str88], and of globular oo-categories in [Cra99, Proposition 4.1].

One advantage of cubical methods is the standard formula

/ r  0  “  j™+n (i)

where I™ is the standard topological m-cube with its standard skeletal filtra­
tion. This equation is modelled in the category w-Gpd by the formula

Im ® F  = Im+n (2)

where for m  ^  0 Im is the free u;-Gpd on one generator cm of dimension 
m. We apply (2) by proving in Theorem 5.1 that the full subcategory of u>- 
Gpd on these objects F™, m ^  0 , is dense in w-Gpd. The proof requires a
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further property of cu-groupoids, that they are T-complexes [BH81, BH81c]. 
We then use the methods of Brian Day [Day72] to characterise the tensor 
product on w-Gpd as determined by the formula (2).

We use freely the notions and properties of ends and coends, for which 
see [ML71].

The final ingredient we need is the fact that if p : C —>■ C  is a covering 
morphism of crossed complexes then p*: Crs¡C  —»• Crs¡C  preserves colim­
its, since it has a right adjoint. This result is due to Howie [How79], in fact 
for the case of a fibration rather than just a covering morphism. Because of 
the equivalence of categories, this applies also to the case of the category 
cj-Gpd. However we need to characterise fibrations and coverings in the 
category w-Gpd. This is done in Section 4. It is possible that the covering 
morphisms are part of a factorization system as are the discrete fibrations in 
the contexts of [Bou87] and [SV10].

The use of crossed complexes continues work of J.H.C. Whitehead, 
[Whi49, Whi50], and of J. Huebschmann, [Hue80], all for the single ver­
tex case.

1 Crossed complexes

For the purposes of algebraic topology the most important feature of the cat­
egory Crs of crossed complexes is the fundamental crossed complex functor, 
[BH81a],

I I : FTop —»■ Crs 

from the category of filtered spaces

X*: X 0 C Xi Ç ■ ■ ■ <Z X n Ç ■ ■ ■ Ç Xoo.

An extra assumption is commonly made that X x  is the union of all the 
X n, but we do not use that condition. For such a filtered space X*, various 
relative homotopy groups

(IUi*),]^) — TTn(X ni X n—i , 3?)
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for x  6  Xo and n ^  2, may be combined with the fundamental groupoid 
(n x ,) i  =  7Ti(Xi,X0) on the set X 0 to give a crossed complex IIX*. 
There are boundary operations Sn : ( n i , ) n —» (IIX*)n_i and operations 
of (III»)! on ( n i , ) n, n ^  2 , satisfying axioms which are characteristic for 
crossed complexes. This last fact follows because for every crossed complex 
C there is a filtered space X* such that C = FIX* [BH81a, Corollary 9.3].

2 Fibrations and covering morphisms of crossed 
complexes

The definition of fibration of crossed complexes we are using is due to 
Howie in [How79]; it requires the definition of fibration of groupoids given 
in [Bro70, Bro06], generalising the definition of covering morphism of 
groupoids given in [Hig71]. The notion of fibration of crossed complexes 
given in this Section leads to a Quillen model structure on the category Crs, 
as shown by Brown and Golasinski in [BG89], and compared with model 
structures on related categories in [ArMelO].

First recall that for a groupoid G and object x of G we write Costc x  for 
the union of the G (u,x) for all objects u of G. A morphism of groupoids 
p\ H  —y G is called a fibration (covering morphism), [Bro70], if the induced 
map Cost// y —>• Costq PV is a surjection (bijection) for all objects y of H. 
(Here we use the conventions of [BHS11] rather than of [Bro06].)

Definition 2.1 A morphism p: D —» C of crossed complexes is a fibration 
(covering morphism) if

(i) the morphism pi : Di —> C\ is a fibration (covering morphism) of 
groupoids;

(ii) for each n ^  2 and y € D0, the morphism of groups pn : Dn(y) —> 
Cn(py) is suijective (bijective).

The morphism pis a trivial fibration if it is a fibration, and also a weak equiv­
alence, by which is meant that p induces a bijection on 7r0 and isomorphisms
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7Ti(D,y) -» 7Ti(C,py), Hn(D,y) -> Hn(C,py) for all y e D0 and n ^  2 .
□

Remark 2.2 It is worth remarking that the notion of covering morphism 
of groupoids appears in the paper [Smi51, (7.1)] under the name ‘regular 
morphism’. Strong applications of covering morphisms to combinatorial 
group theory are given in [Hig71], and a full exposition is also given in 
[Bro06, Chapter 10].

A fibration of groupoids gives rise to a family of exact sequences, 
[Bro70, Bro06], which are extended in [How79] to a family of exact se­
quences arising from a fibration of crossed complexes. These latter exact 
sequences have been applied to the classification of nonabelian extensions 
of groups in [BM94], and to the homotopy classification of maps of spaces 
in [Bro08a]. □

In Section 4 we will need the following result, which is an analogue for 
crossed complexes of known results for groupoids [Bro06, 10.3.3] and for 
spaces.

Proposition 2.3 Let p: C  —>■ C be a covering morphism of crossed com­
plexes, and let y G Co. Let F  be a connected crossed complex, let 
x 6  Fq, and let f : F  —» C be a morphism of crossed complexes such that 
f (x )  = p{y). Then the following are equivalent:

(i) /  lifts to a morphism f : F —> C1 such that f(x )  — y and p f  = f;

(ii) /(F i(x )) C p(Ci(y));

(iii) /*(7Ti(F,x)) Cp,(7r1(C,y)).

Further, if the lifted morphism as above exists, then it is unique.

Proof That (i)=> (ii) => (iii) is clear.

So we assume (iii) and prove (i).

We first assume Fo consists only of x. Then the value of /  on x is by 
assumption defined to be y.
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Next let a G Fi(x). By the assumption (iii) there is c 6 C2(py) and 
b G C (y) such that f(a )  =  p(b) + ¿2 (c). Since p is a covering morphism 
there is a unique d G C2(t/) such that p(d) =  c. Thus / ( a )  =  p(b + S2(d)). 
So we define / ( a )  — b + S2(d) G C2{y). It is easy to prove from the 
definition of covering morphism of groupoids that this makes /  a morphism 
Fi(x) Ci{y) such that p f  =  / .

For n ^  2 we define / :  Fn(x) —* Cn(y) to be the composition of /  in 
dimension n and the inverse of the bijection p : Cn(y) —> Cn(py).

It is now straightforward to check that this defines a morphism / :  F, x —> 
C, y of crossed complexes as required.

If F0 has more than one point, then we choose for each u in F0 an element
t u € Fi(u,x) with t x = l x. Then f ( r u) lifts uniquely to t u € Costg y :  
any lift / :  F ,x  —» C, y of /  must satisfy f ( r u) = f u so we take this as a 
definition of /  on these elements.

If a € Fi(u, v ) then a =  t u + a' — t v  where a' G Fi(x) and so we define 
/(a )  = fu + f(a ') — f v. If n ^  2 and a  G Fn(u) then aTu G Fn(x) and we 
define / ( a )  =  f ( a Tu)~fu.

It is straightforward to check that these definitions give a morphism /  :
F, x —> C ,y  of crossed complexes lifting / ,  and the uniqueness of such a lift 
is also easy to prove. □

We will use the above result in the following form.

Corollary 2.4 Let p: C —>• C be a covering morphism of crossed com­
plexes, and let F  be a connected and simply connected crossed complex. 
Then the following diagram, in which each e is an evaluation morphism, is 
a pullback in the category of crossed complexes:

Crs (F, C) x F C 

p , x l  p

Crs(F, C) x F — C,

where the sets o f morphisms o f crossed complexes have the discrete crossed 
complex structure.
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Proof This is simply a restatement of a special case of the existence and 
uniqueness of liftings of morphisms established in the Proposition. □

Remark 2.5 Because the category Crs is equivalent to that of strict globular 
cu-groupoids, as shown in [BH81b], the methods of this paper are also rele­
vant to that category; see also [Bro08b]. However we are not able to make 
use of the globular case, nor even the 2-groupoid case. □

Let C be a crossed complex. We write CrsCov/C for the full subcategory 
of the slice category Crs/C  whose objects are the covering morphisms of 
C. The following Theorem, which is proved in [BRS99], shows that the 
classification of covering morphisms of crossed complexes, reduces to that 
of covering morphisms of groupoids.

Theorem 2.6 I f C is a crossed complex, then the functor i t i : Crs —»■ Gpd 
induces an equivalence of categories

7r[: CrsCov/C —> GpdCov/(7TiC).

An alternative descriptions of the category GpdCov/G for a groupoid G 
in terms of actions of G on sets is well known and of course gives the clas­
sical theory of covering maps of spaces, see [Bro06, Chapter 10]. Conse­
quently, if the crossed complex C  is connected, and x £ Co, then connected 
covering morphisms of C are determined up to isomorphism by conjugacy 
classes of subgroups of 7Ti(C, x ). In particular, a universal cover C  —> C of 
a connected crossed complex is constructed up to isomorphism from a base 
point x  € C0 and the trivial subgroup of 7Ti (C, x ).

The monoidal closed structure and many other major properties of 
crossed complexes are obtained by working through another algebraic cate­
gory, that of cubical uj-groupoids with connections which we abbreviate here 
to ui-groupoids. The category of these, which we write cu-Gpd, is a natural 
home for these deeper properties. The equivalence with crossed complexes 
proved in [BH81] is a foundation for this whole project. Indeed the defini­
tion of tensor product for cu-groupoids is much easier to deal with than that 
for crossed complexes, and we find it easier to give a dense subcategory for 
w-groupoids than for crossed complexes.
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3 Cubical omega-groupoids with connection

We recall from [BH81] that a cubical uj-groupoid with connection is in 
the first instance a cubical set {K n | n ^  0}, so that it has face maps 
{d f \ K n —>■ K n_i | i = 1 , . . . , n ; n  ^  1} and degeneracy maps 
{et : K n —> K n+i \ i = 1, . . .  ,n ;n  ^  0} satisfying the usual rules. Fur­
ther there are connections : K n —>• K n+1 | i  =  l , . . . , n ; n ^ l }  which 
amount to an additional family of ‘degeneracies’ and which in the case of 
the singular cubical complex of a space derive from the monoid structures 
max, min on the unit interval [0,1]. Finally there are n groupoid structures 
{oj | i — 1 , . . . ,  n}, defined on K n with initial, final and identity maps 
d~ ,£i maps respectively.

The laws satisfied by all these structures are given in several places, such 
as [AABS02, GM03], and we do not repeat them here. Note that because 
we are dealing with groupoid operations o* we can set r* =  so that 
T t =  —j —i+1 r<. In this case the laws were first given in [BH81].

A major example of this structure is constructed from a filtered space X* 
as follows. One first forms the cubical set with connections R X * which in 
dimension n is the set of filtered maps /"  —»• X* where / ” is the standard 
n-cube with its skeletal filtration. Then pX„ is the quotient of RX* by the 
relation of homotopy through filtered maps and relative to the vertices of I n. 
It is easy to see that pX * inherits the structure of cubical set with connection, 
and it is proved in [BH81a, Theorem A] that the obvious compositions on 
R X * are also inherited by pX* to make it what is called the fundamental 
w-groupoid pX* of the filtered space X».

The main result of [BH81] is that the category u;-Gpd is equivalent to 
the category Crs of crossed complexes, and in [BH81a, Theorem 5.1] it is 
proved that this equivalence takes pX* to IIX*.

As said in the Introduction, the free cj-groupoid on a generator cn of 
dimension n is written In. More generally, the free o;-groupoid on a cubical 
set K  is written p'K: this is a purely algebraic definition. A major result 
is that p'K  is equivalent to p \K |* where \K\* is the skeletal filtration of the 
geometric realisation of K  and p is defined above; so we write both as pK. 
This equivalence is proved in [BH81a, Proposition 9.5] for the case K  — ln,

- 196 -



BROWN & STREET - COVERING MORPHISMS OF CROSSED COMPLEXES...

and the general case follows by similar methods.

We shall also need the properties of thin elements in an a>-groupoid G. 
An element t of Gn is called thin if it has a decomposition as a multiple 
composition of elements £iX, Tjy, or their repeated negatives in various di­
rections. Clearly a morphism of cu-groupoids preserves thin elements.

A family B  of elements of In is called an (n — I)-box in In if they form 
all faces dfcn  but one of cn. An element x is called afiller of the box if these 
all-but-one faces d fx  are exactly the elements of B.

Then B  generates a sub-u;-groupoid B  of F1. The image family b(B) of 
this by a morphism of cu-groupoids b : B  —»■ G is called an (n — l)-box in 
G. Again we have the notion of a filler of a box in G. A basic result on 
cd-groupoids [BH81, Proposition 7.2] is:

Proposition 3.1 (Uniqueness of thin fillers) A box in an u-groupoid has a 
unique thin filler.

The thin elements in an u-groupoid satisfy Keith Dakin’s axioms, [Dak77]:

Dl) a degenerate element is thin;

D2) every box has a unique thin filler;

D3) if all faces but one of a thin element are thin, then so is the remaining 
face.

These axioms for a thin structure in fact give a structure equivalent to that 
of an u;-groupoid, as shown in [BH81c]. That is, the connections and the 
compositions are determined by the thin structure: we will use this fact in 
the proof of Theorem 5.1. The following Lemma is also used there.

Lemma 3.2 I f t E Gn is a thin element o f an oj—groupoid G , then there is a 
thin element bt G I" such that t(bt) = t(cn).

Proof Let t : In —> G be the morphism such that t(cn) =  t. We can find 
a box B  in In and such that t is a filler of t \: B  —*■ G. This box B  in In 
also has a unique thin filler bt in In. Since t is a morphism of w-groupoids,
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it preserves thin elements and so t(bt ) is thin and also a filler of the box B  in
G. By uniqueness of thin fillers t(bt) = t = t(cn). □

Remark 3.3 Thin elements in higher categorical rather than groupoid situ­
ations are also used in [Str87, Hig05, Ste06, Ver08]. □

4 Fibrations and coverings of omega-groupoids

We now transfer to cubical w-groupoids the definition in Section 2 of fibra­
tion and covering morphism of crossed complex.

Theorem 4.1 Let p: G —>• H  be a morphism of u-Qpds. Then the corres­
ponding morphism of crossed complexes 7 (p) : 7  (G) —> 7 (H) is a fibration 
(covering morphism) if and only ifp  : G —> H  is a Kan fibration (covering 
map) of cubical sets.

Proof Let J*i for e =  ±, i =  1, . . . ,  n, be the subcubical set of the cubical 
set I n generated by all faces of I n except df.

We consider the following diagrams:

n  J l i ---- - 7 G p J l i ------ G Je,i----- ►  UG
rf Y

7(p) v P ir .. UP

n  I n -----^ 7  H p ln -----I n ------------------- *~UH

(¿) (a) (m)

By a simple modification of the simplicial argument in [BH91], we find 
that the condition that diagrams of the first type have the completion shown 
by the dotted arrow is necessary and sufficient for 7p to be a fibration of 
crossed complexes (with uniqueness for a covering morphism). In the sec­
ond diagram, p(K ) is the free cubical cu-groupoid on the cubical set K , and 
the equivalence of the first and the second diagram is one of the results of
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[BH81a, Section 9]. Finally, the equivalence with the third diagram, in which 
U gives the underlying cubical set, follows from freeness of p. □

Corollary 4.2 Let p: K  —t L b e a  morphism of uj-Gpds such that the un­
derlying map of cubical sets is a Kan fibration. Then the pullback functor

f * : w-Gpd/L  w-Gpd/K

has a right adjoint and so preserves colimits.

Proof This is immediate from Theorem 4.1 and the main result of Howie 
[How79], □

Corollary 4.3 A covering crossed complex o f a free crossed complex is also 
free.

Proof A free crossed complex is given by a sequence of pushouts, analo­
gously to the definition of CW-complexes, see [BH91, BHS11]. □

5 Dense subcategories

Our aim in this section is to explain and prove the theorem:

Theorem 5.1 The full subcategory T  o f u -Gpd on the objects In is dense in 
u;-Gpd.

We recall from [ML71] the definition of a dense subcategory. First, in 
any category C, a morphism f : C —t D  induces a natural transformation 
/ , :  C(—,C) =>• C(—, D) of functors Cop Set. Conversely, any such 
natural transformation is induced by a (unique) morphism C  —> D.

If X is a subcategory of C, then each object C of C gives a functor

C|I ( - , C ) : I op^-S et
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and a morphism / :  C —> D of C induces a natural transformation of functors 
/*: 0 X(—, C) => ClI (—, £>). The subcategory X is dense in C if every such 
natural transformation arises from a morphism. More precisely, there is a 
functor 77: C —>■ CAT(J op, Set) defined in the above way, and X is dense in 
C if 77 is full and faithful.

Example 5.2 Consider the Yoneda embedding

T: C -»> Cop-Set =  CAT(C*\Set)

where C is a small category. Then each object K  G Cop-Set is a colimit 
of objects in the image of T and this is conveniently expressed in terms of 
coends as that the natural morphism

J (C^-SetiTc, K) x T c) -> K

is an isomorphism. Thus the Yoneda image of C is dense in Cop-Set. For 
more on the relation between density and the Yoneda Lemma, see [Pra09].
□

Example 5.3 Let Z be the cyclic group of integers. Then {Z} is a generating 
set for the category Ab of abelian groups, but the full subcategory of Ab on 
this set is not dense in Ab. In order for a natural transformation to specify 
not just a function / :  A  —> B  but a morphism in Ab, we have to enlarge this 
to a full subcategory including Z ® Z. □

Proof of Theorem 5.1 We will use the main result of [BH81c], that the 
compositions in a cubical w-groupoid are determined by its thin elements.

Let G, H  be u;-groupoids and let f : ui- Gpdx(—,G) u>-Gpd 
be a natural transformation. We define / :  G —> H  as follows.

Let x G Gn. Then x  defines x : In —> G. We set f(x )  = f(i)(c„) G Hn. 
We have to prove /  preserves all the structure.

For example, we prove that f ( d fx )  =  d f f( x ) .  Let B f : In_1 —> In 
be given by having value d fc n on cn_x. The natural transformation con­
dition implies that f(B^)* — (B^)*f. On evaluating this on x we obtain
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f{ d fx )  =  d f f ( x )  as required. In a similar way, we prove that /  preserves 
the operations e», IV

Now suppose that t e  Gn is thin in G. We prove that f ( t)  is thin in
H. By Lemma 3.2, there is a thin element bt e En such that t(bt) = t. Let 
b: In —> ln be the unique morphism such that b(cn) = bt. Then the natural 
transformation condition implies f ( t ) =  f(f)(cn) =  f(t)(6i). Since bt is thin, 
it follows that f ( t)  is thin. Thus /  preserves the thin structure.

The main result of [BH81c] now implies that the operations are pre­
served by / .  □

We can also conveniently represent each aj-groupoid as a coend.

Corollary 5.4 The subcategory X o/a;-Gpd is dense and for each object G 
ofui-Gpd the natural morphism

P  cj-Gpd(ln,G) x F  -)• G

is an isomorphism.

Proof This is a standard consequence of the property of X being dense. □

Corollary 5.5 The full subcategory of Crs generated by the objects IT/” is 
dense in Crs.

Proof This follows from the fact that the equivalence 7 : w-Gpd —»• Crs takes 
In to I I [ B H 8 1 a ,  Theorem 5.1]. □

Remark 5.6 The paper [BH81b] gives an equivalence between the cate­
gory Crs of crossed complexes and the category there called oo-groupoids 
and now commonly called globular w-groupoids. Thus the above Corollary 
yields also a dense subcategory, based on models of cubes, in the latter cat­
egory. □

Remark 5.7 It is easy to find a generating set of objects for the category 
Crs, namely the free crossed complexes on single elements, given in fact by
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HE™, where E™ is the usual cell decomposition of the unit ball, with one cell 
for n =  0 and otherwise three cells. It is not so obvious how to construct 
directly from this generating set a dense subcategory closed under tensor 
products. □

6 The tensor product of covering morphisms

Our aim is to prove the following:

Theorem 6.1 The tensor product of two covering morphisms o f crossed 
complexes is a covering morphism.

Remark 6.2 The reason why we have to give an indirect proof of this re­
sult is that the definition of covering morphism involves elements of crossed 
complexes; but it is difficult to specify exactly the elements of a tensor prod­
uct whose definition is perforce by generators and relations. □

It is sufficient to assume that all the crossed complexes involved are con­
nected. We will also work in the category of cj-groupoids, and prove the 
following:

Theorem 6.3 Let G ,H  be connected u-groupoids with base points x, y 
respectively, and let p : G —>• G be the covering morphism determined by 
the subgroup M  o fn ^G , x ). Let 4>: C —>■ G ® H  be the covering morphism 
determined by the subgroup M  x 7Ti (H, y) o f

7n(G ®  (x,y)) =  7Ti(G,x) X 7Ti(H,y).

Then there is an isomorphism -0 : C  —>• G <g) H such that (p <g> 1 h )^  =  4>> 
and, consequently,

p 0  Iff : G ® H  —̂ G ® H

is a covering morphism.

Proof Here we were inspired by the formulae of Brian Day [Day70].

First we know from [BH87] that the tensor product of w-Gpds satisfies 
Im 0  In =  r n+Tl, showing that X  is a full monoidal subcategory of w-Gpds.
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Since also from [BH87] the tensor preserves colimits in each variable, it 
follows from Corollary 5.4 that the tensor product G 0  H  of a>groupoids G 
and H  satisfies

/
m ,n

w-Gpd(F\ G) x u;-Gpd(P, H) x (F 1 0  P ). (3)

Let p : G —> G be the covering morphism determined by the subgroup 
M  and let <j>: C —> G ® H  be the covering morphism determined by the 
subgroup M  x ir\(H, y) of

TTi(G,x) x 7Ti(H,y) = 7Ti{G® H, (x,y)).

By Corollary 4.2, pullback <fi* by 4> preserves colimits. Hence

a
m,n \

w-Gpd(Im, G) x w-Gpd(In, H) x (Im 0  In) J

/
m,n

<t>*(a;-Gpd(Im, G) x a;-Gpd(En, H)) x (Im ® In) 

and so because of the construction of C  by the specified subgroup:

/ 771,71  ^

w-Gpd(Im,G) x a>Gpd(Im, H) x (Im ® F )

=  G ® H .  □
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Corollary 6.4 The tensor product o f covering morphisms of ui-groupoids is 
again a covering morphism.

Proof Because tensor product commutes with disjoint union, it is sufficient 
to restrict to the connected case. Since the composition of covering mor­
phisms is again a covering morphism, it is sufficient to restrict to the case of 
p <S> Ih , and that is proved in Theorem 6.3. □

The proof of Theorem 6.1 follows immediately.

Corollary 6.5 I f  F, F' are free and aspherical crossed complexes, then so 
also is F <S> F'.



BROWN & STREET - COVERING MORPHISMS OF CROSSED COMPLEXES...

Proof It is sufficient to assume F, F' are connected. Since F, F' are aspher- 
ical, their universal covers F , F' are acyclic. Since they are also free, they 
are contractible, by a Whitehead type theorem, [BG89, Theorem 3.2]. But 
the tensor product of free crossed complexes is free, by [BH91, Cor. 5.2]. 
Therefore F ® F' is contractible, and hence acyclic. Therefore F  <g> F' is 
aspherical. □
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